Abstract

We perform a systematic spectroscopic study in channel waveguides of potassium gadolinium lutetium double tungstate doped with different Er3+ concentrations. Transition cross sections of ground-state absorption (GSA) and excited-state absorption (ESA), as well as stimulated emission (SE) at the pump wavelength around 980 nm are determined. ESA is directly measured by the pump-probe technique. Evaluation of GSA and ESA spectra indicates that ESA may be diminished by an appropriate choice of pump wavelength near 980 nm. Besides, GSA and SE at the signal wavelength around 1.5 µm are measured and the wavelength-dependent gain cross section as a function of excitation density is determined. Non-exponential luminescence decay curves from the 4I13/2 and 4I11/2 levels are analyzed and the probabilities of the energy-transfer-upconversion (ETU) processes (4I13/2, 4I13/2) → (4I15/2, 4I9/2) and (4I11/2, 4I11/2) → (4I15/2, 4F7/2) are quantified. Despite the large interionic distance between neighboring rare-earth sites in potassium double tungstates, the probability of ETU is comparatively large because of the large cross sections of the involved transitions. A rate-equation analysis of the influence of ETU and ESA on gain at ∼1.5 µm is performed, revealing that ETU from the 4I13/2 amplifier level strongly limits the gain when the doping concentration increases above ∼6at.%. The calculated maximum achievable internal net gain per unit length amounts to ∼15 dB/cm for an optimized Er3+ concentration of ∼4 × 1020 cm−3 and a launched pump power of 300 mW at a pump wavelength of 984.5 nm, in reasonable agreement with recent experimental results.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide

Laura Agazzi, Kerstin Wörhoff, Andreas Kahn, Matthias Fechner, Günter Huber, and Markus Pollnau
J. Opt. Soc. Am. B 30(3) 663-677 (2013)

Fluorescence dynamics, excited-state absorption, and stimulated emission of Er3+ in KY(WO4)2

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, A. A. Kornienko, E. B. Dunina, S. Hartung, and G. Huber
J. Opt. Soc. Am. B 15(3) 1205-1212 (1998)

Influence of energy-transfer upconversion and excited-state absorption on a high power Nd:YVO4 laser at 1.34 μm

Yayun Ma, Yuanji Li, Jinxia Feng, and Kuanshou Zhang
Opt. Express 26(9) 12106-12120 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
    [Crossref]
  2. A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
    [Crossref]
  3. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, A. A. Kornienko, E. B. Dunina, S. Hartung, and G. Huber, “Fluorescence dynamics, excited-state absorption, and stimulated emission of Er3+ in KY(WO4)2,” J. Opt. Soc. Am. B 15(3), 1205–1212 (1998).
    [Crossref]
  4. N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er,Yb doped tungstates,” Appl. Phys. B: Lasers Opt. 64(4), 409–413 (1997).
    [Crossref]
  5. D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
    [Crossref]
  6. D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
    [Crossref]
  7. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
    [Crossref]
  8. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
    [Crossref]
  9. M. Rico, M. C. Pujol, F. Díaz, and C. Zaldo, “Green up-conversion of Er3+ in KGd(WO4)2 crystals. Effects of sample orientation and erbium concentration,” Appl. Phys. B: Lasers Opt. 72(2), 157–162 (2001).
    [Crossref]
  10. L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
    [Crossref]
  11. E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
    [Crossref]
  12. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20(24), 2487–2489 (1995).
    [Crossref]
  13. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
    [Crossref]
  14. S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
    [Crossref]
  15. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
    [Crossref]
  16. S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
    [Crossref]
  17. T. Zayarnyuk, M. T. Borowiec, V. P. Dyakonov, H. Szymczak, E. Zubov, A. A. Pavlyuk, and M. Baranski, “Optical properties of potassium erbium double-tungstate KEr(WO4)2,” Proc. SPIE 4412, 280–283 (2001).
    [Crossref]
  18. M. C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, and M. Aguiló, “Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix,” J. Appl. Crystallogr. 35(1), 108–112 (2002).
    [Crossref]
  19. I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
    [Crossref]
  20. K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
    [Crossref]
  21. D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
    [Crossref]
  22. L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1-3), 289–297 (2000).
    [Crossref]
  23. J. Hanuza and L. Macalik, “Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln = Sm-Lu, Y),” Spectrochim. Acta, Part A 43(3), 361–373 (1987).
    [Crossref]
  24. H. W. Moos, “Spectroscopic relaxation processes of rare-earth ions in crystals,” J. Lumin. 1-2, 106–121 (1970).
    [Crossref]
  25. F. Gardillou, Y. E. Romanyuk, C. N. Borca, R. P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO4)2:Yb epitaxial layers: towards integrated optics based on KY(WO4)2,” Opt. Lett. 32(5), 488–490 (2007).
    [Crossref]
  26. S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
    [Crossref]
  27. G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46(8), 3580–3584 (1975).
    [Crossref]
  28. F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari, and D. Vivien, “Ytterbium-doped Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal,” J. Opt. Soc. Am. B 16(1), 164–172 (1999).
    [Crossref]
  29. J. Martínez de Mendívil, G. Lifante, M. C. Pujol, M. Aguiló, F. Díaz, and E. Cantelar, “Judd-Ofelt analysis and transition probabilities of Er3+ doped KY1−x−yGdxLuy(WO4)2 crystals,” J. Lumin. 165, 153–158 (2015).
    [Crossref]
  30. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  31. S. Bjurshagen, P. Brynolfsson, V. Pasiskevicius, I. Parreu, M. C. Pujol, A. Peña, M. Aguiló, and F. Díaz, “Crystal growth, spectroscopic characterization, and eye-safe laser operation of erbium- and ytterbium-codoped KLu(WO4)2,” Appl. Opt. 47(5), 656–665 (2008).
    [Crossref]
  32. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (Taylor & Francis, 1996).
  33. B. Z. Malkin, A. A. Kaminskii, N. R. Agamalyan, L. A. Bumagina, and T. I. Butaeva, “Spectra of rare-earth ions in the crystal fields of double tungstates and molybdates,” Phys. Status Solidi B 110(2), 417–422 (1982).
    [Crossref]
  34. X. Mateos, M. C. Pujol, F. Güell, M. Galán, R. M. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Erbium spectroscopy and 1.5-µm emission in KGd(WO4)2:Er,Yb single crystals,” IEEE J. Quantum Electron. 40(6), 759–770 (2004).
    [Crossref]
  35. M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B: Lasers Opt. 68(2), 187–197 (1999).
    [Crossref]
  36. M. Pollnau, E. Heumann, and G. Huber, “Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3,” Appl. Phys. A 54(5), 404–410 (1992).
    [Crossref]
  37. L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–667 (2013).
    [Crossref]
  38. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B: Lasers Opt. 61(2), 151–158 (1995).
    [Crossref]
  39. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [Crossref]
  40. F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94-95, 293–297 (2001).
    [Crossref]
  41. D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
    [Crossref]
  42. L. Palatella, F. Cornacchia, A. Toncelli, and M. Tonelli, “Microscopic treatment of upconversion in Nd3+-doped samples,” J. Opt. Soc. Am. B 20(8), 1708–1714 (2003).
    [Crossref]
  43. J. A. Caird, A. J. Ramponi, and P. R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8(7), 1391–1403 (1991).
    [Crossref]
  44. J. Rubin, A. Brenier, R. Moncorge, and C. Pedrini, “Excited-state absorption and energy transfer in Er3+ doped LiYF4,” J. Lumin. 36(1), 39–47 (1986).
    [Crossref]
  45. http://www.phoenixbv.com .
  46. K. van Dalfsen, S. Aravazhi, D. Geskus, K. Wörhoff, and M. Pollnau, “Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers,” Opt. Express 19(6), 5277–5282 (2011).
    [Crossref]
  47. S. A. Vázquez-Córdova, S. Aravazhi, C. Grivas, Y. S. Yong, S. M. García-Blanco, J. L. Herek, and M. Pollnau, “High optical gain in erbium-doped potassium double tungstate channel waveguide amplifiers,” Opt. Express 26(5), 6260–6266 (2018).
    [Crossref]
  48. Y. S. Yong, S. Aravazhi, S. A. Vázquez-Cordova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
    [Crossref]
  49. Y. S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Gain dynamics in a highly ytterbium-doped potassium double tungstate epitaxial layer,” J. Opt. Soc. Am. B 35(9), 2176–2185 (2018).
    [Crossref]

