Abstract

Electrically tunable optical properties have been demonstrated in many solid-state materials such as semiconductors, transparent conductive oxides and graphene. However, their tunability is limited in the visible range due to the requirement of extremely large charge build-up or high capacitive fields. Here, we propose strongly correlated materials for circumventing such limitations. 1T-TaS2, a strongly correlated material exhibiting charge density order at room temperature, allows tuning of its optical properties with an in-plane electrical bias. The electrical bias causes the charge density waves to slide and thereby alter their coherence and condensation. As a result, the optical conductivity or dielectric function of this layered material changes with an in-plane bias. Here, we report measured anisotropic dielectric functions of mechanically exfoliated thin films of 1T-TaS2 and their electrical tunability. We observe a maximum refractive index change on the order of 0.1 in the visible range with DC and AC in-plane biases.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silver–magnesium fluoride cermet films. 2: Optical and electrical properties

M. Gajdardziska-Josifovska, R. C. McPhedran, D. R. McKenzie, and R. E. Collins
Appl. Opt. 28(14) 2744-2753 (1989)

Quadratic electro-optic properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 transparent ceramics under both DC and AC bias

Wen Kang, Shilie Zheng, Xianmin Zhang, Xiaofeng Jin, Hao Chi, and Yingyin Kevin Zou
Appl. Opt. 51(15) 2870-2876 (2012)

Development of tunable electro-optical properties on U-shaped-alignment in-plane switching liquid crystal devices

Guan-Jhong Lin, Tien-Jung Chen, Yi-Wei Tsai, and Jin-Jei Wu
Opt. Mater. Express 7(7) 2461-2470 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2010).
    [Crossref]
  2. M. Ferrera, N. Kinsey, A. Shaltout, C. DeVault, V. Shalaev, and A. Boltasseva, “Dynamic nanophotonics,” JOSA B 34, 95–103 (2017).
    [Crossref]
  3. V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
    [Crossref]
  4. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
    [Crossref]
  5. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
    [Crossref] [PubMed]
  6. A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
    [Crossref]
  7. V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
    [Crossref]
  8. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
    [Crossref] [PubMed]
  9. A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. photon. 6, 749–758 (2012).
    [Crossref]
  10. J.-Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
    [Crossref] [PubMed]
  11. Z. Samson, K. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. Huang, E. Di Fabrizio, D. Hewak, and N. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
    [Crossref]
  12. G. Grüner, “The dynamics of charge-density waves,” Rev. Mod. Phys. 60, 1129 (1988).
    [Crossref]
  13. J. Wilson, F. Di Salvo, and S. Mahajan, “Charge-density waves in metallic, layered, transition-metal dichalcogenides,” Phys. Rev. Lett. 32, 882 (1974).
    [Crossref]
  14. C. Slough, W. McNairy, R. Coleman, J. Garnaes, C. Prater, and P. Hansma, “Atomic force microscopy and scanning tunneling microscopy of charge-density waves in 1T-TaSe2 and 1T-TaS2,” Phys. Rev. B 42, 9255 (1990).
    [Crossref]
  15. A. Thompson, R. Gamble, and J. Revelli, “Transitions between semiconducting and metallic phases in 1T-TaS2,” Solid State Commun. 9, 981–985 (1971).
    [Crossref]
  16. D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
    [Crossref] [PubMed]
  17. G. Liu, B. Debnath, T. R. Pope, T. T. Salguero, R. K. Lake, and A. A. Balandin, “A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature,” Nat. Nanotechnol. 11, 845–850 (2016).
    [Crossref] [PubMed]
  18. X. Wang, H. Liu, J. Wu, J. Lin, W. He, H. Wang, X. Shi, K. Suenaga, and L. Xie, “Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity,” Adv. Mater. 30, 1800074 (2018).
    [Crossref]
  19. S. Uchida, K. Tanabe, and S. Tanaka, “Nonlinear conduction in two-dimensional CDW system: 1T-TaS2,” Solid State Commun. 27, 637–640 (1978).
    [Crossref]
  20. B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutiš, “From mott state to superconductivity in 1T-TaS2,” Nat. Mater. 7, 960–965 (2008).
    [Crossref] [PubMed]
  21. R. Zhao, Y. Wang, D. Deng, X. Luo, W. J. Lu, Y.-P. Sun, Z.-K. Liu, L.-Q. Chen, and J. Robinson, “Tuning phase transitions in 1T-TaS2 via the substrate,” Nano Lett. 17, 3471–3477 (2017).
    [Crossref] [PubMed]
  22. M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, and Y. Iwasa, “Memristive phase switching in two-dimensional 1T-TaS2 crystals,” Sci. Adv. 1, e1500606(2015).
    [Crossref]
  23. Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
    [Crossref] [PubMed]
  24. L. Li, W. Lu, X. Zhu, L. Ling, Z. Qu, and Y. Sun, “Fe-doping–induced superconductivity in the charge-density-wave system 1T-TaS2,” EPL (Europhysics Lett.) 97, 67005 (2012).
    [Crossref]
  25. Y. Liu, R. Ang, W. Lu, W. Song, L. Li, and Y. Sun, “Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS 2−x Sex,” Appl. Phys. Lett. 102, 192602 (2013).
    [Crossref]
  26. A. Spijkerman, J. L. de Boer, A. Meetsma, G. A. Wiegers, and S. van Smaalen, “X-ray crystal-structure refinement of the nearly commensurate phase of 1T- TaS2 in (3+2)-dimensional superspace,” Phys. Rev. B 56, 13757 (1997).
    [Crossref]
  27. S. Tanda, T. Sambongi, T. Tani, and S. Tanaka, “X-ray study of charge density wave structure in 1T-TaS2,” J. Phys. Soc. Japan 53, 476–479 (1984).
    [Crossref]
  28. T. Hirata and F. Ohuchi, “Temperature dependence of the raman spectra of 1T-TaS2,” Solid State Commun. 117, 361–364 (2001).
    [Crossref]
  29. D. Svetin, I. Vaskivskyi, S. Brazovskii, and D. Mihailovic, “Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2,” Sci. Rep. 7, 46048 (2017).
    [Crossref]
  30. C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
    [Crossref]
  31. F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, M. Garnier, and P. Aebi, “Fermi surface of layered compounds and bulk charge density wave systems,” J. Phys. Condens. Matter 19, 355002 (2007).
    [Crossref]
  32. Y. Ma, Y. Hou, C. Lu, L. Li, and C. Petrovic, “Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1T-TaS2,” Phys. Rev. B 97, 195117 (2018).
    [Crossref]

