Abstract

Titanium nitride (TiN) is a plasmonic material, which efficiently absorbs the solar spectrum and is useful for light-to-heat conversion. Although TiN nanostructures have been developed for plasmonic applications including heat generators, TiN oxidizes to titanium dioxide (TiO2) at relatively low temperatures, as low as 350 °C in air, which limits the application of TiN. In this study, we protect TiN nanocylinder arrays with conformal coatings of insulator layers fabricated by atomic layer deposition. The coating increases the oxidation temperature of the TiN array in air up to 750 °C through suppression of oxygen diffusion by the insulator layer. We also demonstrate the benefit of the thermal oxidation of TiN as a route for nanofabrication of TiO2, a transparent high-refractive-index material. The TiN nanocylinders are converted to TiO2 nanocylinders without disturbing the periodic arrangement. The resultant TiO2 nanocylinder arrays act as two-dimensional (2D) photonic crystals.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Substrate-insensitive atomic layer deposition of plasmonic titanium nitride films

Ing-Song Yu, Hsyi-En Cheng, Chun-Chieh Chang, Yan-Wei Lin, Hou-Tong Chen, Yao-Chin Wang, and Zu-Po Yang
Opt. Mater. Express 7(3) 777-784 (2017)

Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen
Opt. Express 19(12) 11529-11538 (2011)

Controllable photonic mirror fabricated by the atomic layer deposition on the nanosphere template

Shih-Hao Chan, Wei-Ting Lin, Wen-Hao Cho, Chien-Cheng Kuo, Cheng-Chung Lee, and Sheng-Hui Chen
Appl. Opt. 53(4) A237-A241 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev. 4(6), 795–808 (2010).
    [Crossref]
  2. S. Ishii, R. P. Sugavaneshwar, and T. Nagao, “Titanium nitride nanoparticles as plasmonic solar heat transducers,” J. Phys. Chem. C 120(4), 2343–2348 (2016).
    [Crossref]
  3. K. S. Schramke, Y. Qin, J. T. Held, K. A. Mkhoyan, and U. R. Kortshagen, “Nonthermal plasma synthesis of titanium nitride nanocrystals with plasmon resonances at near-infrared wavelengths relevant to photothermal therapy,” ACS Appl. Nano Mater. 1(6), 2869–2876 (2018).
    [Crossref]
  4. R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
    [Crossref]
  5. S. Murai, K. Fujita, Y. Daido, R. Yasuhara, R. Kamakura, and K. Tanaka, “Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films,” Opt. Express 24(2), 1143–1153 (2016).
    [Crossref]
  6. U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
    [Crossref]
  7. E. Shkondin, T. Repän, O. Takayama, and A. V. Lavrinenko, “High aspect ratio titanium nitride trench structures as plasmonic biosensor,” Opt. Mater. Express 7(11), 4171–4182 (2017).
    [Crossref]
  8. L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear refractory plasmonics with titanium nitride nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
    [Crossref]
  9. I. R. Howell, B. Giroire, A. Garcia, S. Li, C. Aymonier, and J. J. Watkins, “Fabrication of plasmonic tin nanostructures by nitridation of nanoimprinted TiO2 nanoparticles,” J. Mater. Chem. C 6(6), 1399–1406 (2018).
    [Crossref]
  10. S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. De Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of tin nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography [invited],” Opt. Mater. Express 5(11), 2625–2633 (2015).
    [Crossref]
  11. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref]
  12. J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
    [Crossref]
  13. S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
    [Crossref]
  14. J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
    [Crossref]
  15. H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
    [Crossref]
  16. M. P. Wells, R. Bower, R. Kilmurray, B. Zou, A. P. Mihai, G. Gobalakrichenane, N. M. Alford, R. F. M. Oulton, L. F. Cohen, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Temperature stability of thin film refractory plasmonic materials,” Opt. Express 26(12), 15726–15744 (2018).
    [Crossref]
  17. Y. G. Gogotsi and F. Porz, “The oxidation of particulate-reinforced Si3N4-TiN composites,” Corros. Sci. 33(4), 627–640 (1992).
    [Crossref]
  18. Y. G. Gogotsi, F. Porz, and G. Dransfield, “Oxidation behavior of monolithic TiN and TiN dispersed in ceramic matrices,” Oxid. Met. 39(1-2), 69–91 (1993).
    [Crossref]
  19. L. González-García, S. Colodrero, H. Míguez, and A. R. González-Elipe, “Single-step fabrication process of 1-d photonic crystals coupled to nanocolumnar TiO2 layers to improve DSC efficiency,” Opt. Express 23(24), A1642–A1650 (2015).
    [Crossref]
  20. H. Segawa and H. Misawa, “Fabrication of two-dimensional periodic TiO2 pillar arrays by multi-beam laser interference lithography,” Nat. Sci. 1(3), 176–180 (2009).
    [Crossref]
  21. H. K. Park, S. W. Yoon, D. Y. Choi, and Y. R. Do, “Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals,” J. Mater. Chem. C 1(9), 1732–1738 (2013).
    [Crossref]
  22. J. Yu, J. Lei, L. Wang, J. Zhang, and Y. Liu, “TiO2 inverse opal photonic crystals: Synthesis, modification, and applications - a review,” J. Alloys Compd. 769, 740–757 (2018).
    [Crossref]
  23. K. Xie, M. Guo, and H. Huang, “Photonic crystals for sensitized solar cells: Fabrication, properties, and applications,” J. Mater. Chem. C 3(41), 10665–10686 (2015).
    [Crossref]
  24. S.-G. Park, T. Y. Jeon, and S.-M. Yang, “Fabrication of three-dimensional nanostructured titania materials by prism holographic lithography and the sol–gel reaction,” Langmuir 29(31), 9620–9625 (2013).
    [Crossref]
  25. G. Subramania, Y. J. Lee, I. Brener, T. S. Luk, and P. G. Clem, “Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal,” Opt. Express 15(20), 13049–13057 (2007).
    [Crossref]
  26. J.-H. Lee, P. Kuang, W. Leung, Y.-S. Kim, J.-M. Park, H. Kang, K. Constant, and K.-M. Ho, “Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography,” Appl. Phys. Lett. 96(19), 193303 (2010).
    [Crossref]
  27. R. Biswas, J. Ahn, T. Lee, J.-H. Lee, Y.-S. Kim, C.-H. Kim, W. Leung, C.-H. Oh, K. Constant, and K.-M. Ho, “Photonic bandgaps of conformally coated structures,” J. Opt. Soc. Am. B 22(12), 2728–2733 (2005).
    [Crossref]
  28. C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
    [Crossref]
  29. J.-H. Lee, W. Leung, J. Ahn, T. Lee, I.-S. Park, K. Constant, and K.-M. Ho, “Layer-by-layer photonic crystal fabricated by low-temperature atomic layer deposition,” Appl. Phys. Lett. 90(15), 151101 (2007).
    [Crossref]
  30. M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19(21), 3425–3438 (2007).
    [Crossref]
  31. S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
    [Crossref]
  32. K. Aono, S. Aki, K. Sueyoshi, H. Hisamoto, and T. Endo, “Development of optical biosensor based on photonic crystal made of TiO2 using liquid phase deposition,” Jpn. J. Appl. Phys. 55(8S3), 08RE01 (2016).
    [Crossref]
  33. Y. Huang, L. Liu, M. Johnson, A. C. Hillier, and M. Lu, “One-step sol–gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
    [Crossref]
  34. S. Taniguchi, T. Shibata, T. Yamada, X. Liu, and S. Zou, “High-temperature oxidation resistance of tial improved by ibed Si3N4 coating,” ISIJ Int. 33(8), 869–876 (1993).
    [Crossref]
  35. W. S. Williams, “High-temperature thermal conductivity of transition metal carbides and nitrides,” J. Am. Ceram. Soc. 49(3), 156–159 (1966).
    [Crossref]
  36. M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D. Porter, H. Wang, and C. R. Hubbard, “Thermal properties of Ti4AlN3,” J. Appl. Phys. 87(12), 8407–8414 (2000).
    [Crossref]
  37. M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, “Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc,” Thin Solid Films 578, 133–138 (2015).
    [Crossref]
  38. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
    [Crossref]
  39. S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
    [Crossref]
  40. E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
    [Crossref]
  41. W. Spengler and R. Kaiser, “First and second order raman scattering in transition metal compounds,” Solid State Commun. 18(7), 881–884 (1976).
    [Crossref]
  42. W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
    [Crossref]