2018 (2)

2016 (1)

2015 (1)

J. Martínez de Mendívil, G. Lifante, M. C. Pujol, M. Aguiló, F. Díaz, and E. Cantelar, “Judd-Ofelt analysis and transition probabilities of Er3+ doped KY1−x−yGdxLuy(WO4)2 crystals,” J. Lumin. 165, 153–158 (2015).
[Crossref]

2014 (2)

2013 (3)

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–667 (2013).
[Crossref]

2012 (1)

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

2011 (2)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

K. van Dalfsen, S. Aravazhi, D. Geskus, K. Wörhoff, and M. Pollnau, “Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers,” Opt. Express 19(6), 5277–5282 (2011).
[Crossref]

2010 (3)

2008 (1)

2007 (2)

F. Gardillou, Y. E. Romanyuk, C. N. Borca, R. P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO4)2:Yb epitaxial layers: towards integrated optics based on KY(WO4)2,” Opt. Lett. 32(5), 488–490 (2007).
[Crossref]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

2006 (1)

2005 (1)

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

2004 (1)

X. Mateos, M. C. Pujol, F. Güell, M. Galán, R. M. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Erbium spectroscopy and 1.5-µm emission in KGd(WO4)2:Er,Yb single crystals,” IEEE J. Quantum Electron. 40(6), 759–770 (2004).
[Crossref]

2003 (1)

2002 (3)

M. C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, and M. Aguiló, “Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix,” J. Appl. Crystallogr. 35(1), 108–112 (2002).
[Crossref]

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

2001 (3)

M. Rico, M. C. Pujol, F. Díaz, and C. Zaldo, “Green up-conversion of Er3+ in KGd(WO4)2 crystals. Effects of sample orientation and erbium concentration,” Appl. Phys. B: Lasers Opt. 72(2), 157–162 (2001).
[Crossref]

T. Zayarnyuk, M. T. Borowiec, V. P. Dyakonov, H. Szymczak, E. Zubov, A. A. Pavlyuk, and M. Baranski, “Optical properties of potassium erbium double-tungstate KEr(WO4)2,” Proc. SPIE 4412, 280–283 (2001).
[Crossref]

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94-95, 293–297 (2001).
[Crossref]

2000 (2)

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1-3), 289–297 (2000).
[Crossref]

1999 (2)

M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B: Lasers Opt. 68(2), 187–197 (1999).
[Crossref]

F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari, and D. Vivien, “Ytterbium-doped Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal,” J. Opt. Soc. Am. B 16(1), 164–172 (1999).
[Crossref]

1998 (1)

1997 (2)

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er,Yb doped tungstates,” Appl. Phys. B: Lasers Opt. 64(4), 409–413 (1997).
[Crossref]

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
[Crossref]

1995 (2)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B: Lasers Opt. 61(2), 151–158 (1995).
[Crossref]

E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20(24), 2487–2489 (1995).
[Crossref]

1993 (1)

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

1992 (1)

M. Pollnau, E. Heumann, and G. Huber, “Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3,” Appl. Phys. A 54(5), 404–410 (1992).
[Crossref]

1991 (2)

1987 (1)

J. Hanuza and L. Macalik, “Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln = Sm-Lu, Y),” Spectrochim. Acta, Part A 43(3), 361–373 (1987).
[Crossref]

1986 (1)

J. Rubin, A. Brenier, R. Moncorge, and C. Pedrini, “Excited-state absorption and energy transfer in Er3+ doped LiYF4,” J. Lumin. 36(1), 39–47 (1986).
[Crossref]

1982 (1)

B. Z. Malkin, A. A. Kaminskii, N. R. Agamalyan, L. A. Bumagina, and T. I. Butaeva, “Spectra of rare-earth ions in the crystal fields of double tungstates and molybdates,” Phys. Status Solidi B 110(2), 417–422 (1982).
[Crossref]

1975 (1)

G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46(8), 3580–3584 (1975).
[Crossref]

1970 (1)

H. W. Moos, “Spectroscopic relaxation processes of rare-earth ions in crystals,” J. Lumin. 1-2, 106–121 (1970).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Agamalyan, N. R.