2018 (4)

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
[Crossref] [PubMed]

X. Wang, H. Liu, J. Wu, J. Lin, W. He, H. Wang, X. Shi, K. Suenaga, and L. Xie, “Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity,” Adv. Mater. 30, 1800074 (2018).
[Crossref]

C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
[Crossref]

Y. Ma, Y. Hou, C. Lu, L. Li, and C. Petrovic, “Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1T-TaS2,” Phys. Rev. B 97, 195117 (2018).
[Crossref]

2017 (3)

D. Svetin, I. Vaskivskyi, S. Brazovskii, and D. Mihailovic, “Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2,” Sci. Rep. 7, 46048 (2017).
[Crossref]

R. Zhao, Y. Wang, D. Deng, X. Luo, W. J. Lu, Y.-P. Sun, Z.-K. Liu, L.-Q. Chen, and J. Robinson, “Tuning phase transitions in 1T-TaS2 via the substrate,” Nano Lett. 17, 3471–3477 (2017).
[Crossref] [PubMed]

M. Ferrera, N. Kinsey, A. Shaltout, C. DeVault, V. Shalaev, and A. Boltasseva, “Dynamic nanophotonics,” JOSA B 34, 95–103 (2017).
[Crossref]

2016 (1)

G. Liu, B. Debnath, T. R. Pope, T. T. Salguero, R. K. Lake, and A. A. Balandin, “A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature,” Nat. Nanotechnol. 11, 845–850 (2016).
[Crossref] [PubMed]

2015 (2)

M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, and Y. Iwasa, “Memristive phase switching in two-dimensional 1T-TaS2 crystals,” Sci. Adv. 1, e1500606(2015).
[Crossref]

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
[Crossref] [PubMed]

2013 (1)

Y. Liu, R. Ang, W. Lu, W. Song, L. Li, and Y. Sun, “Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS 2−x Sex,” Appl. Phys. Lett. 102, 192602 (2013).
[Crossref]

2012 (4)

L. Li, W. Lu, X. Zhu, L. Ling, Z. Qu, and Y. Sun, “Fe-doping–induced superconductivity in the charge-density-wave system 1T-TaS2,” EPL (Europhysics Lett.) 97, 67005 (2012).
[Crossref]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. photon. 6, 749–758 (2012).
[Crossref]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

2011 (3)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
[Crossref]

J.-Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

2010 (3)

Z. Samson, K. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. Huang, E. Di Fabrizio, D. Hewak, and N. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

2009 (1)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref] [PubMed]

2008 (1)

B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutiš, “From mott state to superconductivity in 1T-TaS2,” Nat. Mater. 7, 960–965 (2008).
[Crossref] [PubMed]

2007 (1)

F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, M. Garnier, and P. Aebi, “Fermi surface of layered compounds and bulk charge density wave systems,” J. Phys. Condens. Matter 19, 355002 (2007).
[Crossref]

2001 (1)

T. Hirata and F. Ohuchi, “Temperature dependence of the raman spectra of 1T-TaS2,” Solid State Commun. 117, 361–364 (2001).
[Crossref]

1997 (1)

A. Spijkerman, J. L. de Boer, A. Meetsma, G. A. Wiegers, and S. van Smaalen, “X-ray crystal-structure refinement of the nearly commensurate phase of 1T- TaS2 in (3+2)-dimensional superspace,” Phys. Rev. B 56, 13757 (1997).
[Crossref]

1990 (1)

C. Slough, W. McNairy, R. Coleman, J. Garnaes, C. Prater, and P. Hansma, “Atomic force microscopy and scanning tunneling microscopy of charge-density waves in 1T-TaSe2 and 1T-TaS2,” Phys. Rev. B 42, 9255 (1990).
[Crossref]

1988 (1)

G. Grüner, “The dynamics of charge-density waves,” Rev. Mod. Phys. 60, 1129 (1988).
[Crossref]

1984 (1)

S. Tanda, T. Sambongi, T. Tani, and S. Tanaka, “X-ray study of charge density wave structure in 1T-TaS2,” J. Phys. Soc. Japan 53, 476–479 (1984).
[Crossref]

1978 (1)

S. Uchida, K. Tanabe, and S. Tanaka, “Nonlinear conduction in two-dimensional CDW system: 1T-TaS2,” Solid State Commun. 27, 637–640 (1978).
[Crossref]

1974 (1)

J. Wilson, F. Di Salvo, and S. Mahajan, “Charge-density waves in metallic, layered, transition-metal dichalcogenides,” Phys. Rev. Lett. 32, 882 (1974).
[Crossref]

1971 (1)

A. Thompson, R. Gamble, and J. Revelli, “Transitions between semiconducting and metallic phases in 1T-TaS2,” Solid State Commun. 9, 981–985 (1971).
[Crossref]

Aebi, P.

F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, M. Garnier, and P. Aebi, “Fermi surface of layered compounds and bulk charge density wave systems,” J. Phys. Condens. Matter 19, 355002 (2007).
[Crossref]

Akrap, A.