2018 (5)

K. S. Schramke, Y. Qin, J. T. Held, K. A. Mkhoyan, and U. R. Kortshagen, “Nonthermal plasma synthesis of titanium nitride nanocrystals with plasmon resonances at near-infrared wavelengths relevant to photothermal therapy,” ACS Appl. Nano Mater. 1(6), 2869–2876 (2018).
[Crossref]

I. R. Howell, B. Giroire, A. Garcia, S. Li, C. Aymonier, and J. J. Watkins, “Fabrication of plasmonic tin nanostructures by nitridation of nanoimprinted TiO2 nanoparticles,” J. Mater. Chem. C 6(6), 1399–1406 (2018).
[Crossref]

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

M. P. Wells, R. Bower, R. Kilmurray, B. Zou, A. P. Mihai, G. Gobalakrichenane, N. M. Alford, R. F. M. Oulton, L. F. Cohen, S. A. Maier, A. V. Zayats, and P. K. Petrov, “Temperature stability of thin film refractory plasmonic materials,” Opt. Express 26(12), 15726–15744 (2018).
[Crossref]

J. Yu, J. Lei, L. Wang, J. Zhang, and Y. Liu, “TiO2 inverse opal photonic crystals: Synthesis, modification, and applications - a review,” J. Alloys Compd. 769, 740–757 (2018).
[Crossref]

2017 (6)

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

E. Shkondin, T. Repän, O. Takayama, and A. V. Lavrinenko, “High aspect ratio titanium nitride trench structures as plasmonic biosensor,” Opt. Mater. Express 7(11), 4171–4182 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

2016 (7)

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear refractory plasmonics with titanium nitride nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, and T. Nagao, “Titanium nitride nanoparticles as plasmonic solar heat transducers,” J. Phys. Chem. C 120(4), 2343–2348 (2016).
[Crossref]

S. Murai, K. Fujita, Y. Daido, R. Yasuhara, R. Kamakura, and K. Tanaka, “Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films,” Opt. Express 24(2), 1143–1153 (2016).
[Crossref]

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

K. Aono, S. Aki, K. Sueyoshi, H. Hisamoto, and T. Endo, “Development of optical biosensor based on photonic crystal made of TiO2 using liquid phase deposition,” Jpn. J. Appl. Phys. 55(8S3), 08RE01 (2016).
[Crossref]

Y. Huang, L. Liu, M. Johnson, A. C. Hillier, and M. Lu, “One-step sol–gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref]

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

2015 (4)

K. Xie, M. Guo, and H. Huang, “Photonic crystals for sensitized solar cells: Fabrication, properties, and applications,” J. Mater. Chem. C 3(41), 10665–10686 (2015).
[Crossref]

L. González-García, S. Colodrero, H. Míguez, and A. R. González-Elipe, “Single-step fabrication process of 1-d photonic crystals coupled to nanocolumnar TiO2 layers to improve DSC efficiency,” Opt. Express 23(24), A1642–A1650 (2015).
[Crossref]

S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. De Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of tin nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography [invited],” Opt. Mater. Express 5(11), 2625–2633 (2015).
[Crossref]

M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, “Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc,” Thin Solid Films 578, 133–138 (2015).
[Crossref]

2014 (1)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

2013 (4)

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref]

S.-G. Park, T. Y. Jeon, and S.-M. Yang, “Fabrication of three-dimensional nanostructured titania materials by prism holographic lithography and the sol–gel reaction,” Langmuir 29(31), 9620–9625 (2013).
[Crossref]

H. K. Park, S. W. Yoon, D. Y. Choi, and Y. R. Do, “Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals,” J. Mater. Chem. C 1(9), 1732–1738 (2013).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

2010 (2)

J.-H. Lee, P. Kuang, W. Leung, Y.-S. Kim, J.-M. Park, H. Kang, K. Constant, and K.-M. Ho, “Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography,” Appl. Phys. Lett. 96(19), 193303 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

2009 (1)

H. Segawa and H. Misawa, “Fabrication of two-dimensional periodic TiO2 pillar arrays by multi-beam laser interference lithography,” Nat. Sci. 1(3), 176–180 (2009).
[Crossref]

2007 (3)

G. Subramania, Y. J. Lee, I. Brener, T. S. Luk, and P. G. Clem, “Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal,” Opt. Express 15(20), 13049–13057 (2007).
[Crossref]

J.-H. Lee, W. Leung, J. Ahn, T. Lee, I.-S. Park, K. Constant, and K.-M. Ho, “Layer-by-layer photonic crystal fabricated by low-temperature atomic layer deposition,” Appl. Phys. Lett. 90(15), 151101 (2007).
[Crossref]

M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19(21), 3425–3438 (2007).
[Crossref]

2006 (1)

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
[Crossref]

2005 (1)

2000 (1)

M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D. Porter, H. Wang, and C. R. Hubbard, “Thermal properties of Ti4AlN3,” J. Appl. Phys. 87(12), 8407–8414 (2000).
[Crossref]

