Abstract

Continuous wave (CW) laser performances of 1 at.% Yb:Lu2O3 sesquioxide ceramic medium were studied under various cryogenic temperatures. Two different fiber coupled diode pump sources, one emitting around 975.7 nm volume Bragg grating (VBG) stabilized and another around 940 nm were used for comparison. Under the pump at 975.7 nm and 100 K cryogenic temperature, the laser yielded CW output power of 11.24 W for 20.3 W incident pump power, corresponding to an overall optical-to optical efficiency of 55%; the slope efficiency was 59%. For operation at room temperature, the output power was limited to 4.44 W whereas the slope efficiency was 27.5%. Optimum operation under 940 nm pump was obtained at 80 K. Under 940 nm pumping, Yb:Lu2O3 medium generated a CW output power of 3 W for 20 W; the slope efficiency was around 17%. The passive Q-switch operation was investigated with Cr4+:YAG saturable absorber (SA) crystal, employing the pump at 975.7 nm. Laser pulses with an energy of 0.35 mJ and a pulse duration of 116 ns at 26.1 kHz repetition rate were recorded with a Cr4+:YAG SA having 85% initial transmission.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm

Li Wang, Haitao Huang, Deyuan Shen, Jian Zhang, Hao Chen, Yong Wang, Xuan Liu, and Dingyuan Tang
Opt. Express 22(16) 19495-19503 (2014)

Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii
Opt. Express 14(26) 12832-12838 (2006)

Cryogenic Yb:YGAG ceramic laser pumped at 940 nm and zero-phonon-line: a comparative study

Venkatesan Jambunathan, Petr Navratil, Taisuke Miura, Fangxin Yue, Akira Endo, Antonio Lucianetti, and Tomas Mocek
Opt. Mater. Express 7(2) 477-483 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
    [Crossref]
  2. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [Crossref]
  3. D. Rand, J. Hybl, and T. Y. Fan, “Cryogenic lasers,” in Handbook of Solid-State Lasers, 525–550 (2013).
  4. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  5. V. Jambunathan, L. Horackova, T. Miura, J. Sulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
    [Crossref]
  6. A. Pirri, G. Toci, B. Patrizi, and M. Vannini, “An Overview on Yb-Doped Transparent Polycrystalline Sesquioxide Laser Ceramics,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
    [Crossref]
  7. D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications,” Opt. Mater. Express 1(3), 434–450 (2011).
    [Crossref]
  8. K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Stat. Sol. (a) 202(1), R1–R3 (2005).
    [Crossref]
  9. J Sanghera, J. Frantz, W. Kim, G. Villalobos, C. Baker, B. Shaw, B. Sadowski, M. Hunt, F. Miklos, A. Lutz, and I. Aggarwal, “10% Yb3+-Lu2O3 ceramic laser with 74% efficiency,” Opt. Lett. 36(4), 576–578 (2011).
    [Crossref]
  10. G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112(3), 032054 (2008).
    [Crossref]
  11. C. A. Moore, D. C. Brown, L. D. Sanjeewa, C. D. McMillen, and J. W. Kolis, “Yb:Lu2O3 hydrothermally-grown single-crystal and ceramic absorption spectra obtained between 298 and 80K,” J. Lumin. 174, 29–35 (2016).
    [Crossref]
  12. V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater. 34(6), 990–994 (2012).
    [Crossref]

2018 (1)

A. Pirri, G. Toci, B. Patrizi, and M. Vannini, “An Overview on Yb-Doped Transparent Polycrystalline Sesquioxide Laser Ceramics,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

2016 (1)

C. A. Moore, D. C. Brown, L. D. Sanjeewa, C. D. McMillen, and J. W. Kolis, “Yb:Lu2O3 hydrothermally-grown single-crystal and ceramic absorption spectra obtained between 298 and 80K,” J. Lumin. 174, 29–35 (2016).
[Crossref]

2015 (1)

2012 (1)

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater. 34(6), 990–994 (2012).
[Crossref]

2011 (2)

2008 (1)

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112(3), 032054 (2008).
[Crossref]

2006 (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

2005 (2)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Stat. Sol. (a) 202(1), R1–R3 (2005).
[Crossref]

1993 (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

Aggarwal, I.

Baker, C.

Balembois, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Bourdet, G.

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater. 34(6), 990–994 (2012).
[Crossref]

Bourdet, G. L.

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112(3), 032054 (2008).
[Crossref]

Brown, D. C.

C. A. Moore, D. C. Brown, L. D. Sanjeewa, C. D. McMillen, and J. W. Kolis, “Yb:Lu2O3 hydrothermally-grown single-crystal and ceramic absorption spectra obtained between 298 and 80K,” J. Lumin. 174, 29–35 (2016).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

Cardinali, V.

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater. 34(6), 990–994 (2012).
[Crossref]

Casagrande, O.

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112(3), 032054 (2008).
[Crossref]

Chenais, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Deguil-Robin, N.

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112(3), 032054 (2008).
[Crossref]

Druon, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Endo, A.

Fan, T. Y.

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications,” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

D. Rand, J. Hybl, and T. Y. Fan, “Cryogenic lasers,” in Handbook of Solid-State Lasers, 525–550 (2013).

Forget, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Frantz, J.

Georges, P.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Horackova, L.

Hosokawa, S.

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Stat. Sol. (a) 202(1), R1–R3 (2005).
[Crossref]

Hunt, M.

Hybl, J.

D. Rand, J. Hybl, and T. Y. Fan, “Cryogenic lasers,” in Handbook of Solid-State Lasers, 525–550 (2013).

Jambunathan, V.

Jelínková, H.