B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutiš, “From mott state to superconductivity in 1T-TaS2,” Nat. Mater. 7, 960–965 (2008).
[Crossref] [PubMed]

Ang, R.

Y. Liu, R. Ang, W. Lu, W. Song, L. Li, and Y. Sun, “Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS 2−x Sex,” Appl. Phys. Lett. 102, 192602 (2013).
[Crossref]

Angelis, F. De

Z. Samson, K. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. Huang, E. Di Fabrizio, D. Hewak, and N. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref] [PubMed]

Balandin, A. A.

G. Liu, B. Debnath, T. R. Pope, T. T. Salguero, R. K. Lake, and A. A. Balandin, “A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature,” Nat. Nanotechnol. 11, 845–850 (2016).
[Crossref] [PubMed]

Battaglia, C.

F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, M. Garnier, and P. Aebi, “Fermi surface of layered compounds and bulk charge density wave systems,” J. Phys. Condens. Matter 19, 355002 (2007).
[Crossref]

Berger, H.

B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutiš, “From mott state to superconductivity in 1T-TaS2,” Nat. Mater. 7, 960–965 (2008).
[Crossref] [PubMed]

F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, M. Garnier, and P. Aebi, “Fermi surface of layered compounds and bulk charge density wave systems,” J. Phys. Condens. Matter 19, 355002 (2007).
[Crossref]

Boltasseva, A.

M. Ferrera, N. Kinsey, A. Shaltout, C. DeVault, V. Shalaev, and A. Boltasseva, “Dynamic nanophotonics,” JOSA B 34, 95–103 (2017).
[Crossref]

Brazovskii, S.

D. Svetin, I. Vaskivskyi, S. Brazovskii, and D. Mihailovic, “Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2,” Sci. Rep. 7, 46048 (2017).
[Crossref]

Cercellier, H.

F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, M. Garnier, and P. Aebi, “Fermi surface of layered compounds and bulk charge density wave systems,” J. Phys. Condens. Matter 19, 355002 (2007).
[Crossref]

Chaturvedi, A.

C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
[Crossref]

Chen, L.-Q.

R. Zhao, Y. Wang, D. Deng, X. Luo, W. J. Lu, Y.-P. Sun, Z.-K. Liu, L.-Q. Chen, and J. Robinson, “Tuning phase transitions in 1T-TaS2 via the substrate,” Nano Lett. 17, 3471–3477 (2017).
[Crossref] [PubMed]

Chen, Y.

C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
[Crossref]

Cho, Y.-H.

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
[Crossref] [PubMed]

Clerc, F.

F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, M. Garnier, and P. Aebi, “Fermi surface of layered compounds and bulk charge density wave systems,” J. Phys. Condens. Matter 19, 355002 (2007).
[Crossref]

Coleman, R.

C. Slough, W. McNairy, R. Coleman, J. Garnaes, C. Prater, and P. Hansma, “Atomic force microscopy and scanning tunneling microscopy of charge-density waves in 1T-TaSe2 and 1T-TaS2,” Phys. Rev. B 42, 9255 (1990).
[Crossref]

de Boer, J. L.

A. Spijkerman, J. L. de Boer, A. Meetsma, G. A. Wiegers, and S. van Smaalen, “X-ray crystal-structure refinement of the nearly commensurate phase of 1T- TaS2 in (3+2)-dimensional superspace,” Phys. Rev. B 56, 13757 (1997).
[Crossref]

Debnath, B.

G. Liu, B. Debnath, T. R. Pope, T. T. Salguero, R. K. Lake, and A. A. Balandin, “A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature,” Nat. Nanotechnol. 11, 845–850 (2016).
[Crossref] [PubMed]

Deng, D.

R. Zhao, Y. Wang, D. Deng, X. Luo, W. J. Lu, Y.-P. Sun, Z.-K. Liu, L.-Q. Chen, and J. Robinson, “Tuning phase transitions in 1T-TaS2 via the substrate,” Nano Lett. 17, 3471–3477 (2017).
[Crossref] [PubMed]

Despont, L.

F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, M. Garnier, and P. Aebi, “Fermi surface of layered compounds and bulk charge density wave systems,” J. Phys. Condens. Matter 19, 355002 (2007).
[Crossref]

DeVault, C.

M. Ferrera, N. Kinsey, A. Shaltout, C. DeVault, V. Shalaev, and A. Boltasseva, “Dynamic nanophotonics,” JOSA B 34, 95–103 (2017).
[Crossref]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref] [PubMed]

Dong, T.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
[Crossref] [PubMed]

Fabrizio, E. Di

Z. Samson, K. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. Huang, E. Di Fabrizio, D. Hewak, and N. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Feng, D.

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
[Crossref] [PubMed]

Ferrera, M.

M. Ferrera, N. Kinsey, A. Shaltout, C. DeVault, V. Shalaev, and A. Boltasseva, “Dynamic nanophotonics,” JOSA B 34, 95–103 (2017).
[Crossref]

Forró, L.

B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutiš, “From mott state to superconductivity in 1T-TaS2,” Nat. Mater. 7, 960–965 (2008).
[Crossref] [PubMed]

Fu, Q.

C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
[Crossref]

Gamble, R.

A. Thompson, R. Gamble, and J. Revelli, “Transitions between semiconducting and metallic phases in 1T-TaS2,” Solid State Commun. 9, 981–985 (1971).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Garnaes, J.

C. Slough, W. McNairy, R. Coleman, J. Garnaes, C. Prater, and P. Hansma, “Atomic force microscopy and scanning tunneling microscopy of charge-density waves in 1T-TaSe2 and 1T-TaS2,” Phys. Rev. B 42, 9255 (1990).
[Crossref]

Garnier, M.

F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, M. Garnier, and P. Aebi, “Fermi surface of layered compounds and bulk charge density wave systems,” J. Phys. Condens. Matter 19, 355002 (2007).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Gholipour, B.

