Abstract

This work reports on the analysis of near-IR and mid-IR luminescence spectra and their decays in fluoroindate glasses co-doped with Er3+/Tm3+. In particular, the energy transfer processes between rare earth ions in fluoroindate glasses pumped by 796 nm and 980 nm laser diode have been examined. Owing to donor-acceptor energy transfer and superposition of 1.45 µm (Tm3+: 3H43F4) and 1.55 µm (Er3+: 4I13/24I15/2) radiative transitions in fluoride glass co-doped with 0.1ErF3/0.3TmF3, a broadband near-IR luminescence in the range of third telecommunication window (FWHM = 155 nm, λexc = 796 nm) was obtained. Further analysis in the mid-IR spectral range (2.77 µm, λexc = 980 nm) showed that fluoroindate glass with 0.1ErF3/0.3TmF3 enables enhancement of luminescence intensity by c.a 14%.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Selective sensitization of 480-nm blue upconversion by Tm3+–Er3+ energy transfer in tellurite glass

S. Tanabe, K. Suzuki, N. Soga, and T. Hanada
J. Opt. Soc. Am. B 11(5) 933-942 (1994)

Investigation of broadband mid-infrared emission and quantitative analysis of Dy-Er energy transfer in tellurite glasses under different excitations

Caizhi Wang, Ying Tian, Xinyu Gao, Qunhuo Liu, Feifei Huang, Bingpeng Li, Junjie Zhang, and Shiqing Xu
Opt. Express 25(23) 29512-29525 (2017)

Broadband telecommunication wavelength emission in Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics

V.K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier
Opt. Express 15(15) 9535-9540 (2007)

References

  • View by:
  • |
  • |
  • |

  1. G. S. Maciel, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7(12), 1474–1476 (1995).
    [Crossref]
  2. C. B. Araújo, L. S. Menezes, G. S. Maciel, L. H. Acioli, and A. S. L. Gomes, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
    [Crossref]
  3. A. Boutarfaia, M. A. Poulain, M. J. Poulain, and S. E. Bouaoud, “Fluoroindate glasses based on the InF3 -BaF2-YF3 system,” J. Non-Cryst. Solids 213-214, 36–39 (1997).
    [Crossref]
  4. G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluorine Chem. 110(2), 165–173 (2001).
    [Crossref]
  5. L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B 50(22), 16219–16223 (1994).
    [Crossref]
  6. J. Pisarska, “IR transmission and emission spectra of erbium ions in fluoroindate glass,” J. Non-Cryst. Solids 345-346, 382–385 (2004).
    [Crossref]
  7. L. Gomes, “The basic spectroscopic parameters of Ho3+-doped fluoroindate glass for emission at 3.9 µm,” Opt. Mater. 60, 618–626 (2016).
    [Crossref]
  8. A. Akella, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 213-214, 1–5 (1997).
    [Crossref]
  9. R. Martin and J. Mendez-Ramos, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22(4), 327–333 (2003).
    [Crossref]
  10. J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express 3(3), 318–328 (2013).
    [Crossref]
  11. J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express 3(9), 1285–1301 (2013).
    [Crossref]
  12. F. Théberge, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38(22), 4683–4685 (2013).
    [Crossref]
  13. J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
    [Crossref]
  14. J. C. Gauthier, V. Fortin, J.-Y. Carree, S. Poulain, M. Poulain, R. Vallee, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 µm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
    [Crossref]
  15. F. Théberge, N. Berube, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallee, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photonics Res. 6(6), 609–613 (2018).
    [Crossref]
  16. M. R. Majewski, R. I. Woodward, J.-Y. Carreé, S. Poulain, M. Poulain, and S. D. Jackson, “Emission beyond 4 µm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber,” Opt. Lett. 43(8), 1926–1929 (2018).
    [Crossref]
  17. F. Maes, V. Fortin, S. Poulain, M. Poulain, J. Carrée, M. Bernier, and R. Vallée, “Room-temperature fiber laser at 3.92  µm,” Optica 5(7), 761–764 (2018).
    [Crossref]
  18. J. Bei, H. T. Cheung Foo, G. Qian, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water,” Opt. Mater. Express 4(6), 1213–1226 (2014).
    [Crossref]
  19. J. L. Adam, “Non-oxide glasses and their applications in optics,” J. Non-Cryst. Solids 287(1-3), 401–404 (2001).
    [Crossref]
  20. A. Berrou, C. Kieleck, and M. Eichhorn, “Mid-infrared lasing from Ho3+ in bulk InF3 glass,” Opt. Lett. 40(8), 1699–1701 (2015).
    [Crossref]
  21. S. Jia, Z. Jia, C. Yao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, and W. Qin, “2875 nm Lasing From Ho3+-Doped Fluoroindate Glass Fibers,” IEEE Phot. Tech. Lett. 30(4), 1 (2018).
  22. M. A. S. de Oliveira, C. B. de Araujo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express 19(6), 5620–5626 (2011).
    [Crossref]
  23. W. Lozano B, C. B. de Araujo, C. Egalon, A. S. L. Gomes, B. J. Costa, and Y. Messaddeq, “Upconversion of infrared-to-visible light in Pr3+-Yb3+ codoped fluoroindate glass,” Opt. Commun. 153(4-6), 271–274 (1998).
    [Crossref]
  24. S. Kishimoto and K. Hirao, “Intense ultraviolet and blue upconversion fluorescence in Tm3+-doped fluoroindate glasses,” J. Appl. Phys. 80(4), 1965–1969 (1996).
    [Crossref]
  25. N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
    [Crossref]
  26. A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
    [Crossref]
  27. L. J. Borrero-Gonzalez, G. Galleani, D. Manzani, L. A. O. Nunes, and S. J. L. Ribeiro, “Visible to infrared energy conversion in Pr3+-Yb3+ co-doped fluoroindate glasses,” Opt. Mater. 35(12), 2085–2089 (2013).
    [Crossref]
  28. I. R. Martin, V. D. Rodriguez, V. Lavin, and U. R. Rodriguez-Mendoza, “Upconversion dynamics in Yb3+-Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275-277, 345–348 (1998).
    [Crossref]
  29. C. Perez-Rodriguez, S. Rios, I. R. Martin, L. L. Martin, P. Haro-Gonzalez, and D. Jaque, “Upconversion emission obtained in Yb3+-Er3+ doped fluoroindate glasses using silica microspheres as focusing lens,” Opt. Express 21(9), 10667–10675 (2013).
    [Crossref]
  30. M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martín, and I. R. Martín, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
    [Crossref]
  31. Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33(20), 2293–2298 (2008).
    [Crossref]
  32. X. Liao, X. Jiang, Q. Yang, L. Wang, and D. Chen, “Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers,” Materials 10(5), 486 (2017).
    [Crossref]
  33. Y. Tian, B. Li, J. Wang, Q. Liu, Y. Chen, J. Zhang, and S. Xu, “The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes,” J. Lumin. 214, 116586 (2019).
    [Crossref]
  34. D. Dorosz, J. Zmojda, and M. Kochanowicz, “Broadband near infrared emission in antimony-germanate glass co-doped with erbium and thulium ions,” Opt. Eng. 53(7), 071807 (2014).
    [Crossref]
  35. V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega Jr, “Expanding broadband emission in the near-IR via energy transfer between Er3+-Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
    [Crossref]
  36. W. A. Pisarski, J. Pisarska, and W. Ryba-Romanowski, “Effect of erbium concentration on physical properties of fluoroindate glass,” Chem. Phys. Lett. 380(5-6), 604–608 (2003).
    [Crossref]
  37. H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ co-doped silica fiber,” Chem. Phys. Lett. 367(3-4), 507–511 (2003).
    [Crossref]
  38. R. Balda, J. Fernández, and J. M. Fernández-Navarro, “Study of broadband near-infrared emission in Tm3+-Er3+ codoped TeO2-WO3-PbO glasses,” Opt. Express 17(11), 8781–8788 (2009).
    [Crossref]
  39. L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fibre,” Opt. Express 12(11), 2429–2434 (2004).
    [Crossref]
  40. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  41. S. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
    [Crossref]
  42. B. Zhou and E. Y. B. Pun, “Broadband near-infrared photoluminescence and energy transfer in Tm3+/Er3+-codoped low phonon energy gallate bismuth lead glasses,” J. Phys. D: Appl. Phys. 44(28), 285404 (2011).
    [Crossref]
  43. K. Li, H. Fan, G. Zhang, G. Bai, S. Fan, J. Zhang, and L. Hu, “Broadband near-infrared emission in Er3+-Tm3+ co-doped bismuthate glasses,” J. Alloys Compd. 509(6), 3070–3073 (2011).
    [Crossref]
  44. A. Albalawi, S. Varas, A. Chiasera, H. Gebavi, W. Albalawi, W. Blanc, R. Balda, A. Lukowiak, M. Ferrari, and S. Taccheo, “Determination of reverse cross-relaxation process constant in Tm-doped glass by 3H4 fluorescence decay tail fitting,” Opt. Mater. Express 7(10), 3760–3768 (2017).
    [Crossref]
  45. W. A. Pisarski, “Spectroscopic analysis of praseodymium and erbium ions in heavy metal fluoride and oxide glasses,” J. Mol. Struct. 744-747, 473–479 (2005).
    [Crossref]
  46. H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. Xiao, J. Si, and A. Lin, “Enhanced 2.7µm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
    [Crossref]
  47. T. Ragin, J. Zmojda, M. Kochanowicz, P. Miluski, and D. Dorosz, “Energy transfer mechanisms in heavy metal oxide glasses doped with lanthanide ions,” Proc. SPIE 10031, 100310S (2016).
    [Crossref]
  48. Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-codoped fluorotellurite glasses for 2.7 µm fiber laser materials,” Fibers 1(2), 11–20 (2013).
    [Crossref]
  49. X. Li, B. Yang, J. Zhang, L. Hu, and L. Zhang, “Energy transfer between Er3+ and Pr3+ for 2.7 µm fiber laser material,” Fibers 2(1), 24–33 (2014).
    [Crossref]