B. Z. Malkin, A. A. Kaminskii, N. R. Agamalyan, L. A. Bumagina, and T. I. Butaeva, “Spectra of rare-earth ions in the crystal fields of double tungstates and molybdates,” Phys. Status Solidi B 110(2), 417–422 (1982).
[Crossref]

Agazzi, L.

Aguiló, M.

J. Martínez de Mendívil, G. Lifante, M. C. Pujol, M. Aguiló, F. Díaz, and E. Cantelar, “Judd-Ofelt analysis and transition probabilities of Er3+ doped KY1−x−yGdxLuy(WO4)2 crystals,” J. Lumin. 165, 153–158 (2015).
[Crossref]

S. Bjurshagen, P. Brynolfsson, V. Pasiskevicius, I. Parreu, M. C. Pujol, A. Peña, M. Aguiló, and F. Díaz, “Crystal growth, spectroscopic characterization, and eye-safe laser operation of erbium- and ytterbium-codoped KLu(WO4)2,” Appl. Opt. 47(5), 656–665 (2008).
[Crossref]

S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
[Crossref]

X. Mateos, M. C. Pujol, F. Güell, M. Galán, R. M. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Erbium spectroscopy and 1.5-µm emission in KGd(WO4)2:Er,Yb single crystals,” IEEE J. Quantum Electron. 40(6), 759–770 (2004).
[Crossref]

M. C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, and M. Aguiló, “Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix,” J. Appl. Crystallogr. 35(1), 108–112 (2002).
[Crossref]

M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B: Lasers Opt. 68(2), 187–197 (1999).
[Crossref]

Aka, G.

Aravazhi, S.

S. A. Vázquez-Córdova, S. Aravazhi, C. Grivas, Y. S. Yong, S. M. García-Blanco, J. L. Herek, and M. Pollnau, “High optical gain in erbium-doped potassium double tungstate channel waveguide amplifiers,” Opt. Express 26(5), 6260–6266 (2018).
[Crossref]

Y. S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Gain dynamics in a highly ytterbium-doped potassium double tungstate epitaxial layer,” J. Opt. Soc. Am. B 35(9), 2176–2185 (2018).
[Crossref]

Y. S. Yong, S. Aravazhi, S. A. Vázquez-Cordova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

K. van Dalfsen, S. Aravazhi, D. Geskus, K. Wörhoff, and M. Pollnau, “Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers,” Opt. Express 19(6), 5277–5282 (2011).
[Crossref]

D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref]

Auzel, F.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94-95, 293–297 (2001).
[Crossref]

Ay, F.

Bagaev, S. N.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Baldacchini, G.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94-95, 293–297 (2001).
[Crossref]

Baranski, M.

T. Zayarnyuk, M. T. Borowiec, V. P. Dyakonov, H. Szymczak, E. Zubov, A. A. Pavlyuk, and M. Baranski, “Optical properties of potassium erbium double-tungstate KEr(WO4)2,” Proc. SPIE 4412, 280–283 (2001).
[Crossref]

Bayon, J. F.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Bernhardi, E. H.

Bjurshagen, S.

Bludau, W.

G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46(8), 3580–3584 (1975).
[Crossref]

Bonfigli, F.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94-95, 293–297 (2001).
[Crossref]

Borca, C. N.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

F. Gardillou, Y. E. Romanyuk, C. N. Borca, R. P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO4)2:Yb epitaxial layers: towards integrated optics based on KY(WO4)2,” Opt. Lett. 32(5), 488–490 (2007).
[Crossref]

Borowiec, M. T.

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

T. Zayarnyuk, M. T. Borowiec, V. P. Dyakonov, H. Szymczak, E. Zubov, A. A. Pavlyuk, and M. Baranski, “Optical properties of potassium erbium double-tungstate KEr(WO4)2,” Proc. SPIE 4412, 280–283 (2001).
[Crossref]

Bradley, J. D. B.

Brenier, A.

J. Rubin, A. Brenier, R. Moncorge, and C. Pedrini, “Excited-state absorption and energy transfer in Er3+ doped LiYF4,” J. Lumin. 36(1), 39–47 (1986).
[Crossref]

Brynolfsson, P.

Bumagina, L. A.

B. Z. Malkin, A. A. Kaminskii, N. R. Agamalyan, L. A. Bumagina, and T. I. Butaeva, “Spectra of rare-earth ions in the crystal fields of double tungstates and molybdates,” Phys. Status Solidi B 110(2), 417–422 (1982).
[Crossref]

Butaeva, T. I.

B. Z. Malkin, A. A. Kaminskii, N. R. Agamalyan, L. A. Bumagina, and T. I. Butaeva, “Spectra of rare-earth ions in the crystal fields of double tungstates and molybdates,” Phys. Status Solidi B 110(2), 417–422 (1982).
[Crossref]

Caird, J. A.

Cantelar, E.

J. Martínez de Mendívil, G. Lifante, M. C. Pujol, M. Aguiló, F. Díaz, and E. Cantelar, “Judd-Ofelt analysis and transition probabilities of Er3+ doped KY1−x−yGdxLuy(WO4)2 crystals,” J. Lumin. 165, 153–158 (2015).
[Crossref]

Carjaval, J. J.

Cornacchia, F.

D’yakonov, V. P.

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

Danielmeyer, H. G.

G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46(8), 3580–3584 (1975).
[Crossref]

Dardenne, K.

Delevaque, E.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Díaz, F.