Z. Samson, K. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. Huang, E. Di Fabrizio, D. Hewak, and N. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Grigorenko, A.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. photon. 6, 749–758 (2012).
[Crossref]

Grüner, G.

G. Grüner, “The dynamics of charge-density waves,” Rev. Mod. Phys. 60, 1129 (1988).
[Crossref]

Hahn, H.

A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
[Crossref]

Hansma, P.

C. Slough, W. McNairy, R. Coleman, J. Garnaes, C. Prater, and P. Hansma, “Atomic force microscopy and scanning tunneling microscopy of charge-density waves in 1T-TaSe2 and 1T-TaS2,” Phys. Rev. B 42, 9255 (1990).
[Crossref]

He, W.

X. Wang, H. Liu, J. Wu, J. Lin, W. He, H. Wang, X. Shi, K. Suenaga, and L. Xie, “Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity,” Adv. Mater. 30, 1800074 (2018).
[Crossref]

He, Y.

C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
[Crossref]

Hewak, D.

Z. Samson, K. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. Huang, E. Di Fabrizio, D. Hewak, and N. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Hirata, T.

T. Hirata and F. Ohuchi, “Temperature dependence of the raman spectra of 1T-TaS2,” Solid State Commun. 117, 361–364 (2001).
[Crossref]

Hou, Y.

Y. Ma, Y. Hou, C. Lu, L. Li, and C. Petrovic, “Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1T-TaS2,” Phys. Rev. B 97, 195117 (2018).
[Crossref]

Huang, C.

Z. Samson, K. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. Huang, E. Di Fabrizio, D. Hewak, and N. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Iwasa, Y.

M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, and Y. Iwasa, “Memristive phase switching in two-dimensional 1T-TaS2 crystals,” Sci. Adv. 1, e1500606(2015).
[Crossref]

Jiang, L.

J.-Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Kim, S.

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
[Crossref] [PubMed]

Kinsey, N.

M. Ferrera, N. Kinsey, A. Shaltout, C. DeVault, V. Shalaev, and A. Boltasseva, “Dynamic nanophotonics,” JOSA B 34, 95–103 (2017).
[Crossref]

Knight, K.

Z. Samson, K. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. Huang, E. Di Fabrizio, D. Hewak, and N. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Koos, C.

A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
[Crossref]

Kusmartseva, A. F.

B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutiš, “From mott state to superconductivity in 1T-TaS2,” Nat. Mater. 7, 960–965 (2008).
[Crossref] [PubMed]

Lake, R. K.

G. Liu, B. Debnath, T. R. Pope, T. T. Salguero, R. K. Lake, and A. A. Balandin, “A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature,” Nat. Nanotechnol. 11, 845–850 (2016).
[Crossref] [PubMed]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Leufke, P.

A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
[Crossref]

Li, L.

Y. Ma, Y. Hou, C. Lu, L. Li, and C. Petrovic, “Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1T-TaS2,” Phys. Rev. B 97, 195117 (2018).
[Crossref]

Y. Liu, R. Ang, W. Lu, W. Song, L. Li, and Y. Sun, “Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS 2−x Sex,” Appl. Phys. Lett. 102, 192602 (2013).
[Crossref]

L. Li, W. Lu, X. Zhu, L. Ling, Z. Qu, and Y. Sun, “Fe-doping–induced superconductivity in the charge-density-wave system 1T-TaS2,” EPL (Europhysics Lett.) 97, 67005 (2012).
[Crossref]

Li, X.

C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
[Crossref]

Lin, J.

X. Wang, H. Liu, J. Wu, J. Lin, W. He, H. Wang, X. Shi, K. Suenaga, and L. Xie, “Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity,” Adv. Mater. 30, 1800074 (2018).
[Crossref]

Lindenmann, N.

A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
[Crossref]

Ling, L.

L. Li, W. Lu, X. Zhu, L. Ling, Z. Qu, and Y. Sun, “Fe-doping–induced superconductivity in the charge-density-wave system 1T-TaS2,” EPL (Europhysics Lett.) 97, 67005 (2012).
[Crossref]

Liu, F.

C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
[Crossref]

Liu, G.

G. Liu, B. Debnath, T. R. Pope, T. T. Salguero, R. K. Lake, and A. A. Balandin, “A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature,” Nat. Nanotechnol. 11, 845–850 (2016).
[Crossref] [PubMed]

Liu, H.

X. Wang, H. Liu, J. Wu, J. Lin, W. He, H. Wang, X. Shi, K. Suenaga, and L. Xie, “Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity,” Adv. Mater. 30, 1800074 (2018).
[Crossref]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Liu, Q.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, R. Ang, W. Lu, W. Song, L. Li, and Y. Sun, “Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS 2−x Sex,” Appl. Phys. Lett. 102, 192602 (2013).
[Crossref]

Liu, Z.-K.

R. Zhao, Y. Wang, D. Deng, X. Luo, W. J. Lu, Y.-P. Sun, Z.-K. Liu, L.-Q. Chen, and J. Robinson, “Tuning phase transitions in 1T-TaS2 via the substrate,” Nano Lett. 17, 3471–3477 (2017).
[Crossref] [PubMed]

Lu, C.

Y. Ma, Y. Hou, C. Lu, L. Li, and C. Petrovic, “Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1T-TaS2,” Phys. Rev. B 97, 195117 (2018).
[Crossref]

Lu, W.

Y. Liu, R. Ang, W. Lu, W. Song, L. Li, and Y. Sun, “Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS 2−x Sex,” Appl. Phys. Lett. 102, 192602 (2013).
[Crossref]

L. Li, W. Lu, X. Zhu, L. Ling, Z. Qu, and Y. Sun, “Fe-doping–induced superconductivity in the charge-density-wave system 1T-TaS2,” EPL (Europhysics Lett.) 97, 67005 (2012).
[Crossref]

Lu, W. J.