1993 (2)

S. Taniguchi, T. Shibata, T. Yamada, X. Liu, and S. Zou, “High-temperature oxidation resistance of tial improved by ibed Si3N4 coating,” ISIJ Int. 33(8), 869–876 (1993).
[Crossref]

Y. G. Gogotsi, F. Porz, and G. Dransfield, “Oxidation behavior of monolithic TiN and TiN dispersed in ceramic matrices,” Oxid. Met. 39(1-2), 69–91 (1993).
[Crossref]

1992 (1)

Y. G. Gogotsi and F. Porz, “The oxidation of particulate-reinforced Si3N4-TiN composites,” Corros. Sci. 33(4), 627–640 (1992).
[Crossref]

1978 (1)

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

1976 (1)

W. Spengler and R. Kaiser, “First and second order raman scattering in transition metal compounds,” Solid State Commun. 18(7), 881–884 (1976).
[Crossref]

1966 (1)

W. S. Williams, “High-temperature thermal conductivity of transition metal carbides and nitrides,” J. Am. Ceram. Soc. 49(3), 156–159 (1966).
[Crossref]

Ahn, J.

J.-H. Lee, W. Leung, J. Ahn, T. Lee, I.-S. Park, K. Constant, and K.-M. Ho, “Layer-by-layer photonic crystal fabricated by low-temperature atomic layer deposition,” Appl. Phys. Lett. 90(15), 151101 (2007).
[Crossref]

R. Biswas, J. Ahn, T. Lee, J.-H. Lee, Y.-S. Kim, C.-H. Kim, W. Leung, C.-H. Oh, K. Constant, and K.-M. Ho, “Photonic bandgaps of conformally coated structures,” J. Opt. Soc. Am. B 22(12), 2728–2733 (2005).
[Crossref]

Aki, S.

K. Aono, S. Aki, K. Sueyoshi, H. Hisamoto, and T. Endo, “Development of optical biosensor based on photonic crystal made of TiO2 using liquid phase deposition,” Jpn. J. Appl. Phys. 55(8S3), 08RE01 (2016).
[Crossref]

Alford, N. M.

Amin-Ahmadi, B.

M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, “Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc,” Thin Solid Films 578, 133–138 (2015).
[Crossref]

Aono, K.

K. Aono, S. Aki, K. Sueyoshi, H. Hisamoto, and T. Endo, “Development of optical biosensor based on photonic crystal made of TiO2 using liquid phase deposition,” Jpn. J. Appl. Phys. 55(8S3), 08RE01 (2016).
[Crossref]

Aymonier, C.

I. R. Howell, B. Giroire, A. Garcia, S. Li, C. Aymonier, and J. J. Watkins, “Fabrication of plasmonic tin nanostructures by nitridation of nanoimprinted TiO2 nanoparticles,” J. Mater. Chem. C 6(6), 1399–1406 (2018).
[Crossref]

Bagheri, S.

Barsoum, M. W.

M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D. Porter, H. Wang, and C. R. Hubbard, “Thermal properties of Ti4AlN3,” J. Appl. Phys. 87(12), 8407–8414 (2000).
[Crossref]

Baum, B. K.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

Berrier, A.

Biswas, R.

Bogaerts, A.

M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, “Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc,” Thin Solid Films 578, 133–138 (2015).
[Crossref]

Boltasseva, A.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Bower, R.

Brener, I.

Briggs, J. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

Chen, G.

M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, “Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc,” Thin Solid Films 578, 133–138 (2015).
[Crossref]

Choi, D. Y.

H. K. Park, S. W. Yoon, D. Y. Choi, and Y. R. Do, “Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals,” J. Mater. Chem. C 1(9), 1732–1738 (2013).
[Crossref]

Christensen, A. N.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

Clem, P. G.

Cohen, L. F.

Colodrero, S.

Constant, K.

J.-H. Lee, P. Kuang, W. Leung, Y.-S. Kim, J.-M. Park, H. Kang, K. Constant, and K.-M. Ho, “Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography,” Appl. Phys. Lett. 96(19), 193303 (2010).
[Crossref]

J.-H. Lee, W. Leung, J. Ahn, T. Lee, I.-S. Park, K. Constant, and K.-M. Ho, “Layer-by-layer photonic crystal fabricated by low-temperature atomic layer deposition,” Appl. Phys. Lett. 90(15), 151101 (2007).
[Crossref]

R. Biswas, J. Ahn, T. Lee, J.-H. Lee, Y.-S. Kim, C.-H. Kim, W. Leung, C.-H. Oh, K. Constant, and K.-M. Ho, “Photonic bandgaps of conformally coated structures,” J. Opt. Soc. Am. B 22(12), 2728–2733 (2005).
[Crossref]

Daido, Y.

Dao, T. D.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

De Zuani, S.

Ding, X. Z.

M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, “Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc,” Thin Solid Films 578, 133–138 (2015).
[Crossref]

Dionne, J. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

Do, Y. R.

H. K. Park, S. W. Yoon, D. Y. Choi, and Y. R. Do, “Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals,” J. Mater. Chem. C 1(9), 1732–1738 (2013).
[Crossref]

Dransfield, G.

Y. G. Gogotsi, F. Porz, and G. Dransfield, “Oxidation behavior of monolithic TiN and TiN dispersed in ceramic matrices,” Oxid. Met. 39(1-2), 69–91 (1993).
[Crossref]

Duan, Z.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

El-Raghy, T.

M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D. Porter, H. Wang, and C. R. Hubbard, “Thermal properties of Ti4AlN3,” J. Appl. Phys. 87(12), 8407–8414 (2000).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Endo, T.

K. Aono, S. Aki, K. Sueyoshi, H. Hisamoto, and T. Endo, “Development of optical biosensor based on photonic crystal made of TiO2 using liquid phase deposition,” Jpn. J. Appl. Phys. 55(8S3), 08RE01 (2016).
[Crossref]

Froufe-Pérez, L. S.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Fujita, K.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

S. Murai, K. Fujita, Y. Daido, R. Yasuhara, R. Kamakura, and K. Tanaka, “Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films,” Opt. Express 24(2), 1143–1153 (2016).
[Crossref]

Gao, Y.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Garcia, A.

I. R. Howell, B. Giroire, A. Garcia, S. Li, C. Aymonier, and J. J. Watkins, “Fabrication of plasmonic tin nanostructures by nitridation of nanoimprinted TiO2 nanoparticles,” J. Mater. Chem. C 6(6), 1399–1406 (2018).
[Crossref]

Giessen, H.

Giroire, B.