2019 (1)

Y. Tian, B. Li, J. Wang, Q. Liu, Y. Chen, J. Zhang, and S. Xu, “The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes,” J. Lumin. 214, 116586 (2019).
[Crossref]

2018 (4)

F. Théberge, N. Berube, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallee, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photonics Res. 6(6), 609–613 (2018).
[Crossref]

S. Jia, Z. Jia, C. Yao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, and W. Qin, “2875 nm Lasing From Ho3+-Doped Fluoroindate Glass Fibers,” IEEE Phot. Tech. Lett. 30(4), 1 (2018).

M. R. Majewski, R. I. Woodward, J.-Y. Carreé, S. Poulain, M. Poulain, and S. D. Jackson, “Emission beyond 4 µm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber,” Opt. Lett. 43(8), 1926–1929 (2018).
[Crossref]

F. Maes, V. Fortin, S. Poulain, M. Poulain, J. Carrée, M. Bernier, and R. Vallée, “Room-temperature fiber laser at 3.92  µm,” Optica 5(7), 761–764 (2018).
[Crossref]

2017 (2)

2016 (3)

T. Ragin, J. Zmojda, M. Kochanowicz, P. Miluski, and D. Dorosz, “Energy transfer mechanisms in heavy metal oxide glasses doped with lanthanide ions,” Proc. SPIE 10031, 100310S (2016).
[Crossref]

L. Gomes, “The basic spectroscopic parameters of Ho3+-doped fluoroindate glass for emission at 3.9 µm,” Opt. Mater. 60, 618–626 (2016).
[Crossref]

J. C. Gauthier, V. Fortin, J.-Y. Carree, S. Poulain, M. Poulain, R. Vallee, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 µm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref]

2015 (1)

2014 (6)

J. Bei, H. T. Cheung Foo, G. Qian, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water,” Opt. Mater. Express 4(6), 1213–1226 (2014).
[Crossref]

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. Xiao, J. Si, and A. Lin, “Enhanced 2.7µm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

X. Li, B. Yang, J. Zhang, L. Hu, and L. Zhang, “Energy transfer between Er3+ and Pr3+ for 2.7 µm fiber laser material,” Fibers 2(1), 24–33 (2014).
[Crossref]

D. Dorosz, J. Zmojda, and M. Kochanowicz, “Broadband near infrared emission in antimony-germanate glass co-doped with erbium and thulium ions,” Opt. Eng. 53(7), 071807 (2014).
[Crossref]

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega Jr, “Expanding broadband emission in the near-IR via energy transfer between Er3+-Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

2013 (7)

L. J. Borrero-Gonzalez, G. Galleani, D. Manzani, L. A. O. Nunes, and S. J. L. Ribeiro, “Visible to infrared energy conversion in Pr3+-Yb3+ co-doped fluoroindate glasses,” Opt. Mater. 35(12), 2085–2089 (2013).
[Crossref]

M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martín, and I. R. Martín, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
[Crossref]

Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-codoped fluorotellurite glasses for 2.7 µm fiber laser materials,” Fibers 1(2), 11–20 (2013).
[Crossref]