Kaminskii, A. A.

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Stat. Sol. (a) 202(1), R1–R3 (2005).
[Crossref]

Kim, W.

Kolis, J. W.

C. A. Moore, D. C. Brown, L. D. Sanjeewa, C. D. McMillen, and J. W. Kolis, “Yb:Lu2O3 hydrothermally-grown single-crystal and ceramic absorption spectra obtained between 298 and 80K,” J. Lumin. 174, 29–35 (2016).
[Crossref]

Le Garrec, B.

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater. 34(6), 990–994 (2012).
[Crossref]

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112(3), 032054 (2008).
[Crossref]

Lucianetti, A.

Lutz, A.

Marmois, E.

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater. 34(6), 990–994 (2012).
[Crossref]

McMillen, C. D.

C. A. Moore, D. C. Brown, L. D. Sanjeewa, C. D. McMillen, and J. W. Kolis, “Yb:Lu2O3 hydrothermally-grown single-crystal and ceramic absorption spectra obtained between 298 and 80K,” J. Lumin. 174, 29–35 (2016).
[Crossref]

Miklos, F.

Miller, D.

Miura, T.

Mocek, T.

Moore, C. A.

C. A. Moore, D. C. Brown, L. D. Sanjeewa, C. D. McMillen, and J. W. Kolis, “Yb:Lu2O3 hydrothermally-grown single-crystal and ceramic absorption spectra obtained between 298 and 80K,” J. Lumin. 174, 29–35 (2016).
[Crossref]

Patrizi, B.

A. Pirri, G. Toci, B. Patrizi, and M. Vannini, “An Overview on Yb-Doped Transparent Polycrystalline Sesquioxide Laser Ceramics,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

Pirri, A.

A. Pirri, G. Toci, B. Patrizi, and M. Vannini, “An Overview on Yb-Doped Transparent Polycrystalline Sesquioxide Laser Ceramics,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

Rand, D.

Ripin, D. J.

Sadowski, B.

Sanghera, J

Sanjeewa, L. D.

C. A. Moore, D. C. Brown, L. D. Sanjeewa, C. D. McMillen, and J. W. Kolis, “Yb:Lu2O3 hydrothermally-grown single-crystal and ceramic absorption spectra obtained between 298 and 80K,” J. Lumin. 174, 29–35 (2016).
[Crossref]

Shaw, B.

Shirakawa, A.

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Stat. Sol. (a) 202(1), R1–R3 (2005).
[Crossref]

Sulc, J.

Takaichi, K.

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Stat. Sol. (a) 202(1), R1–R3 (2005).
[Crossref]

Toci, G.

A. Pirri, G. Toci, B. Patrizi, and M. Vannini, “An Overview on Yb-Doped Transparent Polycrystalline Sesquioxide Laser Ceramics,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

Ueda, K.

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Stat. Sol. (a) 202(1), R1–R3 (2005).
[Crossref]

Vannini, M.

A. Pirri, G. Toci, B. Patrizi, and M. Vannini, “An Overview on Yb-Doped Transparent Polycrystalline Sesquioxide Laser Ceramics,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

Villalobos, G.

Yagi, H.

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Stat. Sol. (a) 202(1), R1–R3 (2005).
[Crossref]

Yanagitani, T.

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Stat. Sol. (a) 202(1), R1–R3 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

A. Pirri, G. Toci, B. Patrizi, and M. Vannini, “An Overview on Yb-Doped Transparent Polycrystalline Sesquioxide Laser Ceramics,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

J. Lumin. (1)

C. A. Moore, D. C. Brown, L. D. Sanjeewa, C. D. McMillen, and J. W. Kolis, “Yb:Lu2O3 hydrothermally-grown single-crystal and ceramic absorption spectra obtained between 298 and 80K,” J. Lumin. 174, 29–35 (2016).
[Crossref]

J. Phys.: Conf. Ser. (1)

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112(3), 032054 (2008).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater. 34(6), 990–994 (2012).
[Crossref]

Opt. Mater. Express (2)

Phys. Stat. Sol. (a) (1)

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Stat. Sol. (a) 202(1), R1–R3 (2005).
[Crossref]

Prog. Quantum Electron. (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Other (1)

D. Rand, J. Hybl, and T. Y. Fan, “Cryogenic lasers,” in Handbook of Solid-State Lasers, 525–550 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic experimental setup for studying CW laser performance of Yb:Lu2O3 ceramic at cryogenic temperatures
Fig. 2.
Fig. 2. (a) Absorption spectra of 1% Yb:Lu2O3 ceramic measured at 80, 160 and 240 K. Inset shows the emission spectra of 975.7 nm pump diode. (b) Output vs incident power at different TOC’s at 100 K (c) Output power vs incident power for various sample temperatures at a fixed TOC of 40%. Inset shows the intensity profile of the laser beam recorded at 100 K.
Fig. 3.
Fig. 3. (a) CW laser performance of Yb:Lu2O3 ceramic for various Toc’s at 80K for 940 nm pumping . Inset shows the intensity profile of the laser beam recorded at 80K (b) Slope efficiency and lasing threshold at various sample temperatures from 80 to 280K for both the pump sources
Fig. 4.
Fig. 4. (a) Average power vs incident power for passively Q-switched Yb:Lu2O3 ceramics for three different SA transmissions (85, 90 and 95%) (b) Pulse energy and peak power for various SA transmission values at 100K. (c) Traces of pulse train recorded at 100K for various SA’s using VBG stabilized 975.7 nm pump

Tables (1)

Tables Icon

Table 1. Summary of pulsed laser characteristics of Yb:Lu2O3 ceramic at 100K