I. R. Howell, B. Giroire, A. Garcia, S. Li, C. Aymonier, and J. J. Watkins, “Fabrication of plasmonic tin nanostructures by nitridation of nanoimprinted TiO2 nanoparticles,” J. Mater. Chem. C 6(6), 1399–1406 (2018).
[Crossref]

Gissibl, T.

Gobalakrichenane, G.

Gogotsi, Y. G.

Y. G. Gogotsi, F. Porz, and G. Dransfield, “Oxidation behavior of monolithic TiN and TiN dispersed in ceramic matrices,” Oxid. Met. 39(1-2), 69–91 (1993).
[Crossref]

Y. G. Gogotsi and F. Porz, “The oxidation of particulate-reinforced Si3N4-TiN composites,” Corros. Sci. 33(4), 627–640 (1992).
[Crossref]

Goldhaber-Gordon, D.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

González-Elipe, A. R.

González-García, L.

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Gui, L.

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear refractory plasmonics with titanium nitride nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Guler, U.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref]

Guo, M.

K. Xie, M. Guo, and H. Huang, “Photonic crystals for sensitized solar cells: Fabrication, properties, and applications,” J. Mater. Chem. C 3(41), 10665–10686 (2015).
[Crossref]

Hasegawa, Y.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Heil, S. B. S.

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
[Crossref]

Held, J. T.

K. S. Schramke, Y. Qin, J. T. Held, K. A. Mkhoyan, and U. R. Kortshagen, “Nonthermal plasma synthesis of titanium nitride nanocrystals with plasmon resonances at near-infrared wavelengths relevant to photothermal therapy,” ACS Appl. Nano Mater. 1(6), 2869–2876 (2018).
[Crossref]

Hentschel, M.

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear refractory plasmonics with titanium nitride nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Hillier, A. C.

Y. Huang, L. Liu, M. Johnson, A. C. Hillier, and M. Lu, “One-step sol–gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref]

Hisamoto, H.

K. Aono, S. Aki, K. Sueyoshi, H. Hisamoto, and T. Endo, “Development of optical biosensor based on photonic crystal made of TiO2 using liquid phase deposition,” Jpn. J. Appl. Phys. 55(8S3), 08RE01 (2016).
[Crossref]

Ho, K.-M.

J.-H. Lee, P. Kuang, W. Leung, Y.-S. Kim, J.-M. Park, H. Kang, K. Constant, and K.-M. Ho, “Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography,” Appl. Phys. Lett. 96(19), 193303 (2010).
[Crossref]

J.-H. Lee, W. Leung, J. Ahn, T. Lee, I.-S. Park, K. Constant, and K.-M. Ho, “Layer-by-layer photonic crystal fabricated by low-temperature atomic layer deposition,” Appl. Phys. Lett. 90(15), 151101 (2007).
[Crossref]

R. Biswas, J. Ahn, T. Lee, J.-H. Lee, Y.-S. Kim, C.-H. Kim, W. Leung, C.-H. Oh, K. Constant, and K.-M. Ho, “Photonic bandgaps of conformally coated structures,” J. Opt. Soc. Am. B 22(12), 2728–2733 (2005).
[Crossref]

Howell, I. R.

I. R. Howell, B. Giroire, A. Garcia, S. Li, C. Aymonier, and J. J. Watkins, “Fabrication of plasmonic tin nanostructures by nitridation of nanoimprinted TiO2 nanoparticles,” J. Mater. Chem. C 6(6), 1399–1406 (2018).
[Crossref]

Hu, E. L.

Huang, H.

K. Xie, M. Guo, and H. Huang, “Photonic crystals for sensitized solar cells: Fabrication, properties, and applications,” J. Mater. Chem. C 3(41), 10665–10686 (2015).
[Crossref]

Huang, Y.

Y. Huang, L. Liu, M. Johnson, A. C. Hillier, and M. Lu, “One-step sol–gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref]

Hubbard, C. R.

M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D. Porter, H. Wang, and C. R. Hubbard, “Thermal properties of Ti4AlN3,” J. Appl. Phys. 87(12), 8407–8414 (2000).
[Crossref]

Ishii, S.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, and T. Nagao, “Titanium nitride nanoparticles as plasmonic solar heat transducers,” J. Phys. Chem. C 120(4), 2343–2348 (2016).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Jeon, T. Y.

S.-G. Park, T. Y. Jeon, and S.-M. Yang, “Fabrication of three-dimensional nanostructured titania materials by prism holographic lithography and the sol–gel reaction,” Langmuir 29(31), 9620–9625 (2013).
[Crossref]

Johnson, M.

Y. Huang, L. Liu, M. Johnson, A. C. Hillier, and M. Lu, “One-step sol–gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref]

Kaiser, R.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

W. Spengler and R. Kaiser, “First and second order raman scattering in transition metal compounds,” Solid State Commun. 18(7), 881–884 (1976).
[Crossref]

Kamakura, R.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

S. Murai, K. Fujita, Y. Daido, R. Yasuhara, R. Kamakura, and K. Tanaka, “Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films,” Opt. Express 24(2), 1143–1153 (2016).
[Crossref]

Kang, H.

J.-H. Lee, P. Kuang, W. Leung, Y.-S. Kim, J.-M. Park, H. Kang, K. Constant, and K.-M. Ho, “Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography,” Appl. Phys. Lett. 96(19), 193303 (2010).
[Crossref]

Kessels, W. M. M.

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
[Crossref]

Khosravian, N.

M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, “Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc,” Thin Solid Films 578, 133–138 (2015).
[Crossref]

Kildishev, A. V.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref]

Kilmurray, R.

Kim, C.-H.

Kim, Y.-S.

J.-H. Lee, P. Kuang, W. Leung, Y.-S. Kim, J.-M. Park, H. Kang, K. Constant, and K.-M. Ho, “Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography,” Appl. Phys. Lett. 96(19), 193303 (2010).
[Crossref]

R. Biswas, J. Ahn, T. Lee, J.-H. Lee, Y.-S. Kim, C.-H. Kim, W. Leung, C.-H. Oh, K. Constant, and K.-M. Ho, “Photonic bandgaps of conformally coated structures,” J. Opt. Soc. Am. B 22(12), 2728–2733 (2005).
[Crossref]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Knez, M.

M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19(21), 3425–3438 (2007).
[Crossref]

Kortshagen, U. R.

K. S. Schramke, Y. Qin, J. T. Held, K. A. Mkhoyan, and U. R. Kortshagen, “Nonthermal plasma synthesis of titanium nitride nanocrystals with plasmon resonances at near-infrared wavelengths relevant to photothermal therapy,” ACS Appl. Nano Mater. 1(6), 2869–2876 (2018).
[Crossref]

Kuang, P.