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express 3(3), 318–328 (2013).
[Crossref]

C. Perez-Rodriguez, S. Rios, I. R. Martin, L. L. Martin, P. Haro-Gonzalez, and D. Jaque, “Upconversion emission obtained in Yb3+-Er3+ doped fluoroindate glasses using silica microspheres as focusing lens,” Opt. Express 21(9), 10667–10675 (2013).
[Crossref]

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express 3(9), 1285–1301 (2013).
[Crossref]

F. Théberge, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38(22), 4683–4685 (2013).
[Crossref]

2011 (3)

M. A. S. de Oliveira, C. B. de Araujo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express 19(6), 5620–5626 (2011).
[Crossref]

B. Zhou and E. Y. B. Pun, “Broadband near-infrared photoluminescence and energy transfer in Tm3+/Er3+-codoped low phonon energy gallate bismuth lead glasses,” J. Phys. D: Appl. Phys. 44(28), 285404 (2011).
[Crossref]

K. Li, H. Fan, G. Zhang, G. Bai, S. Fan, J. Zhang, and L. Hu, “Broadband near-infrared emission in Er3+-Tm3+ co-doped bismuthate glasses,” J. Alloys Compd. 509(6), 3070–3073 (2011).
[Crossref]

2009 (1)

2008 (1)

2005 (1)

W. A. Pisarski, “Spectroscopic analysis of praseodymium and erbium ions in heavy metal fluoride and oxide glasses,” J. Mol. Struct. 744-747, 473–479 (2005).
[Crossref]

2004 (3)

S. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
[Crossref]

L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fibre,” Opt. Express 12(11), 2429–2434 (2004).
[Crossref]

J. Pisarska, “IR transmission and emission spectra of erbium ions in fluoroindate glass,” J. Non-Cryst. Solids 345-346, 382–385 (2004).
[Crossref]

2003 (3)

R. Martin and J. Mendez-Ramos, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22(4), 327–333 (2003).
[Crossref]

W. A. Pisarski, J. Pisarska, and W. Ryba-Romanowski, “Effect of erbium concentration on physical properties of fluoroindate glass,” Chem. Phys. Lett. 380(5-6), 604–608 (2003).
[Crossref]

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ co-doped silica fiber,” Chem. Phys. Lett. 367(3-4), 507–511 (2003).
[Crossref]

2002 (1)

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
[Crossref]

2001 (2)

J. L. Adam, “Non-oxide glasses and their applications in optics,” J. Non-Cryst. Solids 287(1-3), 401–404 (2001).
[Crossref]

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluorine Chem. 110(2), 165–173 (2001).
[Crossref]

2000 (1)

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

1998 (2)

W. Lozano B, C. B. de Araujo, C. Egalon, A. S. L. Gomes, B. J. Costa, and Y. Messaddeq, “Upconversion of infrared-to-visible light in Pr3+-Yb3+ codoped fluoroindate glass,” Opt. Commun. 153(4-6), 271–274 (1998).
[Crossref]

I. R. Martin, V. D. Rodriguez, V. Lavin, and U. R. Rodriguez-Mendoza, “Upconversion dynamics in Yb3+-Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275-277, 345–348 (1998).
[Crossref]

1997 (2)

A. Boutarfaia, M. A. Poulain, M. J. Poulain, and S. E. Bouaoud, “Fluoroindate glasses based on the InF3 -BaF2-YF3 system,” J. Non-Cryst. Solids 213-214, 36–39 (1997).
[Crossref]

A. Akella, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 213-214, 1–5 (1997).
[Crossref]

1996 (2)

C. B. Araújo, L. S. Menezes, G. S. Maciel, L. H. Acioli, and A. S. L. Gomes, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

S. Kishimoto and K. Hirao, “Intense ultraviolet and blue upconversion fluorescence in Tm3+-doped fluoroindate glasses,” J. Appl. Phys. 80(4), 1965–1969 (1996).
[Crossref]

1995 (1)

G. S. Maciel, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7(12), 1474–1476 (1995).
[Crossref]

1994 (1)

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B 50(22), 16219–16223 (1994).
[Crossref]

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Acioli, L. H.

C. B. Araújo, L. S. Menezes, G. S. Maciel, L. H. Acioli, and A. S. L. Gomes, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

Adam, J. L.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluorine Chem. 110(2), 165–173 (2001).
[Crossref]

J. L. Adam, “Non-oxide glasses and their applications in optics,” J. Non-Cryst. Solids 287(1-3), 401–404 (2001).
[Crossref]

Aegerter, M. A.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B 50(22), 16219–16223 (1994).
[Crossref]

Akella, A.

A. Akella, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 213-214, 1–5 (1997).
[Crossref]

Albalawi, A.

Albalawi, W.

Araújo, C. B.

C. B. Araújo, L. S. Menezes, G. S. Maciel, L. H. Acioli, and A. S. L. Gomes, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

Bai, G.

K. Li, H. Fan, G. Zhang, G. Bai, S. Fan, J. Zhang, and L. Hu, “Broadband near-infrared emission in Er3+-Tm3+ co-doped bismuthate glasses,” J. Alloys Compd. 509(6), 3070–3073 (2011).
[Crossref]

Balda, R.

Bei, J.

Bernier, M.

Berrou, A.

Berube, N.

F. Théberge, N. Berube, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallee, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photonics Res. 6(6), 609–613 (2018).
[Crossref]

Blanc, W.

Borrero-Gonzalez, L. J.

L. J. Borrero-Gonzalez, G. Galleani, D. Manzani, L. A. O. Nunes, and S. J. L. Ribeiro, “Visible to infrared energy conversion in Pr3+-Yb3+ co-doped fluoroindate glasses,” Opt. Mater. 35(12), 2085–2089 (2013).
[Crossref]

Bouaoud, S. E.

A. Boutarfaia, M. A. Poulain, M. J. Poulain, and S. E. Bouaoud, “Fluoroindate glasses based on the InF3 -BaF2-YF3 system,” J. Non-Cryst. Solids 213-214, 36–39 (1997).
[Crossref]

Boutarfaia, A.

A. Boutarfaia, M. A. Poulain, M. J. Poulain, and S. E. Bouaoud, “Fluoroindate glasses based on the InF3 -BaF2-YF3 system,” J. Non-Cryst. Solids 213-214, 36–39 (1997).
[Crossref]

Carree, J.-Y.

Carreé, J.-Y.

Carrée, J.

Chen, D.

X. Liao, X. Jiang, Q. Yang, L. Wang, and D. Chen, “Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers,” Materials 10(5), 486 (2017).
[Crossref]

Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33(20), 2293–2298 (2008).
[Crossref]

Chen, G.