R. Zhao, Y. Wang, D. Deng, X. Luo, W. J. Lu, Y.-P. Sun, Z.-K. Liu, L.-Q. Chen, and J. Robinson, “Tuning phase transitions in 1T-TaS2 via the substrate,” Nano Lett. 17, 3471–3477 (2017).
[Crossref] [PubMed]

Lu, X. F.

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
[Crossref] [PubMed]

Luo, X.

R. Zhao, Y. Wang, D. Deng, X. Luo, W. J. Lu, Y.-P. Sun, Z.-K. Liu, L.-Q. Chen, and J. Robinson, “Tuning phase transitions in 1T-TaS2 via the substrate,” Nano Lett. 17, 3471–3477 (2017).
[Crossref] [PubMed]

Ma, L.

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
[Crossref] [PubMed]

Ma, R.-M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
[Crossref]

Ma, Y.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
[Crossref] [PubMed]

Y. Ma, Y. Hou, C. Lu, L. Li, and C. Petrovic, “Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1T-TaS2,” Phys. Rev. B 97, 195117 (2018).
[Crossref]

MacDonald, K.

Z. Samson, K. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. Huang, E. Di Fabrizio, D. Hewak, and N. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2010).
[Crossref]

Mahajan, S.

J. Wilson, F. Di Salvo, and S. Mahajan, “Charge-density waves in metallic, layered, transition-metal dichalcogenides,” Phys. Rev. Lett. 32, 882 (1974).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

McNairy, W.

C. Slough, W. McNairy, R. Coleman, J. Garnaes, C. Prater, and P. Hansma, “Atomic force microscopy and scanning tunneling microscopy of charge-density waves in 1T-TaSe2 and 1T-TaS2,” Phys. Rev. B 42, 9255 (1990).
[Crossref]

Meetsma, A.

A. Spijkerman, J. L. de Boer, A. Meetsma, G. A. Wiegers, and S. van Smaalen, “X-ray crystal-structure refinement of the nearly commensurate phase of 1T- TaS2 in (3+2)-dimensional superspace,” Phys. Rev. B 56, 13757 (1997).
[Crossref]

Melikyan, A.

A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
[Crossref]

Mihailovic, D.

D. Svetin, I. Vaskivskyi, S. Brazovskii, and D. Mihailovic, “Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2,” Sci. Rep. 7, 46048 (2017).
[Crossref]

Monney, C.

F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, M. Garnier, and P. Aebi, “Fermi surface of layered compounds and bulk charge density wave systems,” J. Phys. Condens. Matter 19, 355002 (2007).
[Crossref]

Nakano, M.

M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, and Y. Iwasa, “Memristive phase switching in two-dimensional 1T-TaS2 crystals,” Sci. Adv. 1, e1500606(2015).
[Crossref]

Niu, J.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
[Crossref] [PubMed]

Niu, X.

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
[Crossref] [PubMed]

Niu, Y.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
[Crossref] [PubMed]

Novoselov, K.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. photon. 6, 749–758 (2012).
[Crossref]

Ohuchi, F.

T. Hirata and F. Ohuchi, “Temperature dependence of the raman spectra of 1T-TaS2,” Solid State Commun. 117, 361–364 (2001).
[Crossref]

Ou, J.-Y.

J.-Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Oulton, R. F.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
[Crossref]

Petrovic, C.

Y. Ma, Y. Hou, C. Lu, L. Li, and C. Petrovic, “Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1T-TaS2,” Phys. Rev. B 97, 195117 (2018).
[Crossref]

Plum, E.

J.-Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Polini, M.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. photon. 6, 749–758 (2012).
[Crossref]

Pope, T. R.

G. Liu, B. Debnath, T. R. Pope, T. T. Salguero, R. K. Lake, and A. A. Balandin, “A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature,” Nat. Nanotechnol. 11, 845–850 (2016).
[Crossref] [PubMed]

Prater, C.

C. Slough, W. McNairy, R. Coleman, J. Garnaes, C. Prater, and P. Hansma, “Atomic force microscopy and scanning tunneling microscopy of charge-density waves in 1T-TaSe2 and 1T-TaS2,” Phys. Rev. B 42, 9255 (1990).
[Crossref]

Qu, Z.

L. Li, W. Lu, X. Zhu, L. Ling, Z. Qu, and Y. Sun, “Fe-doping–induced superconductivity in the charge-density-wave system 1T-TaS2,” EPL (Europhysics Lett.) 97, 67005 (2012).
[Crossref]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Revelli, J.

A. Thompson, R. Gamble, and J. Revelli, “Transitions between semiconducting and metallic phases in 1T-TaS2,” Solid State Commun. 9, 981–985 (1971).
[Crossref]

Robinson, J.

R. Zhao, Y. Wang, D. Deng, X. Luo, W. J. Lu, Y.-P. Sun, Z.-K. Liu, L.-Q. Chen, and J. Robinson, “Tuning phase transitions in 1T-TaS2 via the substrate,” Nano Lett. 17, 3471–3477 (2017).
[Crossref] [PubMed]

Salguero, T. T.

G. Liu, B. Debnath, T. R. Pope, T. T. Salguero, R. K. Lake, and A. A. Balandin, “A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature,” Nat. Nanotechnol. 11, 845–850 (2016).
[Crossref] [PubMed]

Salvo, F. Di

J. Wilson, F. Di Salvo, and S. Mahajan, “Charge-density waves in metallic, layered, transition-metal dichalcogenides,” Phys. Rev. Lett. 32, 882 (1974).
[Crossref]

Sambongi, T.