J.-H. Lee, P. Kuang, W. Leung, Y.-S. Kim, J.-M. Park, H. Kang, K. Constant, and K.-M. Ho, “Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography,” Appl. Phys. Lett. 96(19), 193303 (2010).
[Crossref]

Kudyshev, Z.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

Langereis, E.

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
[Crossref]

Lavrinenko, A. V.

Lee, J.-H.

J.-H. Lee, P. Kuang, W. Leung, Y.-S. Kim, J.-M. Park, H. Kang, K. Constant, and K.-M. Ho, “Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography,” Appl. Phys. Lett. 96(19), 193303 (2010).
[Crossref]

J.-H. Lee, W. Leung, J. Ahn, T. Lee, I.-S. Park, K. Constant, and K.-M. Ho, “Layer-by-layer photonic crystal fabricated by low-temperature atomic layer deposition,” Appl. Phys. Lett. 90(15), 151101 (2007).
[Crossref]

R. Biswas, J. Ahn, T. Lee, J.-H. Lee, Y.-S. Kim, C.-H. Kim, W. Leung, C.-H. Oh, K. Constant, and K.-M. Ho, “Photonic bandgaps of conformally coated structures,” J. Opt. Soc. Am. B 22(12), 2728–2733 (2005).
[Crossref]

Lee, T.

J.-H. Lee, W. Leung, J. Ahn, T. Lee, I.-S. Park, K. Constant, and K.-M. Ho, “Layer-by-layer photonic crystal fabricated by low-temperature atomic layer deposition,” Appl. Phys. Lett. 90(15), 151101 (2007).
[Crossref]

R. Biswas, J. Ahn, T. Lee, J.-H. Lee, Y.-S. Kim, C.-H. Kim, W. Leung, C.-H. Oh, K. Constant, and K.-M. Ho, “Photonic bandgaps of conformally coated structures,” J. Opt. Soc. Am. B 22(12), 2728–2733 (2005).
[Crossref]

Lee, Y. J.

Lei, J.

J. Yu, J. Lei, L. Wang, J. Zhang, and Y. Liu, “TiO2 inverse opal photonic crystals: Synthesis, modification, and applications - a review,” J. Alloys Compd. 769, 740–757 (2018).
[Crossref]

Leung, W.

J.-H. Lee, P. Kuang, W. Leung, Y.-S. Kim, J.-M. Park, H. Kang, K. Constant, and K.-M. Ho, “Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography,” Appl. Phys. Lett. 96(19), 193303 (2010).
[Crossref]

J.-H. Lee, W. Leung, J. Ahn, T. Lee, I.-S. Park, K. Constant, and K.-M. Ho, “Layer-by-layer photonic crystal fabricated by low-temperature atomic layer deposition,” Appl. Phys. Lett. 90(15), 151101 (2007).
[Crossref]

R. Biswas, J. Ahn, T. Lee, J.-H. Lee, Y.-S. Kim, C.-H. Kim, W. Leung, C.-H. Oh, K. Constant, and K.-M. Ho, “Photonic bandgaps of conformally coated structures,” J. Opt. Soc. Am. B 22(12), 2728–2733 (2005).
[Crossref]

Li, S.

I. R. Howell, B. Giroire, A. Garcia, S. Li, C. Aymonier, and J. J. Watkins, “Fabrication of plasmonic tin nanostructures by nitridation of nanoimprinted TiO2 nanoparticles,” J. Mater. Chem. C 6(6), 1399–1406 (2018).
[Crossref]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Linnenbank, H.

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear refractory plasmonics with titanium nitride nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Liu, L.

Y. Huang, L. Liu, M. Johnson, A. C. Hillier, and M. Lu, “One-step sol–gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref]

Liu, X.

S. Taniguchi, T. Shibata, T. Yamada, X. Liu, and S. Zou, “High-temperature oxidation resistance of tial improved by ibed Si3N4 coating,” ISIJ Int. 33(8), 869–876 (1993).
[Crossref]

Liu, Y.

J. Yu, J. Lei, L. Wang, J. Zhang, and Y. Liu, “TiO2 inverse opal photonic crystals: Synthesis, modification, and applications - a review,” J. Alloys Compd. 769, 740–757 (2018).
[Crossref]

Lozano, G.

Lu, M.

Y. Huang, L. Liu, M. Johnson, A. C. Hillier, and M. Lu, “One-step sol–gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref]

Luk, T. S.

Maier, S. A.

Marichy, C.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Melosh, N. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Metzger, B.

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear refractory plasmonics with titanium nitride nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Míguez, H.

Mihai, A. P.

Misawa, H.

H. Segawa and H. Misawa, “Fabrication of two-dimensional periodic TiO2 pillar arrays by multi-beam laser interference lithography,” Nat. Sci. 1(3), 176–180 (2009).
[Crossref]

Mkhoyan, K. A.

K. S. Schramke, Y. Qin, J. T. Held, K. A. Mkhoyan, and U. R. Kortshagen, “Nonthermal plasma synthesis of titanium nitride nanocrystals with plasmon resonances at near-infrared wavelengths relevant to photothermal therapy,” ACS Appl. Nano Mater. 1(6), 2869–2876 (2018).
[Crossref]

Muller, N.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Müller-Vogt, G.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

Murai, S.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

S. Murai, K. Fujita, Y. Daido, R. Yasuhara, R. Kamakura, and K. Tanaka, “Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films,” Opt. Express 24(2), 1143–1153 (2016).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

Nagao, T.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, and T. Nagao, “Titanium nitride nanoparticles as plasmonic solar heat transducers,” J. Phys. Chem. C 120(4), 2343–2348 (2016).
[Crossref]

Naik, G. V.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Nakanishi, T.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Namura, K.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

Ndukaife, J. C.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref]

Neyts, E. C.

M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, “Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc,” Thin Solid Films 578, 133–138 (2015).
[Crossref]

Nielsch, K.

M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19(21), 3425–3438 (2007).
[Crossref]

Niinistö, L.

M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19(21), 3425–3438 (2007).
[Crossref]

Nnanna, A. G. A.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref]

Oh, C.-H.

Oulton, R. F. M.

Park, H. K.

H. K. Park, S. W. Yoon, D. Y. Choi, and Y. R. Do, “Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals,” J. Mater. Chem. C 1(9), 1732–1738 (2013).
[Crossref]

Park, I.-S.

J.-H. Lee, W. Leung, J. Ahn, T. Lee, I.-S. Park, K. Constant, and K.-M. Ho, “Layer-by-layer photonic crystal fabricated by low-temperature atomic layer deposition,” Appl. Phys. Lett. 90(15), 151101 (2007).
[Crossref]

Park, J.-M.