Chen, Y.

Y. Tian, B. Li, J. Wang, Q. Liu, Y. Chen, J. Zhang, and S. Xu, “The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes,” J. Lumin. 214, 116586 (2019).
[Crossref]

Cheung Foo, H. T.

Chiasera, A.

Costa, B. J.

W. Lozano B, C. B. de Araujo, C. Egalon, A. S. L. Gomes, B. J. Costa, and Y. Messaddeq, “Upconversion of infrared-to-visible light in Pr3+-Yb3+ codoped fluoroindate glass,” Opt. Commun. 153(4-6), 271–274 (1998).
[Crossref]

Cozic, S.

F. Théberge, N. Berube, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallee, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photonics Res. 6(6), 609–613 (2018).
[Crossref]

de Araujo, C. B.

M. A. S. de Oliveira, C. B. de Araujo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express 19(6), 5620–5626 (2011).
[Crossref]

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
[Crossref]

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

W. Lozano B, C. B. de Araujo, C. Egalon, A. S. L. Gomes, B. J. Costa, and Y. Messaddeq, “Upconversion of infrared-to-visible light in Pr3+-Yb3+ codoped fluoroindate glass,” Opt. Commun. 153(4-6), 271–274 (1998).
[Crossref]

de Araujo, M. T.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

de Araújo, C. B.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B 50(22), 16219–16223 (1994).
[Crossref]

de Araújo, L. E. E.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B 50(22), 16219–16223 (1994).
[Crossref]

de Oliveira, M. A. S.

Dexter, D. L.

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Dorosz, D.

T. Ragin, J. Zmojda, M. Kochanowicz, P. Miluski, and D. Dorosz, “Energy transfer mechanisms in heavy metal oxide glasses doped with lanthanide ions,” Proc. SPIE 10031, 100310S (2016).
[Crossref]

D. Dorosz, J. Zmojda, and M. Kochanowicz, “Broadband near infrared emission in antimony-germanate glass co-doped with erbium and thulium ions,” Opt. Eng. 53(7), 071807 (2014).
[Crossref]

Ebendorff-Heidepriem, H.

Egalon, C.

W. Lozano B, C. B. de Araujo, C. Egalon, A. S. L. Gomes, B. J. Costa, and Y. Messaddeq, “Upconversion of infrared-to-visible light in Pr3+-Yb3+ codoped fluoroindate glass,” Opt. Commun. 153(4-6), 271–274 (1998).
[Crossref]

Eichhorn, M.

El-Amraoui, M.

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega Jr, “Expanding broadband emission in the near-IR via energy transfer between Er3+-Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

Fan, H.

K. Li, H. Fan, G. Zhang, G. Bai, S. Fan, J. Zhang, and L. Hu, “Broadband near-infrared emission in Er3+-Tm3+ co-doped bismuthate glasses,” J. Alloys Compd. 509(6), 3070–3073 (2011).
[Crossref]

Fan, S.

K. Li, H. Fan, G. Zhang, G. Bai, S. Fan, J. Zhang, and L. Hu, “Broadband near-infrared emission in Er3+-Tm3+ co-doped bismuthate glasses,” J. Alloys Compd. 509(6), 3070–3073 (2011).
[Crossref]

Feng, Y.

S. Jia, Z. Jia, C. Yao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, and W. Qin, “2875 nm Lasing From Ho3+-Doped Fluoroindate Glass Fibers,” IEEE Phot. Tech. Lett. 30(4), 1 (2018).

Fernández, J.

Fernández-Navarro, J. M.

Ferrari, M.

Florez, A.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B 50(22), 16219–16223 (1994).
[Crossref]

Fortin, V.

Galleani, G.

L. J. Borrero-Gonzalez, G. Galleani, D. Manzani, L. A. O. Nunes, and S. J. L. Ribeiro, “Visible to infrared energy conversion in Pr3+-Yb3+ co-doped fluoroindate glasses,” Opt. Mater. 35(12), 2085–2089 (2013).
[Crossref]

Gauthier, J. C.

Gebavi, H.

Gomes, A. S. L.

W. Lozano B, C. B. de Araujo, C. Egalon, A. S. L. Gomes, B. J. Costa, and Y. Messaddeq, “Upconversion of infrared-to-visible light in Pr3+-Yb3+ codoped fluoroindate glass,” Opt. Commun. 153(4-6), 271–274 (1998).
[Crossref]

C. B. Araújo, L. S. Menezes, G. S. Maciel, L. H. Acioli, and A. S. L. Gomes, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B 50(22), 16219–16223 (1994).
[Crossref]

Gomes, L.

L. Gomes, “The basic spectroscopic parameters of Ho3+-doped fluoroindate glass for emission at 3.9 µm,” Opt. Mater. 60, 618–626 (2016).
[Crossref]

Gouveia, E. A.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

Gouveia-Neto, A. S.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

Han, S. R.

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ co-doped silica fiber,” Chem. Phys. Lett. 367(3-4), 507–511 (2003).
[Crossref]

Haro-Gonzalez, P.

He, J.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. Xiao, J. Si, and A. Lin, “Enhanced 2.7µm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Hemming, A.

Hernández-Rodríguez, M. A.

M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martín, and I. R. Martín, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
[Crossref]

Hirao, K.

S. Kishimoto and K. Hirao, “Intense ultraviolet and blue upconversion fluorescence in Tm3+-doped fluoroindate glasses,” J. Appl. Phys. 80(4), 1965–1969 (1996).
[Crossref]

Hu, L.

X. Li, B. Yang, J. Zhang, L. Hu, and L. Zhang, “Energy transfer between Er3+ and Pr3+ for 2.7 µm fiber laser material,” Fibers 2(1), 24–33 (2014).
[Crossref]

Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-codoped fluorotellurite glasses for 2.7 µm fiber laser materials,” Fibers 1(2), 11–20 (2013).
[Crossref]

K. Li, H. Fan, G. Zhang, G. Bai, S. Fan, J. Zhang, and L. Hu, “Broadband near-infrared emission in Er3+-Tm3+ co-doped bismuthate glasses,” J. Alloys Compd. 509(6), 3070–3073 (2011).
[Crossref]

Huang, F.

Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-codoped fluorotellurite glasses for 2.7 µm fiber laser materials,” Fibers 1(2), 11–20 (2013).
[Crossref]

Huang, L.

Imanieh, M. H.

M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martín, and I. R. Martín, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
[Crossref]

Jackson, S.

S. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
[Crossref]

Jackson, S. D.

Jaque, D.

Jeong, H.