Y. S. Yong, S. Aravazhi, S. A. Vázquez-Cordova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
[Crossref]

J. Martínez de Mendívil, G. Lifante, M. C. Pujol, M. Aguiló, F. Díaz, and E. Cantelar, “Judd-Ofelt analysis and transition probabilities of Er3+ doped KY1−x−yGdxLuy(WO4)2 crystals,” J. Lumin. 165, 153–158 (2015).
[Crossref]

S. Bjurshagen, P. Brynolfsson, V. Pasiskevicius, I. Parreu, M. C. Pujol, A. Peña, M. Aguiló, and F. Díaz, “Crystal growth, spectroscopic characterization, and eye-safe laser operation of erbium- and ytterbium-codoped KLu(WO4)2,” Appl. Opt. 47(5), 656–665 (2008).
[Crossref]

S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
[Crossref]

X. Mateos, M. C. Pujol, F. Güell, M. Galán, R. M. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Erbium spectroscopy and 1.5-µm emission in KGd(WO4)2:Er,Yb single crystals,” IEEE J. Quantum Electron. 40(6), 759–770 (2004).
[Crossref]

M. C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, and M. Aguiló, “Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix,” J. Appl. Crystallogr. 35(1), 108–112 (2002).
[Crossref]

M. Rico, M. C. Pujol, F. Díaz, and C. Zaldo, “Green up-conversion of Er3+ in KGd(WO4)2 crystals. Effects of sample orientation and erbium concentration,” Appl. Phys. B: Lasers Opt. 72(2), 157–162 (2001).
[Crossref]

M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B: Lasers Opt. 68(2), 187–197 (1999).
[Crossref]

Diening, A.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er,Yb doped tungstates,” Appl. Phys. B: Lasers Opt. 64(4), 409–413 (1997).
[Crossref]

Dijkstra, M.

Dunina, E. B.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, A. A. Kornienko, E. B. Dunina, S. Hartung, and G. Huber, “Fluorescence dynamics, excited-state absorption, and stimulated emission of Er3+ in KY(WO4)2,” J. Opt. Soc. Am. B 15(3), 1205–1212 (1998).
[Crossref]

Dussardier, B.

Dyakonov, V. P.

T. Zayarnyuk, M. T. Borowiec, V. P. Dyakonov, H. Szymczak, E. Zubov, A. A. Pavlyuk, and M. Baranski, “Optical properties of potassium erbium double-tungstate KEr(WO4)2,” Proc. SPIE 4412, 280–283 (2001).
[Crossref]

Fagundes-Peters, D.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Fechner, M.

Gagliari, S.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94-95, 293–297 (2001).
[Crossref]

Galán, M.

X. Mateos, M. C. Pujol, F. Güell, M. Galán, R. M. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Erbium spectroscopy and 1.5-µm emission in KGd(WO4)2:Er,Yb single crystals,” IEEE J. Quantum Electron. 40(6), 759–770 (2004).
[Crossref]

García-Blanco, S. M.

S. A. Vázquez-Córdova, S. Aravazhi, C. Grivas, Y. S. Yong, S. M. García-Blanco, J. L. Herek, and M. Pollnau, “High optical gain in erbium-doped potassium double tungstate channel waveguide amplifiers,” Opt. Express 26(5), 6260–6266 (2018).
[Crossref]

Y. S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Gain dynamics in a highly ytterbium-doped potassium double tungstate epitaxial layer,” J. Opt. Soc. Am. B 35(9), 2176–2185 (2018).
[Crossref]

Y. S. Yong, S. Aravazhi, S. A. Vázquez-Cordova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
[Crossref]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

Gardillou, F.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

F. Gardillou, Y. E. Romanyuk, C. N. Borca, R. P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO4)2:Yb epitaxial layers: towards integrated optics based on KY(WO4)2,” Opt. Lett. 32(5), 488–490 (2007).
[Crossref]

Gavaldà, J.

X. Mateos, M. C. Pujol, F. Güell, M. Galán, R. M. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Erbium spectroscopy and 1.5-µm emission in KGd(WO4)2:Er,Yb single crystals,” IEEE J. Quantum Electron. 40(6), 759–770 (2004).
[Crossref]

M. C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, and M. Aguiló, “Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix,” J. Appl. Crystallogr. 35(1), 108–112 (2002).
[Crossref]

Georges, T.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Geskus, D.

Giesen, A.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Golding, P. S.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

Griebner, U.

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Grivas, C.

Gruber, J. B.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Güell, F.

X. Mateos, M. C. Pujol, F. Güell, M. Galán, R. M. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Erbium spectroscopy and 1.5-µm emission in KGd(WO4)2:Er,Yb single crystals,” IEEE J. Quantum Electron. 40(6), 759–770 (2004).
[Crossref]

Hanuza, J.

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1-3), 289–297 (2000).
[Crossref]

J. Hanuza and L. Macalik, “Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln = Sm-Lu, Y),” Spectrochim. Acta, Part A 43(3), 361–373 (1987).
[Crossref]

Hartung, S.

Hellström, J. E.

Herek, J. L.

Heumann, E.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er,Yb doped tungstates,” Appl. Phys. B: Lasers Opt. 64(4), 409–413 (1997).
[Crossref]

M. Pollnau, E. Heumann, and G. Huber, “Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3,” Appl. Phys. A 54(5), 404–410 (1992).
[Crossref]

Hömmerich, U.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Huber, G.

L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–667 (2013).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, A. A. Kornienko, E. B. Dunina, S. Hartung, and G. Huber, “Fluorescence dynamics, excited-state absorption, and stimulated emission of Er3+ in KY(WO4)2,” J. Opt. Soc. Am. B 15(3), 1205–1212 (1998).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er,Yb doped tungstates,” Appl. Phys. B: Lasers Opt. 64(4), 409–413 (1997).
[Crossref]

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B: Lasers Opt. 61(2), 151–158 (1995).
[Crossref]

M. Pollnau, E. Heumann, and G. Huber, “Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3,” Appl. Phys. A 54(5), 404–410 (1992).
[Crossref]

G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46(8), 3580–3584 (1975).
[Crossref]

Jackson, S. D.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

Jensen, T.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er,Yb doped tungstates,” Appl. Phys. B: Lasers Opt. 64(4), 409–413 (1997).
[Crossref]

Johannsen, J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Kahn, A.