S. Tanda, T. Sambongi, T. Tani, and S. Tanaka, “X-ray study of charge density wave structure in 1T-TaS2,” J. Phys. Soc. Japan 53, 476–479 (1984).
[Crossref]

Samson, Z.

Z. Samson, K. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. Huang, E. Di Fabrizio, D. Hewak, and N. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Schimmel, T.

A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
[Crossref]

Shalaev, V.

M. Ferrera, N. Kinsey, A. Shaltout, C. DeVault, V. Shalaev, and A. Boltasseva, “Dynamic nanophotonics,” JOSA B 34, 95–103 (2017).
[Crossref]

Shaltout, A.

M. Ferrera, N. Kinsey, A. Shaltout, C. DeVault, V. Shalaev, and A. Boltasseva, “Dynamic nanophotonics,” JOSA B 34, 95–103 (2017).
[Crossref]

Shi, X.

X. Wang, H. Liu, J. Wu, J. Lin, W. He, H. Wang, X. Shi, K. Suenaga, and L. Xie, “Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity,” Adv. Mater. 30, 1800074 (2018).
[Crossref]

Sipos, B.

B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutiš, “From mott state to superconductivity in 1T-TaS2,” Nat. Mater. 7, 960–965 (2008).
[Crossref] [PubMed]

Slough, C.

C. Slough, W. McNairy, R. Coleman, J. Garnaes, C. Prater, and P. Hansma, “Atomic force microscopy and scanning tunneling microscopy of charge-density waves in 1T-TaSe2 and 1T-TaS2,” Phys. Rev. B 42, 9255 (1990).
[Crossref]

Son, Y.-W.

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
[Crossref] [PubMed]

Song, W.

Y. Liu, R. Ang, W. Lu, W. Song, L. Li, and Y. Sun, “Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS 2−x Sex,” Appl. Phys. Lett. 102, 192602 (2013).
[Crossref]

Sorger, V. J.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Spijkerman, A.

A. Spijkerman, J. L. de Boer, A. Meetsma, G. A. Wiegers, and S. van Smaalen, “X-ray crystal-structure refinement of the nearly commensurate phase of 1T- TaS2 in (3+2)-dimensional superspace,” Phys. Rev. B 56, 13757 (1997).
[Crossref]

Suenaga, K.

X. Wang, H. Liu, J. Wu, J. Lin, W. He, H. Wang, X. Shi, K. Suenaga, and L. Xie, “Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity,” Adv. Mater. 30, 1800074 (2018).
[Crossref]

Sun, Y.

Y. Liu, R. Ang, W. Lu, W. Song, L. Li, and Y. Sun, “Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS 2−x Sex,” Appl. Phys. Lett. 102, 192602 (2013).
[Crossref]

L. Li, W. Lu, X. Zhu, L. Ling, Z. Qu, and Y. Sun, “Fe-doping–induced superconductivity in the charge-density-wave system 1T-TaS2,” EPL (Europhysics Lett.) 97, 67005 (2012).
[Crossref]

Sun, Y.-P.

R. Zhao, Y. Wang, D. Deng, X. Luo, W. J. Lu, Y.-P. Sun, Z.-K. Liu, L.-Q. Chen, and J. Robinson, “Tuning phase transitions in 1T-TaS2 via the substrate,” Nano Lett. 17, 3471–3477 (2017).
[Crossref] [PubMed]

Suzuki, R.

M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, and Y. Iwasa, “Memristive phase switching in two-dimensional 1T-TaS2 crystals,” Sci. Adv. 1, e1500606(2015).
[Crossref]

Svetin, D.

D. Svetin, I. Vaskivskyi, S. Brazovskii, and D. Mihailovic, “Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2,” Sci. Rep. 7, 46048 (2017).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref] [PubMed]

Tanabe, K.

S. Uchida, K. Tanabe, and S. Tanaka, “Nonlinear conduction in two-dimensional CDW system: 1T-TaS2,” Solid State Commun. 27, 637–640 (1978).
[Crossref]

Tanaka, S.

S. Tanda, T. Sambongi, T. Tani, and S. Tanaka, “X-ray study of charge density wave structure in 1T-TaS2,” J. Phys. Soc. Japan 53, 476–479 (1984).
[Crossref]

S. Uchida, K. Tanabe, and S. Tanaka, “Nonlinear conduction in two-dimensional CDW system: 1T-TaS2,” Solid State Commun. 27, 637–640 (1978).
[Crossref]

Tanda, S.

S. Tanda, T. Sambongi, T. Tani, and S. Tanaka, “X-ray study of charge density wave structure in 1T-TaS2,” J. Phys. Soc. Japan 53, 476–479 (1984).
[Crossref]

Tani, T.

S. Tanda, T. Sambongi, T. Tani, and S. Tanaka, “X-ray study of charge density wave structure in 1T-TaS2,” J. Phys. Soc. Japan 53, 476–479 (1984).
[Crossref]

Thompson, A.

A. Thompson, R. Gamble, and J. Revelli, “Transitions between semiconducting and metallic phases in 1T-TaS2,” Solid State Commun. 9, 981–985 (1971).
[Crossref]

Thomson, D.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Tutiš, E.

B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutiš, “From mott state to superconductivity in 1T-TaS2,” Nat. Mater. 7, 960–965 (2008).
[Crossref] [PubMed]

Uchida, S.

S. Uchida, K. Tanabe, and S. Tanaka, “Nonlinear conduction in two-dimensional CDW system: 1T-TaS2,” Solid State Commun. 27, 637–640 (1978).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Ulrich, S.

A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
[Crossref]

van Smaalen, S.

A. Spijkerman, J. L. de Boer, A. Meetsma, G. A. Wiegers, and S. van Smaalen, “X-ray crystal-structure refinement of the nearly commensurate phase of 1T- TaS2 in (3+2)-dimensional superspace,” Phys. Rev. B 56, 13757 (1997).
[Crossref]

Vaskivskyi, I.

