T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).

[Crossref]

S. So, J. Mun, and J. Rho, “Simultaneous Inverse-Design of Material and Structure via Deep-Learning: Demonstration of Dipole Resonance Engineering using Core-Shell Nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).

[Crossref]

F. Stefanello, V. Aggarwal, L. S. Buriol, and M. G. C. Resende, “Hybrid algorithms for placement of virtual machines across geo-separated data centers,” J. Comb. Optim. 38(3), 748–793 (2019).

[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 44206 (2018).

[Crossref]
[PubMed]

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via Deep Learning,” Light. Sci. Appl. 760 (2018).

[Crossref]

J. Wang, Y. Shi, T. Hughes, Z. Zhao, and S. Fan, “Adjoint-based optimization of active nanophotonic devices,” Opt. Express 26, 3236 (2018).

[Crossref]
[PubMed]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659 (2018).

[Crossref]

Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multi-layer optical films with a memetic algorithm and mixed integer programming,” ACS Photon. 5, 684–691 (2018).

[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5, 1365–1369 (2018).

[Crossref]

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).

[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).

[Crossref]

A. Malasi, R. Kalyanaraman, and H. Garcia, “From Mie to Fresnel through effective medium approximation with multipole contributions,” J. Opt. 16(6), 065001 (2014).

[Crossref]

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).

[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).

[Crossref]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21, 21693–21701 (2013).

[Crossref]
[PubMed]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).

[Crossref]

D. Whitley, “A genetic algorithm tutorial,” Stat. Comput. 4(2), 65–85 (1994).

[Crossref]

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39(14), 9852–9858 (1989).

[Crossref]

F. Stefanello, V. Aggarwal, L. S. Buriol, and M. G. C. Resende, “Hybrid algorithms for placement of virtual machines across geo-separated data centers,” J. Comb. Optim. 38(3), 748–793 (2019).

[Crossref]

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via Deep Learning,” Light. Sci. Appl. 760 (2018).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).

[Crossref]

J. C. Bezdek and R. J. Hathaway, “Some notes on alternating optimization,” AFSS International Conference on Fuzzy Systems. (Springer, 2002.)

F. Stefanello, V. Aggarwal, L. S. Buriol, and M. G. C. Resende, “Hybrid algorithms for placement of virtual machines across geo-separated data centers,” J. Comb. Optim. 38(3), 748–793 (2019).

[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 44206 (2018).

[Crossref]
[PubMed]

I. Csiszár, “Information geometry and alternating minimization procedures,” Statistics and Decisions 1 (1984): 205–237.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 44206 (2018).

[Crossref]
[PubMed]

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).

[Crossref]

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39(14), 9852–9858 (1989).

[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).

[Crossref]

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).

[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).

[Crossref]

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).

[Crossref]

Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multi-layer optical films with a memetic algorithm and mixed integer programming,” ACS Photon. 5, 684–691 (2018).

[Crossref]

J. Wang, Y. Shi, T. Hughes, Z. Zhao, and S. Fan, “Adjoint-based optimization of active nanophotonic devices,” Opt. Express 26, 3236 (2018).

[Crossref]
[PubMed]

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).

[Crossref]

A. Malasi, R. Kalyanaraman, and H. Garcia, “From Mie to Fresnel through effective medium approximation with multipole contributions,” J. Opt. 16(6), 065001 (2014).

[Crossref]

W. W. Hager and H. Zhang, “A new active set algorithm for box constrained optimization,” SIAM J. Optim. 17(2), 526–557 (2006).

[Crossref]

J. C. Bezdek and R. J. Hathaway, “Some notes on alternating optimization,” AFSS International Conference on Fuzzy Systems. (Springer, 2002.)

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).

[Crossref]

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).

[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).

[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).

[Crossref]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659 (2018).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 44206 (2018).

[Crossref]
[PubMed]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 44206 (2018).

[Crossref]
[PubMed]

A. Malasi, R. Kalyanaraman, and H. Garcia, “From Mie to Fresnel through effective medium approximation with multipole contributions,” J. Opt. 16(6), 065001 (2014).

[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5, 1365–1369 (2018).

[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).

[Crossref]

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).

[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).

[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).

[Crossref]

Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multi-layer optical films with a memetic algorithm and mixed integer programming,” ACS Photon. 5, 684–691 (2018).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659 (2018).

[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5, 1365–1369 (2018).

[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).

[Crossref]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).

[Crossref]

A. Malasi, R. Kalyanaraman, and H. Garcia, “From Mie to Fresnel through effective medium approximation with multipole contributions,” J. Opt. 16(6), 065001 (2014).

[Crossref]

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via Deep Learning,” Light. Sci. Appl. 760 (2018).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659 (2018).

[Crossref]

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).

[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).

[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).

[Crossref]

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via Deep Learning,” Light. Sci. Appl. 760 (2018).

[Crossref]

S. So, J. Mun, and J. Rho, “Simultaneous Inverse-Design of Material and Structure via Deep-Learning: Demonstration of Dipole Resonance Engineering using Core-Shell Nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).

[Crossref]

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via Deep Learning,” Light. Sci. Appl. 760 (2018).

[Crossref]

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).

[Crossref]

F. Neumann and C. Witt, “Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity (Springer-Verlag, 2010).

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).

[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 44206 (2018).

[Crossref]
[PubMed]

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659 (2018).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).