Kahn-Harari, A.

Kaminskii, A. A.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1-3), 289–297 (2000).
[Crossref]

B. Z. Malkin, A. A. Kaminskii, N. R. Agamalyan, L. A. Bumagina, and T. I. Butaeva, “Spectra of rare-earth ions in the crystal fields of double tungstates and molybdates,” Phys. Status Solidi B 110(2), 417–422 (1982).
[Crossref]

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (Taylor & Francis, 1996).

King, T. A.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

Klevtsova, R. F.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Koetke, J.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B: Lasers Opt. 61(2), 151–158 (1995).
[Crossref]

Kornienko, A. A.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, A. A. Kornienko, E. B. Dunina, S. Hartung, and G. Huber, “Fluorescence dynamics, excited-state absorption, and stimulated emission of Er3+ in KY(WO4)2,” J. Opt. Soc. Am. B 15(3), 1205–1212 (1998).
[Crossref]

Krühler, W. W.

G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46(8), 3580–3584 (1975).
[Crossref]

Krygin, I. M.

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

Kuleshov, N. V.

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, A. A. Kornienko, E. B. Dunina, S. Hartung, and G. Huber, “Fluorescence dynamics, excited-state absorption, and stimulated emission of Er3+ in KY(WO4)2,” J. Opt. Soc. Am. B 15(3), 1205–1212 (1998).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er,Yb doped tungstates,” Appl. Phys. B: Lasers Opt. 64(4), 409–413 (1997).
[Crossref]

Kutovoi, S.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Kuznetsov, F. A.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Lagatsky, A. A.

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, A. A. Kornienko, E. B. Dunina, S. Hartung, and G. Huber, “Fluorescence dynamics, excited-state absorption, and stimulated emission of Er3+ in KY(WO4)2,” J. Opt. Soc. Am. B 15(3), 1205–1212 (1998).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er,Yb doped tungstates,” Appl. Phys. B: Lasers Opt. 64(4), 409–413 (1997).
[Crossref]

Lamouler, P.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Lifante, G.

J. Martínez de Mendívil, G. Lifante, M. C. Pujol, M. Aguiló, F. Díaz, and E. Cantelar, “Judd-Ofelt analysis and transition probabilities of Er3+ doped KY1−x−yGdxLuy(WO4)2 crystals,” J. Lumin. 165, 153–158 (2015).
[Crossref]

Macalik, L.

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1-3), 289–297 (2000).
[Crossref]

J. Hanuza and L. Macalik, “Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln = Sm-Lu, Y),” Spectrochim. Acta, Part A 43(3), 361–373 (1987).
[Crossref]

Malkin, B. Z.

B. Z. Malkin, A. A. Kaminskii, N. R. Agamalyan, L. A. Bumagina, and T. I. Butaeva, “Spectra of rare-earth ions in the crystal fields of double tungstates and molybdates,” Phys. Status Solidi B 110(2), 417–422 (1982).
[Crossref]

Martínez de Mendívil, J.

J. Martínez de Mendívil, G. Lifante, M. C. Pujol, M. Aguiló, F. Díaz, and E. Cantelar, “Judd-Ofelt analysis and transition probabilities of Er3+ doped KY1−x−yGdxLuy(WO4)2 crystals,” J. Lumin. 165, 153–158 (2015).
[Crossref]

Massons, J.

X. Mateos, M. C. Pujol, F. Güell, M. Galán, R. M. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Erbium spectroscopy and 1.5-µm emission in KGd(WO4)2:Er,Yb single crystals,” IEEE J. Quantum Electron. 40(6), 759–770 (2004).
[Crossref]

M. C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, and M. Aguiló, “Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix,” J. Appl. Crystallogr. 35(1), 108–112 (2002).
[Crossref]

Mateos, X.

X. Mateos, M. C. Pujol, F. Güell, M. Galán, R. M. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Erbium spectroscopy and 1.5-µm emission in KGd(WO4)2:Er,Yb single crystals,” IEEE J. Quantum Electron. 40(6), 759–770 (2004).
[Crossref]

M. C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, and M. Aguiló, “Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix,” J. Appl. Crystallogr. 35(1), 108–112 (2002).
[Crossref]

Maurice, E.

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Mikhailov, V. P.

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, A. A. Kornienko, E. B. Dunina, S. Hartung, and G. Huber, “Fluorescence dynamics, excited-state absorption, and stimulated emission of Er3+ in KY(WO4)2,” J. Opt. Soc. Am. B 15(3), 1205–1212 (1998).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er,Yb doped tungstates,” Appl. Phys. B: Lasers Opt. 64(4), 409–413 (1997).
[Crossref]

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

Moncorge, R.

J. Rubin, A. Brenier, R. Moncorge, and C. Pedrini, “Excited-state absorption and energy transfer in Er3+ doped LiYF4,” J. Lumin. 36(1), 39–47 (1986).
[Crossref]

Mond, M.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Monerie, M.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Monnom, G.

Moos, H. W.

H. W. Moos, “Spectroscopic relaxation processes of rare-earth ions in crystals,” J. Lumin. 1-2, 106–121 (1970).
[Crossref]

Mougel, F.

Nikolov, V.

M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B: Lasers Opt. 68(2), 187–197 (1999).
[Crossref]

Noginov, M. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
[Crossref]

Ostrowsky, D. B.

Palatella, L.

Parreu, I.

Pasiskevicius, V.

Pavlyuk, A. A.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

T. Zayarnyuk, M. T. Borowiec, V. P. Dyakonov, H. Szymczak, E. Zubov, A. A. Pavlyuk, and M. Baranski, “Optical properties of potassium erbium double-tungstate KEr(WO4)2,” Proc. SPIE 4412, 280–283 (2001).
[Crossref]

Pedrini, C.