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ co-doped silica fiber,” Chem. Phys. Lett. 367(3-4), 507–511 (2003).
[Crossref]

Jha, A.

Jia, S.

S. Jia, Z. Jia, C. Yao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, and W. Qin, “2875 nm Lasing From Ho3+-Doped Fluoroindate Glass Fibers,” IEEE Phot. Tech. Lett. 30(4), 1 (2018).

Jia, Z.

S. Jia, Z. Jia, C. Yao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, and W. Qin, “2875 nm Lasing From Ho3+-Doped Fluoroindate Glass Fibers,” IEEE Phot. Tech. Lett. 30(4), 1 (2018).

Jiang, X.

X. Liao, X. Jiang, Q. Yang, L. Wang, and D. Chen, “Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers,” Materials 10(5), 486 (2017).
[Crossref]

Kieleck, C.

Kishimoto, S.

S. Kishimoto and K. Hirao, “Intense ultraviolet and blue upconversion fluorescence in Tm3+-doped fluoroindate glasses,” J. Appl. Phys. 80(4), 1965–1969 (1996).
[Crossref]

Kochanowicz, M.

T. Ragin, J. Zmojda, M. Kochanowicz, P. Miluski, and D. Dorosz, “Energy transfer mechanisms in heavy metal oxide glasses doped with lanthanide ions,” Proc. SPIE 10031, 100310S (2016).
[Crossref]

D. Dorosz, J. Zmojda, and M. Kochanowicz, “Broadband near infrared emission in antimony-germanate glass co-doped with erbium and thulium ions,” Opt. Eng. 53(7), 071807 (2014).
[Crossref]

Lavin, V.

I. R. Martin, V. D. Rodriguez, V. Lavin, and U. R. Rodriguez-Mendoza, “Upconversion dynamics in Yb3+-Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275-277, 345–348 (1998).
[Crossref]

Ledemi, Y.

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega Jr, “Expanding broadband emission in the near-IR via energy transfer between Er3+-Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

Li, B.

Y. Tian, B. Li, J. Wang, Q. Liu, Y. Chen, J. Zhang, and S. Xu, “The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes,” J. Lumin. 214, 116586 (2019).
[Crossref]

Li, K.

K. Li, H. Fan, G. Zhang, G. Bai, S. Fan, J. Zhang, and L. Hu, “Broadband near-infrared emission in Er3+-Tm3+ co-doped bismuthate glasses,” J. Alloys Compd. 509(6), 3070–3073 (2011).
[Crossref]

Li, L.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. Xiao, J. Si, and A. Lin, “Enhanced 2.7µm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Li, X.

X. Li, B. Yang, J. Zhang, L. Hu, and L. Zhang, “Energy transfer between Er3+ and Pr3+ for 2.7 µm fiber laser material,” Fibers 2(1), 24–33 (2014).
[Crossref]

Liao, X.

X. Liao, X. Jiang, Q. Yang, L. Wang, and D. Chen, “Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers,” Materials 10(5), 486 (2017).
[Crossref]

Lin, A.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. Xiao, J. Si, and A. Lin, “Enhanced 2.7µm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Liu, Q.

Y. Tian, B. Li, J. Wang, Q. Liu, Y. Chen, J. Zhang, and S. Xu, “The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes,” J. Lumin. 214, 116586 (2019).
[Crossref]

Liu, X.

Lozano B, W.

W. Lozano B, C. B. de Araujo, C. Egalon, A. S. L. Gomes, B. J. Costa, and Y. Messaddeq, “Upconversion of infrared-to-visible light in Pr3+-Yb3+ codoped fluoroindate glass,” Opt. Commun. 153(4-6), 271–274 (1998).
[Crossref]

Lucas, J.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluorine Chem. 110(2), 165–173 (2001).
[Crossref]

Lukowiak, A.

Ma, Y.

Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-codoped fluorotellurite glasses for 2.7 µm fiber laser materials,” Fibers 1(2), 11–20 (2013).
[Crossref]

Maciel, G. S.

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
[Crossref]

C. B. Araújo, L. S. Menezes, G. S. Maciel, L. H. Acioli, and A. S. L. Gomes, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

G. S. Maciel, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7(12), 1474–1476 (1995).
[Crossref]

Maes, F.

Majewski, M. R.

Manzani, D.

L. J. Borrero-Gonzalez, G. Galleani, D. Manzani, L. A. O. Nunes, and S. J. L. Ribeiro, “Visible to infrared energy conversion in Pr3+-Yb3+ co-doped fluoroindate glasses,” Opt. Mater. 35(12), 2085–2089 (2013).
[Crossref]

Marega Jr, E.

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega Jr, “Expanding broadband emission in the near-IR via energy transfer between Er3+-Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

Martin, I. R.

C. Perez-Rodriguez, S. Rios, I. R. Martin, L. L. Martin, P. Haro-Gonzalez, and D. Jaque, “Upconversion emission obtained in Yb3+-Er3+ doped fluoroindate glasses using silica microspheres as focusing lens,” Opt. Express 21(9), 10667–10675 (2013).
[Crossref]

I. R. Martin, V. D. Rodriguez, V. Lavin, and U. R. Rodriguez-Mendoza, “Upconversion dynamics in Yb3+-Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275-277, 345–348 (1998).
[Crossref]

Martin, L. L.

Martin, R.

R. Martin and J. Mendez-Ramos, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22(4), 327–333 (2003).
[Crossref]

Martín, I. R.

M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martín, and I. R. Martín, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
[Crossref]

Martín, L. L.

M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martín, and I. R. Martín, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
[Crossref]

Mathieu, P.

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

Mendez-Ramos, J.

R. Martin and J. Mendez-Ramos, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22(4), 327–333 (2003).
[Crossref]

Menezes, L. S.

C. B. Araújo, L. S. Menezes, G. S. Maciel, L. H. Acioli, and A. S. L. Gomes, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

Messaddeq, Y.

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega Jr, “Expanding broadband emission in the near-IR via energy transfer between Er3+-Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

M. A. S. de Oliveira, C. B. de Araujo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express 19(6), 5620–5626 (2011).
[Crossref]

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
[Crossref]

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

W. Lozano B, C. B. de Araujo, C. Egalon, A. S. L. Gomes, B. J. Costa, and Y. Messaddeq, “Upconversion of infrared-to-visible light in Pr3+-Yb3+ codoped fluoroindate glass,” Opt. Commun. 153(4-6), 271–274 (1998).
[Crossref]

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B 50(22), 16219–16223 (1994).
[Crossref]

Michalska, M.

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

Miluski, P.