[Crossref]

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).

[Crossref]

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).

[Crossref]

Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multi-layer optical films with a memetic algorithm and mixed integer programming,” ACS Photon. 5, 684–691 (2018).

[Crossref]

F. Stefanello, V. Aggarwal, L. S. Buriol, and M. G. C. Resende, “Hybrid algorithms for placement of virtual machines across geo-separated data centers,” J. Comb. Optim. 38(3), 748–793 (2019).

[Crossref]

S. So, J. Mun, and J. Rho, “Simultaneous Inverse-Design of Material and Structure via Deep-Learning: Demonstration of Dipole Resonance Engineering using Core-Shell Nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).

[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).

[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659 (2018).

[Crossref]

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 44206 (2018).

[Crossref]
[PubMed]

J. Wang, Y. Shi, T. Hughes, Z. Zhao, and S. Fan, “Adjoint-based optimization of active nanophotonic devices,” Opt. Express 26, 3236 (2018).

[Crossref]
[PubMed]

Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multi-layer optical films with a memetic algorithm and mixed integer programming,” ACS Photon. 5, 684–691 (2018).

[Crossref]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).

[Crossref]

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).

[Crossref]

S. So, J. Mun, and J. Rho, “Simultaneous Inverse-Design of Material and Structure via Deep-Learning: Demonstration of Dipole Resonance Engineering using Core-Shell Nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 44206 (2018).

[Crossref]
[PubMed]

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).

[Crossref]

F. Stefanello, V. Aggarwal, L. S. Buriol, and M. G. C. Resende, “Hybrid algorithms for placement of virtual machines across geo-separated data centers,” J. Comb. Optim. 38(3), 748–793 (2019).

[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).

[Crossref]

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via Deep Learning,” Light. Sci. Appl. 760 (2018).

[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5, 1365–1369 (2018).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 44206 (2018).

[Crossref]
[PubMed]

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659 (2018).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).

[Crossref]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).

[Crossref]

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).

[Crossref]

D. Whitley, “A genetic algorithm tutorial,” Stat. Comput. 4(2), 65–85 (1994).

[Crossref]

F. Neumann and C. Witt, “Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity (Springer-Verlag, 2010).

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via Deep Learning,” Light. Sci. Appl. 760 (2018).

[Crossref]

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 44206 (2018).

[Crossref]
[PubMed]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5, 1365–1369 (2018).

[Crossref]

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).

[Crossref]

W. W. Hager and H. Zhang, “A new active set algorithm for box constrained optimization,” SIAM J. Optim. 17(2), 526–557 (2006).

[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).

[Crossref]

S. So, J. Mun, and J. Rho, “Simultaneous Inverse-Design of Material and Structure via Deep-Learning: Demonstration of Dipole Resonance Engineering using Core-Shell Nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).

[Crossref]

Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multi-layer optical films with a memetic algorithm and mixed integer programming,” ACS Photon. 5, 684–691 (2018).

[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5, 1365–1369 (2018).

[Crossref]

A. L. Bloom, “Refining and optimization in multilayers,” Appl. Opt. 20(1), 66–73 (1981).

[Crossref]

B. T. Sullivan and J. A. Dobrowolski, “Implementation of a numerical needle method for thin-film design,” Appl. Opt. 35(28), 5484–5492 (1996).

[Crossref]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493–5508 (1996).

[Crossref]

V. Yakovlev and G. Tempea, “Optimization of chirped mirrors,” Appl. Opt. 41(30), 6514–6520 (2002).

[Crossref]

F. Stefanello, V. Aggarwal, L. S. Buriol, and M. G. C. Resende, “Hybrid algorithms for placement of virtual machines across geo-separated data centers,” J. Comb. Optim. 38(3), 748–793 (2019).

[Crossref]

A. Malasi, R. Kalyanaraman, and H. Garcia, “From Mie to Fresnel through effective medium approximation with multipole contributions,” J. Opt. 16(6), 065001 (2014).

[Crossref]

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).

[Crossref]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).

[Crossref]

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via Deep Learning,” Light. Sci. Appl. 760 (2018).

[Crossref]

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).

[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).

[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659 (2018).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).

[Crossref]

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4), A841–A850 (2011).

[Crossref]
[PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).

[Crossref]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).

[Crossref]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21, 21693–21701 (2013).

[Crossref]
[PubMed]

J. Wang, Y. Shi, T. Hughes, Z. Zhao, and S. Fan, “Adjoint-based optimization of active nanophotonic devices,” Opt. Express 26, 3236 (2018).

[Crossref]
[PubMed]

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).

[Crossref]

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39(14), 9852–9858 (1989).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 44206 (2018).

[Crossref]
[PubMed]

W. W. Hager and H. Zhang, “A new active set algorithm for box constrained optimization,” SIAM J. Optim. 17(2), 526–557 (2006).

[Crossref]

D. Whitley, “A genetic algorithm tutorial,” Stat. Comput. 4(2), 65–85 (1994).

[Crossref]

F. Neumann and C. Witt, “Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity (Springer-Verlag, 2010).

I. Csiszár, “Information geometry and alternating minimization procedures,” Statistics and Decisions 1 (1984): 205–237.

J. C. Bezdek and R. J. Hathaway, “Some notes on alternating optimization,” AFSS International Conference on Fuzzy Systems. (Springer, 2002.)