J. Rubin, A. Brenier, R. Moncorge, and C. Pedrini, “Excited-state absorption and energy transfer in Er3+ doped LiYF4,” J. Lumin. 36(1), 39–47 (1986).
[Crossref]

Peña, A.

Petermann, K.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Peters, V.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Petrov, V.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Podlipensky, A. V.

Pollnau, M.

Y. S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Gain dynamics in a highly ytterbium-doped potassium double tungstate epitaxial layer,” J. Opt. Soc. Am. B 35(9), 2176–2185 (2018).
[Crossref]

S. A. Vázquez-Córdova, S. Aravazhi, C. Grivas, Y. S. Yong, S. M. García-Blanco, J. L. Herek, and M. Pollnau, “High optical gain in erbium-doped potassium double tungstate channel waveguide amplifiers,” Opt. Express 26(5), 6260–6266 (2018).
[Crossref]

Y. S. Yong, S. Aravazhi, S. A. Vázquez-Cordova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
[Crossref]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref]

L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–667 (2013).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

K. van Dalfsen, S. Aravazhi, D. Geskus, K. Wörhoff, and M. Pollnau, “Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers,” Opt. Express 19(6), 5277–5282 (2011).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref]

D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

F. Gardillou, Y. E. Romanyuk, C. N. Borca, R. P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO4)2:Yb epitaxial layers: towards integrated optics based on KY(WO4)2,” Opt. Lett. 32(5), 488–490 (2007).
[Crossref]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

M. Pollnau, E. Heumann, and G. Huber, “Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3,” Appl. Phys. A 54(5), 404–410 (1992).
[Crossref]

Prokhorov, A. D.

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

Pujol, M. C.

J. Martínez de Mendívil, G. Lifante, M. C. Pujol, M. Aguiló, F. Díaz, and E. Cantelar, “Judd-Ofelt analysis and transition probabilities of Er3+ doped KY1−x−yGdxLuy(WO4)2 crystals,” J. Lumin. 165, 153–158 (2015).
[Crossref]

S. Bjurshagen, P. Brynolfsson, V. Pasiskevicius, I. Parreu, M. C. Pujol, A. Peña, M. Aguiló, and F. Díaz, “Crystal growth, spectroscopic characterization, and eye-safe laser operation of erbium- and ytterbium-codoped KLu(WO4)2,” Appl. Opt. 47(5), 656–665 (2008).
[Crossref]

S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
[Crossref]

X. Mateos, M. C. Pujol, F. Güell, M. Galán, R. M. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Erbium spectroscopy and 1.5-µm emission in KGd(WO4)2:Er,Yb single crystals,” IEEE J. Quantum Electron. 40(6), 759–770 (2004).
[Crossref]

M. C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, and M. Aguiló, “Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix,” J. Appl. Crystallogr. 35(1), 108–112 (2002).
[Crossref]

M. Rico, M. C. Pujol, F. Díaz, and C. Zaldo, “Green up-conversion of Er3+ in KGd(WO4)2 crystals. Effects of sample orientation and erbium concentration,” Appl. Phys. B: Lasers Opt. 72(2), 157–162 (2001).
[Crossref]

M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B: Lasers Opt. 68(2), 187–197 (1999).
[Crossref]

Ramponi, A. J.

Rico, M.

M. Rico, M. C. Pujol, F. Díaz, and C. Zaldo, “Green up-conversion of Er3+ in KGd(WO4)2 crystals. Effects of sample orientation and erbium concentration,” Appl. Phys. B: Lasers Opt. 72(2), 157–162 (2001).
[Crossref]

M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B: Lasers Opt. 68(2), 187–197 (1999).
[Crossref]

Rivier, S.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Romanyuk, Y. E.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

F. Gardillou, Y. E. Romanyuk, C. N. Borca, R. P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO4)2:Yb epitaxial layers: towards integrated optics based on KY(WO4)2,” Opt. Lett. 32(5), 488–490 (2007).
[Crossref]

Romero, J. J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Rubin, J.

J. Rubin, A. Brenier, R. Moncorge, and C. Pedrini, “Excited-state absorption and energy transfer in Er3+ doped LiYF4,” J. Lumin. 36(1), 39–47 (1986).
[Crossref]

Salathé, R. P.

Seo, J. T.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Shcherbakov, I. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
[Crossref]

Shcherbitsky, V. G.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er,Yb doped tungstates,” Appl. Phys. B: Lasers Opt. 64(4), 409–413 (1997).
[Crossref]

Smirnov, V. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
[Crossref]

Solans, X.

M. C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, and M. Aguiló, “Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix,” J. Appl. Crystallogr. 35(1), 108–112 (2002).
[Crossref]

M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B: Lasers Opt. 68(2), 187–197 (1999).
[Crossref]

Sole, R.

M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B: Lasers Opt. 68(2), 187–197 (1999).
[Crossref]

Solé, R.

M. C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, and M. Aguiló, “Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix,” J. Appl. Crystallogr. 35(1), 108–112 (2002).
[Crossref]

Solé, R. M.

X. Mateos, M. C. Pujol, F. Güell, M. Galán, R. M. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Erbium spectroscopy and 1.5-µm emission in KGd(WO4)2:Er,Yb single crystals,” IEEE J. Quantum Electron. 40(6), 759–770 (2004).
[Crossref]

Speiser, J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Staver, P. R.

Szymczak, H.

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

T. Zayarnyuk, M. T. Borowiec, V. P. Dyakonov, H. Szymczak, E. Zubov, A. A. Pavlyuk, and M. Baranski, “Optical properties of potassium erbium double-tungstate KEr(WO4)2,” Proc. SPIE 4412, 280–283 (2001).
[Crossref]

Temple, D.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Toncelli, A.

Tonelli, M.

Ueda, K.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

van Dalfsen, K.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

K. van Dalfsen, S. Aravazhi, D. Geskus, K. Wörhoff, and M. Pollnau, “Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers,” Opt. Express 19(6), 5277–5282 (2011).
[Crossref]

Vázquez-Cordova, S. A.