J.-H. Lee, P. Kuang, W. Leung, Y.-S. Kim, J.-M. Park, H. Kang, K. Constant, and K.-M. Ho, “Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography,” Appl. Phys. Lett. 96(19), 193303 (2010).
[Crossref]

Park, S.-G.

S.-G. Park, T. Y. Jeon, and S.-M. Yang, “Fabrication of three-dimensional nanostructured titania materials by prism holographic lithography and the sol–gel reaction,” Langmuir 29(31), 9620–9625 (2013).
[Crossref]

Petach, T. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

Petrov, P. K.

Pirruccio, G.

Porter, W. D.

M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D. Porter, H. Wang, and C. R. Hubbard, “Thermal properties of Ti4AlN3,” J. Appl. Phys. 87(12), 8407–8414 (2000).
[Crossref]

Porz, F.

Y. G. Gogotsi, F. Porz, and G. Dransfield, “Oxidation behavior of monolithic TiN and TiN dispersed in ceramic matrices,” Oxid. Met. 39(1-2), 69–91 (1993).
[Crossref]

Y. G. Gogotsi and F. Porz, “The oxidation of particulate-reinforced Si3N4-TiN composites,” Corros. Sci. 33(4), 627–640 (1992).
[Crossref]

Procopio, A. T.

M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D. Porter, H. Wang, and C. R. Hubbard, “Thermal properties of Ti4AlN3,” J. Appl. Phys. 87(12), 8407–8414 (2000).
[Crossref]

Qin, Y.

K. S. Schramke, Y. Qin, J. T. Held, K. A. Mkhoyan, and U. R. Kortshagen, “Nonthermal plasma synthesis of titanium nitride nanocrystals with plasmon resonances at near-infrared wavelengths relevant to photothermal therapy,” ACS Appl. Nano Mater. 1(6), 2869–2876 (2018).
[Crossref]

Rawn, C. J.

M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D. Porter, H. Wang, and C. R. Hubbard, “Thermal properties of Ti4AlN3,” J. Appl. Phys. 87(12), 8407–8414 (2000).
[Crossref]

Reddy, H.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

Repän, T.

Richter, G.

Rivas, J. G.

Rodriguez, S. R. K.

Sahasrabuddhe, K.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Saito, M.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Sakamoto, H.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Samani, M. K.

M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, “Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc,” Thin Solid Films 578, 133–138 (2015).
[Crossref]

Scheffold, F.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Schramke, K. S.

K. S. Schramke, Y. Qin, J. T. Held, K. A. Mkhoyan, and U. R. Kortshagen, “Nonthermal plasma synthesis of titanium nitride nanocrystals with plasmon resonances at near-infrared wavelengths relevant to photothermal therapy,” ACS Appl. Nano Mater. 1(6), 2869–2876 (2018).
[Crossref]

Segawa, H.

H. Segawa and H. Misawa, “Fabrication of two-dimensional periodic TiO2 pillar arrays by multi-beam laser interference lithography,” Nat. Sci. 1(3), 176–180 (2009).
[Crossref]

Shalaev, V. M.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Shibata, T.

S. Taniguchi, T. Shibata, T. Yamada, X. Liu, and S. Zou, “High-temperature oxidation resistance of tial improved by ibed Si3N4 coating,” ISIJ Int. 33(8), 869–876 (1993).
[Crossref]

Shinde, S. L.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

Shkondin, E.

Song, Q.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Spengler, W.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

W. Spengler and R. Kaiser, “First and second order raman scattering in transition metal compounds,” Solid State Commun. 18(7), 881–884 (1976).
[Crossref]

Stauden, T.

Sterl, F.

Strohfeldt, N.

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear refractory plasmonics with titanium nitride nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Subramania, G.

Sueyoshi, K.

K. Aono, S. Aki, K. Sueyoshi, H. Hisamoto, and T. Endo, “Development of optical biosensor based on photonic crystal made of TiO2 using liquid phase deposition,” Jpn. J. Appl. Phys. 55(8S3), 08RE01 (2016).
[Crossref]

Sugavaneshwar, R. P.

S. Ishii, R. P. Sugavaneshwar, and T. Nagao, “Titanium nitride nanoparticles as plasmonic solar heat transducers,” J. Phys. Chem. C 120(4), 2343–2348 (2016).
[Crossref]

Sun, S.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Suzuki, M.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

Takayama, O.

Tanaka, K.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

S. Murai, K. Fujita, Y. Daido, R. Yasuhara, R. Kamakura, and K. Tanaka, “Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films,” Opt. Express 24(2), 1143–1153 (2016).
[Crossref]

Taniguchi, S.

S. Taniguchi, T. Shibata, T. Yamada, X. Liu, and S. Zou, “High-temperature oxidation resistance of tial improved by ibed Si3N4 coating,” ISIJ Int. 33(8), 869–876 (1993).
[Crossref]

Tay, B. K.

M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, “Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc,” Thin Solid Films 578, 133–138 (2015).
[Crossref]

Tittl, A.

van de Sanden, M. C. M.

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
[Crossref]

Verschuuren, M.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Verschuuren, M. A.

Walter, R.

Wang, H.

M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D. Porter, H. Wang, and C. R. Hubbard, “Thermal properties of Ti4AlN3,” J. Appl. Phys. 87(12), 8407–8414 (2000).
[Crossref]

Wang, L.

J. Yu, J. Lei, L. Wang, J. Zhang, and Y. Liu, “TiO2 inverse opal photonic crystals: Synthesis, modification, and applications - a review,” J. Alloys Compd. 769, 740–757 (2018).
[Crossref]

Watkins, J. J.

I. R. Howell, B. Giroire, A. Garcia, S. Li, C. Aymonier, and J. J. Watkins, “Fabrication of plasmonic tin nanostructures by nitridation of nanoimprinted TiO2 nanoparticles,” J. Mater. Chem. C 6(6), 1399–1406 (2018).
[Crossref]

Wells, M. P.

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Williams, W. S.

W. S. Williams, “High-temperature thermal conductivity of transition metal carbides and nitrides,” J. Am. Ceram. Soc. 49(3), 156–159 (1966).
[Crossref]

Xiao, S.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Xie, K.

K. Xie, M. Guo, and H. Huang, “Photonic crystals for sensitized solar cells: Fabrication, properties, and applications,” J. Mater. Chem. C 3(41), 10665–10686 (2015).
[Crossref]

Yamada, T.

S. Taniguchi, T. Shibata, T. Yamada, X. Liu, and S. Zou, “High-temperature oxidation resistance of tial improved by ibed Si3N4 coating,” ISIJ Int. 33(8), 869–876 (1993).
[Crossref]

Yamamoto, M.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Yang, S.-M.

S.-G. Park, T. Y. Jeon, and S.-M. Yang, “Fabrication of three-dimensional nanostructured titania materials by prism holographic lithography and the sol–gel reaction,” Langmuir 29(31), 9620–9625 (2013).
[Crossref]

Yasuhara, R.