T. Ragin, J. Zmojda, M. Kochanowicz, P. Miluski, and D. Dorosz, “Energy transfer mechanisms in heavy metal oxide glasses doped with lanthanide ions,” Proc. SPIE 10031, 100310S (2016).
[Crossref]

Monro, T. M.

Morse, T. F.

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ co-doped silica fiber,” Chem. Phys. Lett. 367(3-4), 507–511 (2003).
[Crossref]

Nunes, L. A. O.

L. J. Borrero-Gonzalez, G. Galleani, D. Manzani, L. A. O. Nunes, and S. J. L. Ribeiro, “Visible to infrared energy conversion in Pr3+-Yb3+ co-doped fluoroindate glasses,” Opt. Mater. 35(12), 2085–2089 (2013).
[Crossref]

Oh, K.

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ co-doped silica fiber,” Chem. Phys. Lett. 367(3-4), 507–511 (2003).
[Crossref]

Ohishi, Y.

S. Jia, Z. Jia, C. Yao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, and W. Qin, “2875 nm Lasing From Ho3+-Doped Fluoroindate Glass Fibers,” IEEE Phot. Tech. Lett. 30(4), 1 (2018).

Oliveira, A. S.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

Perez-Rodriguez, C.

Pisarska, J.

J. Pisarska, “IR transmission and emission spectra of erbium ions in fluoroindate glass,” J. Non-Cryst. Solids 345-346, 382–385 (2004).
[Crossref]

W. A. Pisarski, J. Pisarska, and W. Ryba-Romanowski, “Effect of erbium concentration on physical properties of fluoroindate glass,” Chem. Phys. Lett. 380(5-6), 604–608 (2003).
[Crossref]

Pisarski, W. A.

W. A. Pisarski, “Spectroscopic analysis of praseodymium and erbium ions in heavy metal fluoride and oxide glasses,” J. Mol. Struct. 744-747, 473–479 (2005).
[Crossref]

W. A. Pisarski, J. Pisarska, and W. Ryba-Romanowski, “Effect of erbium concentration on physical properties of fluoroindate glass,” Chem. Phys. Lett. 380(5-6), 604–608 (2003).
[Crossref]

Poulain, M.

Poulain, M. A.

A. Boutarfaia, M. A. Poulain, M. J. Poulain, and S. E. Bouaoud, “Fluoroindate glasses based on the InF3 -BaF2-YF3 system,” J. Non-Cryst. Solids 213-214, 36–39 (1997).
[Crossref]

Poulain, M. J.

A. Boutarfaia, M. A. Poulain, M. J. Poulain, and S. E. Bouaoud, “Fluoroindate glasses based on the InF3 -BaF2-YF3 system,” J. Non-Cryst. Solids 213-214, 36–39 (1997).
[Crossref]

Poulain, S.

Pun, E. Y. B.

B. Zhou and E. Y. B. Pun, “Broadband near-infrared photoluminescence and energy transfer in Tm3+/Er3+-codoped low phonon energy gallate bismuth lead glasses,” J. Phys. D: Appl. Phys. 44(28), 285404 (2011).
[Crossref]

Qian, G.

Qin, G.

S. Jia, Z. Jia, C. Yao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, and W. Qin, “2875 nm Lasing From Ho3+-Doped Fluoroindate Glass Fibers,” IEEE Phot. Tech. Lett. 30(4), 1 (2018).

Qin, W.

S. Jia, Z. Jia, C. Yao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, and W. Qin, “2875 nm Lasing From Ho3+-Doped Fluoroindate Glass Fibers,” IEEE Phot. Tech. Lett. 30(4), 1 (2018).

Ragin, T.

T. Ragin, J. Zmojda, M. Kochanowicz, P. Miluski, and D. Dorosz, “Energy transfer mechanisms in heavy metal oxide glasses doped with lanthanide ions,” Proc. SPIE 10031, 100310S (2016).
[Crossref]

Rakov, N.

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
[Crossref]

Rault, G.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluorine Chem. 110(2), 165–173 (2001).
[Crossref]

Ribeiro, S. J. L.

L. J. Borrero-Gonzalez, G. Galleani, D. Manzani, L. A. O. Nunes, and S. J. L. Ribeiro, “Visible to infrared energy conversion in Pr3+-Yb3+ co-doped fluoroindate glasses,” Opt. Mater. 35(12), 2085–2089 (2013).
[Crossref]

Rios, S.

Rivera, V. A. G.

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega Jr, “Expanding broadband emission in the near-IR via energy transfer between Er3+-Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

Robichaud, L.-R.

F. Théberge, N. Berube, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallee, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photonics Res. 6(6), 609–613 (2018).
[Crossref]

Rodriguez, V. D.

I. R. Martin, V. D. Rodriguez, V. Lavin, and U. R. Rodriguez-Mendoza, “Upconversion dynamics in Yb3+-Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275-277, 345–348 (1998).
[Crossref]

Rodriguez-Mendoza, U. R.

I. R. Martin, V. D. Rodriguez, V. Lavin, and U. R. Rodriguez-Mendoza, “Upconversion dynamics in Yb3+-Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275-277, 345–348 (1998).
[Crossref]

Ryba-Romanowski, W.

W. A. Pisarski, J. Pisarska, and W. Ryba-Romanowski, “Effect of erbium concentration on physical properties of fluoroindate glass,” Chem. Phys. Lett. 380(5-6), 604–608 (2003).
[Crossref]

Shen, C.

Shen, S.

Shi, T.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. Xiao, J. Si, and A. Lin, “Enhanced 2.7µm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Si, J.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. Xiao, J. Si, and A. Lin, “Enhanced 2.7µm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Smektala, F.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluorine Chem. 110(2), 165–173 (2001).
[Crossref]

Swiderski, J.

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

Taccheo, S.

Théberge, F.

F. Théberge, N. Berube, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallee, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photonics Res. 6(6), 609–613 (2018).
[Crossref]

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

F. Théberge, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38(22), 4683–4685 (2013).
[Crossref]

Tian, Y.

Y. Tian, B. Li, J. Wang, Q. Liu, Y. Chen, J. Zhang, and S. Xu, “The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes,” J. Lumin. 214, 116586 (2019).
[Crossref]

Vallee, R.

F. Théberge, N. Berube, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallee, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photonics Res. 6(6), 609–613 (2018).
[Crossref]

J. C. Gauthier, V. Fortin, J.-Y. Carree, S. Poulain, M. Poulain, R. Vallee, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 µm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref]

Vallée, R.

Varas, S.

Vincent, D.

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

Wang, J.

Y. Tian, B. Li, J. Wang, Q. Liu, Y. Chen, J. Zhang, and S. Xu, “The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes,” J. Lumin. 214, 116586 (2019).
[Crossref]

Wang, L.