D. Svetin, I. Vaskivskyi, S. Brazovskii, and D. Mihailovic, “Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2,” Sci. Rep. 7, 46048 (2017).
[Crossref]

Vincze, P.

A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
[Crossref]

Walheim, S.

A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Wang, H.

X. Wang, H. Liu, J. Wu, J. Lin, W. He, H. Wang, X. Shi, K. Suenaga, and L. Xie, “Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity,” Adv. Mater. 30, 1800074 (2018).
[Crossref]

Wang, X.

X. Wang, H. Liu, J. Wu, J. Lin, W. He, H. Wang, X. Shi, K. Suenaga, and L. Xie, “Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity,” Adv. Mater. 30, 1800074 (2018).
[Crossref]

Wang, Y.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
[Crossref] [PubMed]

R. Zhao, Y. Wang, D. Deng, X. Luo, W. J. Lu, Y.-P. Sun, Z.-K. Liu, L.-Q. Chen, and J. Robinson, “Tuning phase transitions in 1T-TaS2 via the substrate,” Nano Lett. 17, 3471–3477 (2017).
[Crossref] [PubMed]

Wei, J.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
[Crossref] [PubMed]

Wiegers, G. A.

A. Spijkerman, J. L. de Boer, A. Meetsma, G. A. Wiegers, and S. van Smaalen, “X-ray crystal-structure refinement of the nearly commensurate phase of 1T- TaS2 in (3+2)-dimensional superspace,” Phys. Rev. B 56, 13757 (1997).
[Crossref]

Wilson, J.

J. Wilson, F. Di Salvo, and S. Mahajan, “Charge-density waves in metallic, layered, transition-metal dichalcogenides,” Phys. Rev. Lett. 32, 882 (1974).
[Crossref]

Wu, D.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
[Crossref] [PubMed]

Wu, J.

X. Wang, H. Liu, J. Wu, J. Lin, W. He, H. Wang, X. Shi, K. Suenaga, and L. Xie, “Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity,” Adv. Mater. 30, 1800074 (2018).
[Crossref]

Xie, L.

X. Wang, H. Liu, J. Wu, J. Lin, W. He, H. Wang, X. Shi, K. Suenaga, and L. Xie, “Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity,” Adv. Mater. 30, 1800074 (2018).
[Crossref]

Yan, Y. J.

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
[Crossref] [PubMed]

Yang, F.

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
[Crossref] [PubMed]

Ye, J.

A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Yoshida, M.

M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, and Y. Iwasa, “Memristive phase switching in two-dimensional 1T-TaS2 crystals,” Sci. Adv. 1, e1500606(2015).
[Crossref]

Yu, Y.

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
[Crossref] [PubMed]

Zeng, Q.

C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Zhang, S.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
[Crossref] [PubMed]

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, and Y. Iwasa, “Memristive phase switching in two-dimensional 1T-TaS2 crystals,” Sci. Adv. 1, e1500606(2015).
[Crossref]

Zhao, R.

R. Zhao, Y. Wang, D. Deng, X. Luo, W. J. Lu, Y.-P. Sun, Z.-K. Liu, L.-Q. Chen, and J. Robinson, “Tuning phase transitions in 1T-TaS2 via the substrate,” Nano Lett. 17, 3471–3477 (2017).
[Crossref] [PubMed]

Zheludev, N.

Z. Samson, K. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. Huang, E. Di Fabrizio, D. Hewak, and N. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Zheludev, N. I.

J.-Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2010).
[Crossref]

Zheng, S.

C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
[Crossref]

Zhou, H.

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
[Crossref] [PubMed]

Zhou, J.

C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
[Crossref]

Zhu, C.

C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
[Crossref]

Zhu, X.

L. Li, W. Lu, X. Zhu, L. Ling, Z. Qu, and Y. Sun, “Fe-doping–induced superconductivity in the charge-density-wave system 1T-TaS2,” EPL (Europhysics Lett.) 97, 67005 (2012).
[Crossref]

ACS Nano (1)

C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, and et al.,“Light-tunable 1T-TaS2 charge-density-wave oscillators,” ACS Nano 12, 11203 (2018)..
[Crossref]

Adv. Mater. (1)

X. Wang, H. Liu, J. Wu, J. Lin, W. He, H. Wang, X. Shi, K. Suenaga, and L. Xie, “Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity,” Adv. Mater. 30, 1800074 (2018).
[Crossref]

Appl. Phys. Lett. (2)

Y. Liu, R. Ang, W. Lu, W. Song, L. Li, and Y. Sun, “Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS 2−x Sex,” Appl. Phys. Lett. 102, 192602 (2013).
[Crossref]

Z. Samson, K. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. Huang, E. Di Fabrizio, D. Hewak, and N. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

EPL (Europhysics Lett.) (1)

L. Li, W. Lu, X. Zhu, L. Ling, Z. Qu, and Y. Sun, “Fe-doping–induced superconductivity in the charge-density-wave system 1T-TaS2,” EPL (Europhysics Lett.) 97, 67005 (2012).
[Crossref]

J. Phys. Condens. Matter (1)

F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, M. Garnier, and P. Aebi, “Fermi surface of layered compounds and bulk charge density wave systems,” J. Phys. Condens. Matter 19, 355002 (2007).
[Crossref]

J. Phys. Soc. Japan (1)

S. Tanda, T. Sambongi, T. Tani, and S. Tanaka, “X-ray study of charge density wave structure in 1T-TaS2,” J. Phys. Soc. Japan 53, 476–479 (1984).
[Crossref]

JOSA B (1)

M. Ferrera, N. Kinsey, A. Shaltout, C. DeVault, V. Shalaev, and A. Boltasseva, “Dynamic nanophotonics,” JOSA B 34, 95–103 (2017).
[Crossref]