Yi, Y.

M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, “Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc,” Thin Solid Films 578, 133–138 (2015).
[Crossref]

Yoon, S. W.

H. K. Park, S. W. Yoon, D. Y. Choi, and Y. R. Do, “Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals,” J. Mater. Chem. C 1(9), 1732–1738 (2013).
[Crossref]

Yu, J.

J. Yu, J. Lei, L. Wang, J. Zhang, and Y. Liu, “TiO2 inverse opal photonic crystals: Synthesis, modification, and applications - a review,” J. Alloys Compd. 769, 740–757 (2018).
[Crossref]

Zayats, A. V.

Zgrabik, C. M.

Zhang, C.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Zhang, J.

J. Yu, J. Lei, L. Wang, J. Zhang, and Y. Liu, “TiO2 inverse opal photonic crystals: Synthesis, modification, and applications - a review,” J. Alloys Compd. 769, 740–757 (2018).
[Crossref]

Zhao, Y.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Zhou, Z.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Zou, B.

Zou, S.

S. Taniguchi, T. Shibata, T. Yamada, X. Liu, and S. Zou, “High-temperature oxidation resistance of tial improved by ibed Si3N4 coating,” ISIJ Int. 33(8), 869–876 (1993).
[Crossref]

ACS Appl. Nano Mater. (1)

K. S. Schramke, Y. Qin, J. T. Held, K. A. Mkhoyan, and U. R. Kortshagen, “Nonthermal plasma synthesis of titanium nitride nanocrystals with plasmon resonances at near-infrared wavelengths relevant to photothermal therapy,” ACS Appl. Nano Mater. 1(6), 2869–2876 (2018).
[Crossref]

ACS Nano (1)

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

ACS Photonics (2)

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

Adv. Mater. (2)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19(21), 3425–3438 (2007).
[Crossref]

APL Photonics (1)

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu (iii)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Appl. Phys. Lett. (4)

J.-H. Lee, P. Kuang, W. Leung, Y.-S. Kim, J.-M. Park, H. Kang, K. Constant, and K.-M. Ho, “Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography,” Appl. Phys. Lett. 96(19), 193303 (2010).
[Crossref]

J.-H. Lee, W. Leung, J. Ahn, T. Lee, I.-S. Park, K. Constant, and K.-M. Ho, “Layer-by-layer photonic crystal fabricated by low-temperature atomic layer deposition,” Appl. Phys. Lett. 90(15), 151101 (2007).
[Crossref]

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Corros. Sci. (1)

Y. G. Gogotsi and F. Porz, “The oxidation of particulate-reinforced Si3N4-TiN composites,” Corros. Sci. 33(4), 627–640 (1992).
[Crossref]

ISIJ Int. (1)

S. Taniguchi, T. Shibata, T. Yamada, X. Liu, and S. Zou, “High-temperature oxidation resistance of tial improved by ibed Si3N4 coating,” ISIJ Int. 33(8), 869–876 (1993).
[Crossref]

J. Alloys Compd. (1)

J. Yu, J. Lei, L. Wang, J. Zhang, and Y. Liu, “TiO2 inverse opal photonic crystals: Synthesis, modification, and applications - a review,” J. Alloys Compd. 769, 740–757 (2018).
[Crossref]

J. Am. Ceram. Soc. (1)

W. S. Williams, “High-temperature thermal conductivity of transition metal carbides and nitrides,” J. Am. Ceram. Soc. 49(3), 156–159 (1966).
[Crossref]

J. Appl. Phys. (2)

M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D. Porter, H. Wang, and C. R. Hubbard, “Thermal properties of Ti4AlN3,” J. Appl. Phys. 87(12), 8407–8414 (2000).
[Crossref]

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
[Crossref]

J. Mater. Chem. C (3)

H. K. Park, S. W. Yoon, D. Y. Choi, and Y. R. Do, “Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals,” J. Mater. Chem. C 1(9), 1732–1738 (2013).
[Crossref]

K. Xie, M. Guo, and H. Huang, “Photonic crystals for sensitized solar cells: Fabrication, properties, and applications,” J. Mater. Chem. C 3(41), 10665–10686 (2015).
[Crossref]

I. R. Howell, B. Giroire, A. Garcia, S. Li, C. Aymonier, and J. J. Watkins, “Fabrication of plasmonic tin nanostructures by nitridation of nanoimprinted TiO2 nanoparticles,” J. Mater. Chem. C 6(6), 1399–1406 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

S. Ishii, R. P. Sugavaneshwar, and T. Nagao, “Titanium nitride nanoparticles as plasmonic solar heat transducers,” J. Phys. Chem. C 120(4), 2343–2348 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Aono, S. Aki, K. Sueyoshi, H. Hisamoto, and T. Endo, “Development of optical biosensor based on photonic crystal made of TiO2 using liquid phase deposition,” Jpn. J. Appl. Phys. 55(8S3), 08RE01 (2016).
[Crossref]

Langmuir (1)

S.-G. Park, T. Y. Jeon, and S.-M. Yang, “Fabrication of three-dimensional nanostructured titania materials by prism holographic lithography and the sol–gel reaction,” Langmuir 29(31), 9620–9625 (2013).
[Crossref]

Laser & Photon. Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (2)

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref]

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear refractory plasmonics with titanium nitride nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Nanoscale (1)

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

Nanotechnology (1)

Y. Huang, L. Liu, M. Johnson, A. C. Hillier, and M. Lu, “One-step sol–gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref]

Nat. Sci. (1)

H. Segawa and H. Misawa, “Fabrication of two-dimensional periodic TiO2 pillar arrays by multi-beam laser interference lithography,” Nat. Sci. 1(3), 176–180 (2009).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (2)

Oxid. Met. (1)

Y. G. Gogotsi, F. Porz, and G. Dransfield, “Oxidation behavior of monolithic TiN and TiN dispersed in ceramic matrices,” Oxid. Met. 39(1-2), 69–91 (1993).
[Crossref]

Phys. Rev. B (1)

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

Sci. Rep. (1)

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Solid State Commun. (1)

W. Spengler and R. Kaiser, “First and second order raman scattering in transition metal compounds,” Solid State Commun. 18(7), 881–884 (1976).
[Crossref]

Thin Solid Films (1)