X. Liao, X. Jiang, Q. Yang, L. Wang, and D. Chen, “Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers,” Materials 10(5), 486 (2017).
[Crossref]

Wang, W.

Woodward, R. I.

Xiao, X.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. Xiao, J. Si, and A. Lin, “Enhanced 2.7µm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Xu, S.

Y. Tian, B. Li, J. Wang, Q. Liu, Y. Chen, J. Zhang, and S. Xu, “The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes,” J. Lumin. 214, 116586 (2019).
[Crossref]

Xu, Y.

Yang, B.

X. Li, B. Yang, J. Zhang, L. Hu, and L. Zhang, “Energy transfer between Er3+ and Pr3+ for 2.7 µm fiber laser material,” Fibers 2(1), 24–33 (2014).
[Crossref]

Yang, Q.

X. Liao, X. Jiang, Q. Yang, L. Wang, and D. Chen, “Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers,” Materials 10(5), 486 (2017).
[Crossref]

Yao, C.

S. Jia, Z. Jia, C. Yao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, and W. Qin, “2875 nm Lasing From Ho3+-Doped Fluoroindate Glass Fibers,” IEEE Phot. Tech. Lett. 30(4), 1 (2018).

Zeng, H.

Zhan, H.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. Xiao, J. Si, and A. Lin, “Enhanced 2.7µm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Zhang, A.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. Xiao, J. Si, and A. Lin, “Enhanced 2.7µm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Zhang, G.

K. Li, H. Fan, G. Zhang, G. Bai, S. Fan, J. Zhang, and L. Hu, “Broadband near-infrared emission in Er3+-Tm3+ co-doped bismuthate glasses,” J. Alloys Compd. 509(6), 3070–3073 (2011).
[Crossref]

Zhang, J.

Y. Tian, B. Li, J. Wang, Q. Liu, Y. Chen, J. Zhang, and S. Xu, “The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes,” J. Lumin. 214, 116586 (2019).
[Crossref]

X. Li, B. Yang, J. Zhang, L. Hu, and L. Zhang, “Energy transfer between Er3+ and Pr3+ for 2.7 µm fiber laser material,” Fibers 2(1), 24–33 (2014).
[Crossref]

Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-codoped fluorotellurite glasses for 2.7 µm fiber laser materials,” Fibers 1(2), 11–20 (2013).
[Crossref]

K. Li, H. Fan, G. Zhang, G. Bai, S. Fan, J. Zhang, and L. Hu, “Broadband near-infrared emission in Er3+-Tm3+ co-doped bismuthate glasses,” J. Alloys Compd. 509(6), 3070–3073 (2011).
[Crossref]

Zhang, L.

S. Jia, Z. Jia, C. Yao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, and W. Qin, “2875 nm Lasing From Ho3+-Doped Fluoroindate Glass Fibers,” IEEE Phot. Tech. Lett. 30(4), 1 (2018).

X. Li, B. Yang, J. Zhang, L. Hu, and L. Zhang, “Energy transfer between Er3+ and Pr3+ for 2.7 µm fiber laser material,” Fibers 2(1), 24–33 (2014).
[Crossref]

Zhang, Q.

Zhou, B.

B. Zhou and E. Y. B. Pun, “Broadband near-infrared photoluminescence and energy transfer in Tm3+/Er3+-codoped low phonon energy gallate bismuth lead glasses,” J. Phys. D: Appl. Phys. 44(28), 285404 (2011).
[Crossref]

Zhou, Z.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. Xiao, J. Si, and A. Lin, “Enhanced 2.7µm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Zmojda, J.

T. Ragin, J. Zmojda, M. Kochanowicz, P. Miluski, and D. Dorosz, “Energy transfer mechanisms in heavy metal oxide glasses doped with lanthanide ions,” Proc. SPIE 10031, 100310S (2016).
[Crossref]

D. Dorosz, J. Zmojda, and M. Kochanowicz, “Broadband near infrared emission in antimony-germanate glass co-doped with erbium and thulium ions,” Opt. Eng. 53(7), 071807 (2014).
[Crossref]

Appl. Phys. Lett. (1)

C. B. Araújo, L. S. Menezes, G. S. Maciel, L. H. Acioli, and A. S. L. Gomes, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

Chem. Phys. Lett. (2)

W. A. Pisarski, J. Pisarska, and W. Ryba-Romanowski, “Effect of erbium concentration on physical properties of fluoroindate glass,” Chem. Phys. Lett. 380(5-6), 604–608 (2003).
[Crossref]

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ co-doped silica fiber,” Chem. Phys. Lett. 367(3-4), 507–511 (2003).
[Crossref]

Fibers (2)

Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-codoped fluorotellurite glasses for 2.7 µm fiber laser materials,” Fibers 1(2), 11–20 (2013).
[Crossref]

X. Li, B. Yang, J. Zhang, L. Hu, and L. Zhang, “Energy transfer between Er3+ and Pr3+ for 2.7 µm fiber laser material,” Fibers 2(1), 24–33 (2014).
[Crossref]

IEEE Phot. Tech. Lett. (1)

S. Jia, Z. Jia, C. Yao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, and W. Qin, “2875 nm Lasing From Ho3+-Doped Fluoroindate Glass Fibers,” IEEE Phot. Tech. Lett. 30(4), 1 (2018).

IEEE Photonics Technol. Lett. (1)

G. S. Maciel, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7(12), 1474–1476 (1995).
[Crossref]

J. Alloys Compd. (3)

I. R. Martin, V. D. Rodriguez, V. Lavin, and U. R. Rodriguez-Mendoza, “Upconversion dynamics in Yb3+-Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275-277, 345–348 (1998).
[Crossref]

K. Li, H. Fan, G. Zhang, G. Bai, S. Fan, J. Zhang, and L. Hu, “Broadband near-infrared emission in Er3+-Tm3+ co-doped bismuthate glasses,” J. Alloys Compd. 509(6), 3070–3073 (2011).
[Crossref]

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. Xiao, J. Si, and A. Lin, “Enhanced 2.7µm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

J. Appl. Phys. (3)

S. Kishimoto and K. Hirao, “Intense ultraviolet and blue upconversion fluorescence in Tm3+-doped fluoroindate glasses,” J. Appl. Phys. 80(4), 1965–1969 (1996).
[Crossref]

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
[Crossref]

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

J. Fluorine Chem. (1)

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluorine Chem. 110(2), 165–173 (2001).
[Crossref]

J. Lumin. (2)

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega Jr, “Expanding broadband emission in the near-IR via energy transfer between Er3+-Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