Laser Photon. Rev. (1)

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2010).
[Crossref]

MRS Bull. (1)

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
[Crossref]

Nano Lett. (3)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref] [PubMed]

J.-Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

R. Zhao, Y. Wang, D. Deng, X. Luo, W. J. Lu, Y.-P. Sun, Z.-K. Liu, L.-Q. Chen, and J. Robinson, “Tuning phase transitions in 1T-TaS2 via the substrate,” Nano Lett. 17, 3471–3477 (2017).
[Crossref] [PubMed]

Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Nat. Mater. (1)

B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutiš, “From mott state to superconductivity in 1T-TaS2,” Nat. Mater. 7, 960–965 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, and et al.,“Gate-tunable phase transitions in thin flakes of 1T-TaS2,” Nat. Nanotechnol. 10, 270–276 (2015).
[Crossref] [PubMed]

G. Liu, B. Debnath, T. R. Pope, T. T. Salguero, R. K. Lake, and A. A. Balandin, “A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature,” Nat. Nanotechnol. 11, 845–850 (2016).
[Crossref] [PubMed]

Nat. photon. (1)

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. photon. 6, 749–758 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Opt. Exp. (1)

A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, and et al., “Surface plasmon polariton absorption modulator,” Opt. Exp. 19, 8855–8869 (2011).
[Crossref]

Phys. Rev. B (3)

C. Slough, W. McNairy, R. Coleman, J. Garnaes, C. Prater, and P. Hansma, “Atomic force microscopy and scanning tunneling microscopy of charge-density waves in 1T-TaSe2 and 1T-TaS2,” Phys. Rev. B 42, 9255 (1990).
[Crossref]

A. Spijkerman, J. L. de Boer, A. Meetsma, G. A. Wiegers, and S. van Smaalen, “X-ray crystal-structure refinement of the nearly commensurate phase of 1T- TaS2 in (3+2)-dimensional superspace,” Phys. Rev. B 56, 13757 (1997).
[Crossref]

Y. Ma, Y. Hou, C. Lu, L. Li, and C. Petrovic, “Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1T-TaS2,” Phys. Rev. B 97, 195117 (2018).
[Crossref]

Phys. Rev. Lett. (1)

J. Wilson, F. Di Salvo, and S. Mahajan, “Charge-density waves in metallic, layered, transition-metal dichalcogenides,” Phys. Rev. Lett. 32, 882 (1974).
[Crossref]

Rev. Mod. Phys. (1)

G. Grüner, “The dynamics of charge-density waves,” Rev. Mod. Phys. 60, 1129 (1988).
[Crossref]

Sci. Adv. (2)

D. Wu, Y. Ma, Y. Niu, Q. Liu, T. Dong, S. Zhang, J. Niu, H. Zhou, J. Wei, Y. Wang, and et al.,“Ultrabroadband photosensitivity from visible to terahertz at room temperature,” Sci. Adv. 4, eaao3057 (2018).
[Crossref] [PubMed]

M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, and Y. Iwasa, “Memristive phase switching in two-dimensional 1T-TaS2 crystals,” Sci. Adv. 1, e1500606(2015).
[Crossref]

Sci. Rep. (1)

D. Svetin, I. Vaskivskyi, S. Brazovskii, and D. Mihailovic, “Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2,” Sci. Rep. 7, 46048 (2017).
[Crossref]

Solid State Commun. (3)

T. Hirata and F. Ohuchi, “Temperature dependence of the raman spectra of 1T-TaS2,” Solid State Commun. 117, 361–364 (2001).
[Crossref]

S. Uchida, K. Tanabe, and S. Tanaka, “Nonlinear conduction in two-dimensional CDW system: 1T-TaS2,” Solid State Commun. 27, 637–640 (1978).
[Crossref]

A. Thompson, R. Gamble, and J. Revelli, “Transitions between semiconducting and metallic phases in 1T-TaS2,” Solid State Commun. 9, 981–985 (1971).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Material properties of exfoliated 1T-TaS2 films: a) X-ray diffraction plot of 1T-TaS2 showing four peaks corresponding to the planes indicated. b) Raman spectrum of exfoliated 1T-TaS2 using 532 nm laser excitation. c) Nonlinear conductivity of 1T-TaS2 measured at room temperature along with the theoretically predicted curve. The inset shows the crystal structure of a layer of 1T-TaS2. When 1T-TaS2 is in CDW phase, the Ta atoms on corners of the red star will move inwards making a 13-atom David-star cell. d) The magnitude of impedance spectrum of the 1T-TaS2 film under an applied AC bias voltage at 500 mV. The inset shows the optical image of the device used for characterization.
Fig. 2
Fig. 2 Anisotropic optical properties of 1T-TaS2 without any electrical bias: a) Normal incidence reflectance (left axis) and transmittance (right axis) spectra under low intensity white light excitation. b) Extracted real ( ε ) and imaginary ( ε ) permittivity functions in in-plane (εo) and out-of-plane (εe) directions. The out-of-plane permittivity function was extracted using angle dependent reflectance spectra measured in c) TE and d) TM polarizations.
Fig. 3
Fig. 3 DC bias dependent optical properties of 1T-TaS2 films: a) Relative change in reflectance spectrum of 1T-TaS2 at room temperature under in-plane DC bias from 0.5 V to 2 V, and b) Corresponding absolute change in real refractive index.
Fig. 4
Fig. 4 AC bias dependent optical properties of 1T-TaS2 films: a) Relative change in reflectance spectra and b) absolute change of refractive index of 1T-TaS2 for different amplitudes of AC bias at 1 MHz. c) Relative change of reflection and d)absolute change of refractive index of 1T-TaS2 for a constant AC bias amplitude of 500 mV.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ ( E ) = σ ( 1 E T E ) exp  ( E 0 E )

Metrics