Vázquez-Córdova, S. A.

Vivien, D.

Wörhoff, K.

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref]

L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–667 (2013).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

K. van Dalfsen, S. Aravazhi, D. Geskus, K. Wörhoff, and M. Pollnau, “Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers,” Opt. Express 19(6), 5277–5282 (2011).
[Crossref]

D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

Yong, Y. S.

Zaldo, C.

M. Rico, M. C. Pujol, F. Díaz, and C. Zaldo, “Green up-conversion of Er3+ in KGd(WO4)2 crystals. Effects of sample orientation and erbium concentration,” Appl. Phys. B: Lasers Opt. 72(2), 157–162 (2001).
[Crossref]

M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B: Lasers Opt. 68(2), 187–197 (1999).
[Crossref]

Zandi, B.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Zayarnyuk, T.

T. Zayarnyuk, M. T. Borowiec, V. P. Dyakonov, H. Szymczak, E. Zubov, A. A. Pavlyuk, and M. Baranski, “Optical properties of potassium erbium double-tungstate KEr(WO4)2,” Proc. SPIE 4412, 280–283 (2001).
[Crossref]

Zubenko, D. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
[Crossref]

Zubov, E.

T. Zayarnyuk, M. T. Borowiec, V. P. Dyakonov, H. Szymczak, E. Zubov, A. A. Pavlyuk, and M. Baranski, “Optical properties of potassium erbium double-tungstate KEr(WO4)2,” Proc. SPIE 4412, 280–283 (2001).
[Crossref]

Adv. Mater. (1)

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A (1)

M. Pollnau, E. Heumann, and G. Huber, “Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3,” Appl. Phys. A 54(5), 404–410 (1992).
[Crossref]

Appl. Phys. B: Lasers Opt. (5)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B: Lasers Opt. 61(2), 151–158 (1995).
[Crossref]

M. Rico, M. C. Pujol, F. Díaz, and C. Zaldo, “Green up-conversion of Er3+ in KGd(WO4)2 crystals. Effects of sample orientation and erbium concentration,” Appl. Phys. B: Lasers Opt. 72(2), 157–162 (2001).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er,Yb doped tungstates,” Appl. Phys. B: Lasers Opt. 64(4), 409–413 (1997).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B: Lasers Opt. 68(2), 187–197 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Mateos, M. C. Pujol, F. Güell, M. Galán, R. M. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Erbium spectroscopy and 1.5-µm emission in KGd(WO4)2:Er,Yb single crystals,” IEEE J. Quantum Electron. 40(6), 759–770 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

J. Appl. Crystallogr. (1)

M. C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, and M. Aguiló, “Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix,” J. Appl. Crystallogr. 35(1), 108–112 (2002).
[Crossref]

J. Appl. Phys. (1)

G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46(8), 3580–3584 (1975).
[Crossref]

J. Cryst. Growth (1)

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

J. Lightwave Technol. (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

J. Lumin. (4)

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94-95, 293–297 (2001).
[Crossref]

J. Rubin, A. Brenier, R. Moncorge, and C. Pedrini, “Excited-state absorption and energy transfer in Er3+ doped LiYF4,” J. Lumin. 36(1), 39–47 (1986).
[Crossref]

J. Martínez de Mendívil, G. Lifante, M. C. Pujol, M. Aguiló, F. Díaz, and E. Cantelar, “Judd-Ofelt analysis and transition probabilities of Er3+ doped KY1−x−yGdxLuy(WO4)2 crystals,” J. Lumin. 165, 153–158 (2015).
[Crossref]

H. W. Moos, “Spectroscopic relaxation processes of rare-earth ions in crystals,” J. Lumin. 1-2, 106–121 (1970).
[Crossref]

J. Mol. Struct. (1)

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1-3), 289–297 (2000).
[Crossref]

J. Opt. Soc. Am. B (7)

J. A. Caird, A. J. Ramponi, and P. R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8(7), 1391–1403 (1991).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, A. A. Kornienko, E. B. Dunina, S. Hartung, and G. Huber, “Fluorescence dynamics, excited-state absorption, and stimulated emission of Er3+ in KY(WO4)2,” J. Opt. Soc. Am. B 15(3), 1205–1212 (1998).
[Crossref]

F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari, and D. Vivien, “Ytterbium-doped Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal,” J. Opt. Soc. Am. B 16(1), 164–172 (1999).
[Crossref]

L. Palatella, F. Cornacchia, A. Toncelli, and M. Tonelli, “Microscopic treatment of upconversion in Nd3+-doped samples,” J. Opt. Soc. Am. B 20(8), 1708–1714 (2003).
[Crossref]

Y. S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Gain dynamics in a highly ytterbium-doped potassium double tungstate epitaxial layer,” J. Opt. Soc. Am. B 35(9), 2176–2185 (2018).
[Crossref]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–667 (2013).
[Crossref]

J. Phys. Chem. C (1)

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

Laser Photonics Rev. (1)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Phys. Rev. B (3)

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55(14), 8881–8886 (1997).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and α-KGd(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Phys. Solid State (1)

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

Phys. Status Solidi B (1)

B. Z. Malkin, A. A. Kaminskii, N. R. Agamalyan, L. A. Bumagina, and T. I. Butaeva, “Spectra of rare-earth ions in the crystal fields of double tungstates and molybdates,” Phys. Status Solidi B 110(2), 417–422 (1982).
[Crossref]

Proc. SPIE (1)

T. Zayarnyuk, M. T. Borowiec, V. P. Dyakonov, H. Szymczak, E. Zubov, A. A. Pavlyuk, and M. Baranski, “Optical properties of potassium erbium double-tungstate KEr(WO4)2,” Proc. SPIE 4412, 280–283 (2001).
[Crossref]

Spectrochim. Acta, Part A (1)

J. Hanuza and L. Macalik, “Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln = Sm-Lu, Y),” Spectrochim. Acta, Part A 43(3), 361–373 (1987).
[Crossref]