Y. Tian, B. Li, J. Wang, Q. Liu, Y. Chen, J. Zhang, and S. Xu, “The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes,” J. Lumin. 214, 116586 (2019).
[Crossref]

J. Mol. Struct. (1)

W. A. Pisarski, “Spectroscopic analysis of praseodymium and erbium ions in heavy metal fluoride and oxide glasses,” J. Mol. Struct. 744-747, 473–479 (2005).
[Crossref]

J. Non-Cryst. Solids (4)

A. Boutarfaia, M. A. Poulain, M. J. Poulain, and S. E. Bouaoud, “Fluoroindate glasses based on the InF3 -BaF2-YF3 system,” J. Non-Cryst. Solids 213-214, 36–39 (1997).
[Crossref]

J. Pisarska, “IR transmission and emission spectra of erbium ions in fluoroindate glass,” J. Non-Cryst. Solids 345-346, 382–385 (2004).
[Crossref]

A. Akella, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 213-214, 1–5 (1997).
[Crossref]

J. L. Adam, “Non-oxide glasses and their applications in optics,” J. Non-Cryst. Solids 287(1-3), 401–404 (2001).
[Crossref]

J. Phys. D: Appl. Phys. (1)

B. Zhou and E. Y. B. Pun, “Broadband near-infrared photoluminescence and energy transfer in Tm3+/Er3+-codoped low phonon energy gallate bismuth lead glasses,” J. Phys. D: Appl. Phys. 44(28), 285404 (2011).
[Crossref]

Laser Phys. Lett. (1)

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

Materials (1)

X. Liao, X. Jiang, Q. Yang, L. Wang, and D. Chen, “Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers,” Materials 10(5), 486 (2017).
[Crossref]

Opt. Commun. (2)

W. Lozano B, C. B. de Araujo, C. Egalon, A. S. L. Gomes, B. J. Costa, and Y. Messaddeq, “Upconversion of infrared-to-visible light in Pr3+-Yb3+ codoped fluoroindate glass,” Opt. Commun. 153(4-6), 271–274 (1998).
[Crossref]

S. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
[Crossref]

Opt. Eng. (1)

D. Dorosz, J. Zmojda, and M. Kochanowicz, “Broadband near infrared emission in antimony-germanate glass co-doped with erbium and thulium ions,” Opt. Eng. 53(7), 071807 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. (3)

L. J. Borrero-Gonzalez, G. Galleani, D. Manzani, L. A. O. Nunes, and S. J. L. Ribeiro, “Visible to infrared energy conversion in Pr3+-Yb3+ co-doped fluoroindate glasses,” Opt. Mater. 35(12), 2085–2089 (2013).
[Crossref]

R. Martin and J. Mendez-Ramos, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22(4), 327–333 (2003).
[Crossref]

L. Gomes, “The basic spectroscopic parameters of Ho3+-doped fluoroindate glass for emission at 3.9 µm,” Opt. Mater. 60, 618–626 (2016).
[Crossref]

Opt. Mater. Express (4)

Optica (1)

Photonics Res. (1)

F. Théberge, N. Berube, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallee, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photonics Res. 6(6), 609–613 (2018).
[Crossref]

Phys. Rev. B (1)

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B 50(22), 16219–16223 (1994).
[Crossref]

Proc. SPIE (1)

T. Ragin, J. Zmojda, M. Kochanowicz, P. Miluski, and D. Dorosz, “Energy transfer mechanisms in heavy metal oxide glasses doped with lanthanide ions,” Proc. SPIE 10031, 100310S (2016).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martín, and I. R. Martín, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Near-IR luminescence spectra of fluoroindate glasses with 0.1ErF3 and 0.1ErF3/(0.1-0.3)TmF3. Inset shows zoom of the 1550 nm region.
Fig. 2.
Fig. 2. Luminescence intensity ratio I1800nm/I1550nm vs. TmF3 content (λexc=796 nm).
Fig. 3.
Fig. 3. Simplified energy level diagram of Er3+/Tm3+ co-doped fluoroindate glass. The energy transfer mechanisms ET1, ET2, ET3 and ET4 under excitation at 796 nm are also indicated.
Fig. 4.
Fig. 4. Luminescence decay curves from Tm3+: 3H4 state, λexc = 796 nm.
Fig. 5.
Fig. 5. The 3H4 luminescence lifetime and the energy transfer efficiency as a function of Tm3+ content.
Fig. 6.
Fig. 6. (a) Luminescence decay curves from Er3+: 4I13/2 state, (b) the energy transfer efficiency as a function of Tm3+ content (inset), λexc = 796 nm.
Fig. 7.
Fig. 7. Mid-IR luminescence spectra of 0.1ErF3 doped and 0.1ErF3/0.3TmF3 co-doped fluoroindate glasses. All transitions are indicated on the simplified energy scheme (inset), λexc = 980 nm.

Tables (1)

Tables Icon

Table 1. Selected spectroscopic parameters for Er3+ singly doped and Er3+/Tm3+ co-doped fluoroindate glasses.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ET 1 :   E r 3 + : 4 I 13 / 2 4 I 15 / 2 ,   T m 3 + : 3 H 6 3 H 4 , ET 2 :   E r 3 + : 4 I 13 / 2 4 I 15 / 2 ,   T m 3 + : 3 H 6 3 H 5 , ET 3 :   E r 3 + : 4 I 15 / 2 4 F 9 / 2 ,   T m 3 + : 3 H 4 3 H 6 , + ET 4 :   E r 3 + : 4 F 9 / 2 4 I 15 / 2 ,   T m 3 + : 3 H 6 2 F 2 , 3 , CR :   E r 3 + : 4 I 15 / 2 4 I 13 / 2 ,   T m 3 + : 3 H 4 3 F 4
η = 1 τ T m T m E r / τ T m
I ( t ) = A 1 exp ( t τ 1 ) + A 1 exp ( t τ 2 )
< τ >= A 1 τ 1 2 + A 2 τ 2 2 A 1 τ 1 + A 2 τ 2
E r 3 + : 4 I 15 / 2 4 I 11 / 2 ( GSA ) ,   E r 3 + : 4 I 11 / 2 4 I 13 / 2 ( 2.77 µ m ) E r 3 + : 4 I 13 / 2   T m 3 + : 3 F 4 ( ET 1 ) ,   E r 3 + : 4 I 11 / 2   T m 3 + : 3 H 5 ( ET 2 ) T m 3 + : 3 F 4 3 H 6 ( 1.8 µ m ) ,   E r 3 + : 4 I 13 / 2 4 I 15 / 2 ( 1.55 µ m )