M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, “Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc,” Thin Solid Films 578, 133–138 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. SEM images of the (a) bare TiN nanocylinder array and (b) that coated with the Al2O3 layer (50 nm). Scale bar = 500 nm. The average diameter of the bare TiN nanocylinders is approximately 230 nm. They are periodically arranged in a square lattice with a pitch of 350 nm. The insets show the sketch of the samples.
Fig. 2.
Fig. 2. (a) Optical transmittance (T) of the TiN nanocylinder arrays heat-treated at various temperatures. The vertical dashed line indicates the in-plane diffraction condition. (b) T at the dip wavelength before the heating (denoted by the triangle in (a)) as a function of the heat treatment temperature: (top panel) bare array, (middle) array coated with the Al2O3 layer (50 nm), and (bottom) array coated with the Si3N4 layer (10 nm).
Fig. 3.
Fig. 3. SEM images of the (a) bare TiN array and those coated with the (b) Al2O3 (50 nm) and (c) Si3N4 (10 nm) layers, heated at 400 (top panel) and 900 °C (bottom panel). Scale bar = 500 nm.
Fig. 4.
Fig. 4. Simulated optical transmission. (a) Cross-sectional sketch of the nanocylinder. The surface of the TiN nanocylinder is oxidized to TiO2 with the volume fraction of x. (b) Simulated optical transmission spectra with various x. Dotted line represents the spectrum calculated for x = 0 and the dielectric function of TiN with ωp = 5.45 eV, which is reduced from the best-fit value of 6.45 eV. Refer to Appendix Fig. 13 for the dielectric functions used in the simulation.
Fig. 5.
Fig. 5. Distribution of light energy under the illumination with a linearly-polarized plane wave (electric field oscillating in the x-direction) from the air side under the resonant conditions at θin = 0°. (a) λ = 800 nm for the bare array, (b) λ = 840 nm for the array with 50 nm Al2O3, and (c) λ = 875 nm for the array with 10 nm Si3N4. The light energy normalized to that of the incident light, |E|2/|E0|2, is plotted in the z–x plane at y intersecting the middle of the nanocylinder. The white dotted lines highlight the interfaces. Cross-sectional sketches of the nanocyliners are shown in the top panels.
Fig. 6.
Fig. 6. Dispersion relation for the TiO2 nanocylinder array. (a) Extinction at normal incidence for the bare TiN nanocylinder arrays heat-treated at 900 °C for 2 h in air, with (grey) air on the top and (magenta) an SiO2 glass plate and index-matching oil (n = 1.46) on the top. (b) The sketches of square array (left) and corresponding Brillouin zone (right). Experimental dispersions along the $\Gamma$-X direction for the sample with (c) air on the top and (d) an SiO2 glass plate and index-matching oil (n = 1.46) on the top (see the insets). The dispersions are converted from data of the optical transmission as a function of the angle of incidence. The dotted lines denote the conditions for in-plane diffraction, i.e., Rayleigh anomaly, for the square array with a period of 350 nm, obtained using the refractive indices of the substrate (n = 1.46, white dashed lines) and air (n = 1.00, yellow). The dotted circle in (d) denotes the photonic bandgap.
Fig. 7.
Fig. 7. Effect of heat treatment on the TiN thin film (thickness = 100 nm). (a) X-ray diffraction patterns and (b) optical transmittance (T) spectra at normal incidence for the TiN thin film heat-treated at various temperatures from room temperature (∼20 °C) to 850 °C. (c) T at λ = 430 nm as a function of heat treatment temperature.
Fig. 8.
Fig. 8. Raman spectra for the bare TiN nanocylinder arrays (a) before and (b) after heat treatment at 900 °C for 2 h in air. The symbols indicate the spectral positions of Raman peaks for TiN and TiO2 [41,42].
Fig. 9.
Fig. 9. Optical transmittance (T) spectra of the bare TiN nanocylinder array heat-treated at various temperatures. This bare array and the array coated with the Si3N4 layer (10 nm) were fabricated on the same substrate and the bare array was used as a reference to the array covered with the Si3N4 layer (10 nm). In this study, Al2O3 and Si3N4 were deposited on the different arrays fabricated from the same nanoimprint mold. The oxidation starts at the same temperature for both of the bare arrays even though their transmission spectra, including LSPR position, were slightly different from one another because of the slight difference in the etching conditions.
Fig. 10.
Fig. 10. (a) Optical transmittance (T) spectra at normal incidence for the bare TiN nanocylinder array heat-treated at 400 °C in air for varied durations. The heat treatment protocol consists of the heating of the array in the furnace from room temperature (∼20 °C) to 400 °C in 2h, keeping the temperature at 400 °C for 2h, and cooling in the furnace. This protocol was repeated for the heat treatments longer than 2h. (b) Dependence of T at λ = 785 nm (denoted by the triangle in (a)) on heat treatment time.
Fig. 11.
Fig. 11. Effect of the heat treatment on the structure of the nanocylinder array. The SEM images represent the bare TiN nanocylinders arranged in a triangle lattice with a pitch = 460 nm before (left) and after (right) the heat treatment at 900 °C for 2 h in air. Top and bottom panels show the top- and cross-sectional views, respectively. The nanocylinders are tapered with bottom diameter and height being changed from ∼120 and ∼90 nm to ∼140 and ∼115 nm by the heat treatment, respectively, corresponding to a 73% expansion. This value is similar to the expected value of 59% assuming a full conversion from TiN to TiO2 (rutile). The volume change for the square array examined in the main text should be similar to that in Fig. 11 because both are prepared from the TiN films with the same thickness using the same fabrication process.
Fig. 12.
Fig. 12. X-ray photoemission spectra (Ti 2p region) after the heat treatment at 900 °C for 2 h in air for the (a) bare TiN array and those coated with the (b) Al2O3 (50 nm) and (c) Si3N4 (10 nm) layers. The spectra were acquired using an ULVAC-PHI 5500MT system with Mg Kα1,2 radiation (15 kV, 400 W) at room temperature. Binding energies were referenced to C 1s level of residual graphitic carbon.
Fig. 13.
Fig. 13. Real (a) and imaginary (b) parts of the dielectric functions of the TiN and TiO2 used in the simulation. These dielectric functions are for the TiN and TiO2 thin films on silica glass substrate calculated from the fit to the ellipsometry data. For TiO2, the Cauchy function, n = a / λ4 + b / λ2 + c with a = −1.5664×1010 [nm4], b = 3.48606×105 [nm2], and c = 1.08575, is used between 400 nm ≦ λ ≦ 800 nm, and the value at λ = 800 nm is used when λ ≧ 800 nm. For TiN, the Drude-Lorentz function with the parameters in Table 1 is used. A function with the same values of parameters but the plasma frequency, ωp = 5.45 eV, is also shown.

Tables (1)

Tables Icon

Table 1. Drude-Lorentz oscillator parameters for a thin film of TiN used for the array fabrication.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε inf ω P 2 ω 2 + i Γ D ω + j = 1 2 f j ω oj 2 ω oj 2 ω 2 + i γ j ω