Other (2)

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (Taylor & Francis, 1996).

http://www.phoenixbv.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Simplified energy-level diagram of Er3+ displaying the most relevant transitions for amplification around 1530 nm: the GSA transitions 4I15/24I13/2 around 1480 nm and 4I15/24I11/2 around 980 nm, the ESA transition 4I11/24F7/2 around 980 nm, the ground-state luminescence (LUM) transitions, as well as stimulated-emission (SE) transitions 4I13/24I15/2 and 4I11/24I15/2 around 1530 nm and 980 nm, respectively, non-radiative multiphonon decay (NR), and the ETU process ETU1 (4I13/2, 4I13/2) → (4I15/2, 4I9/2). τi are the measured and estimated (*) [3,9] luminescence lifetimes. In high-phonon oxide materials, leading to multiphonon quenching of luminescence lifetimes, other processes usually have a smaller influence: the ETU process ETU2 (4I11/2, 4I11/2) → (4I15/2, 4F7/2) and the cross-relaxation process CR (2H11/2/4S3/2, 4I15/2) → (4I9/2, 4I13/2).
Fig. 2.
Fig. 2. (a) Emission and (b) absorption cross sections of the 4I13/24I15/2 transition. (c) Emission and (d) absorption cross sections of the 4I11/24I15/2 transition.
Fig. 3.
Fig. 3. Experimental pump-probe spectra combining the contributions from ESA, GSA, and SE parallel to the (a) Nm and (b) Np axis. Comparison of GSA and ESA cross sections for (c) E||Nm and (d) E||Np.
Fig. 4.
Fig. 4. Experimental luminescence-decay curves (continuous lines) at 1535 nm and theoretical decay curves (dashed lines) simultaneously fitted for all decay curves. The incident pump power at λp = 1480 nm was (a) 25 mW, (b) 45 mW, (c) 108 mW, and (d) 148 mW. (e) Exponential intrinsic lifetime of the 4I13/2 level versus Er3+ concentration. (f) Macroscopic ETU parameter WETU,1 for different doping concentrations. Data points represent the coefficients for the doping concentrations of the studied samples. The dotted line is calculated from Eq. (5).
Fig. 5.
Fig. 5. Luminescence decay curves recorded at (a) 1010 nm on the transition 4I11/24I15/2 and (b) 550 nm on the transition 4S3/24I15/2 after excitation of sample I with a laser diode operating at 976 nm. Experimental values (data points) and exponential least-squares fit (red line).
Fig. 6.
Fig. 6. Luminescence decay curves recorded at 1010 nm on the transition 4I11/24I15/2 after excitation of sample V with a laser diode operating at 976 nm for five different incident pump powers. Experimental values (data points) and exponential least-squares fit (red line).
Fig. 7.
Fig. 7. (a) Simulated internal net gain per unit length (equalling the stimulated-emission coefficient γ minus the propagation loss coefficient αloss) versus Er3+ concentration in potassium double tungstate channel waveguides at the peak gain wavelength for three different propagation losses (lines). Comparison with experimental results (data points) from [47]. (b) Simulated internal gain assuming a high propagation loss (αloss = 4 dB/cm), including ESA and ETU (black continuous line), excluding ESA and including ETU (red dashed line), and including ESA and excluding ETU (blue dotted line).

Tables (2)

Tables Icon

Table 1. Optimized compositions of layers with different Er3+ concentrations, and waveguide dimensions.

Tables Icon

Table 2. Parameters used in the determination of ESA cross sections

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

σ e , q ( λ ) = 3 λ 5 8 π τ r n q 2 c I q ( λ ) λ [ I N g ( λ ) + I N m ( λ ) + I N p ( λ ) ] d λ ,
σ a , q ( λ ) = σ e , q ( λ ) Z i Z 0 e h c ( λ 1 λ Z L 1 ) / h c ( λ 1 λ Z L 1 ) k B T k B T ,
ln ( Δ I ( λ ) I u ( λ ) + 1 ) = σ a ( λ ) N e Γ + ( σ e ( λ ) σ E S A ( λ ) ) N 2 Γ ,
N 1 ( t ) = N 1 ( 0 ) e t / t τ 1 τ 1 1 + N 1 ( 0 ) β π 2 3 C D A τ 0 τ 1 { 1 + τ 0 τ 1 erf [ t ( 1 τ 0 + 1 τ 1 ) e t / t τ 1 τ 1 erf ( t τ 0 ) ] }
W E T U = π 2 3 C D D C D A N d = C E T U N d ,
C D D = 6 c ( 2 π ) 4 n 2 σ e ( λ ) σ a ( λ ) d λ ,
C D A = 6 c ( 2 π ) 4 n 2 σ e ( λ ) σ E S A ( λ ) d λ ,
d N 2 d t = W E T U , 1 N 1 2 1 τ 2 N 2 W E T U , 2 N 2 2 ,
d N 1 d t = β 21 τ 2 N 2 1 τ 1 N 1 2 W E T U , 1 N 1 2 .
d N 5 d t = R E S A 1 τ 5 N 5 ,
d N 2 d t = R P + W E T U , 1 N 1 2 + β 52 τ 5 N 5 1 τ 2 N 2 R E S A ,
d N 1 d t = β 21 τ 2 N 2 + β 51 τ 5 N 5 R s 1 τ 1 N 1 2 W E T U , 1 N 1 2 ,
N d = N 0 + N 1 + N 2 + N 5 .
R P = λ P h c I P ( σ a , P N 0 σ e , P N 2 ) ,
R E S A = λ P h c I P σ E S A N 2 ,
R S = λ S h c I S ( σ e , S N 1 σ a , S N 0 ) .
d P P d z = P P [ A E r Φ P ( σ e , P N 2 σ a , P N 0 σ E S A N 2 ) d x d y α l o s s , P ] ,
d P S d z = P S [ A E r Φ S ( σ e , S N 1 σ a , S N 0 ) d x d y α l o s s , S ] .