Abstract

An apparatus for fluorescence-based single photon generation includes collection optics and various setups for characterization. Managing this system often reveals complexity in such a way that an adjustment in a small region can change the optimal alignments of others. We suggest here a modular system where the optimal alignment is given to each compartment and tested independently. Based on this concept, we built a system for single photon generation with a fluorescence center in hexagonal boron nitride nano-flake, advantageous for scaling up the number of single mode fiber outputs and a high degree of stability. The system allowed for a practical use of a single photon stream extended over an hour with a uniform count rate of small fluctuation levels.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Microfiber-microcavity system for efficient single photon collection

Chang-Min Lee, Hee-Jin Lim, Mireu Lee, Christian Schneider, Sebastian Maier, Sven Höfling, Martin Kamp, and Yong-Hee Lee
Opt. Express 24(20) 23471-23480 (2016)

Deterministic generation of bright single resonance fluorescence photons from a Purcell-enhanced quantum dot-micropillar system

Sebastian Unsleber, Christian Schneider, Sebastian Maier, Yu-Ming He, Stefan Gerhardt, Chao-Yang Lu, Jian-Wei Pan, Martin Kamp, and Sven Höfling
Opt. Express 23(26) 32977-32985 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
    [Crossref]
  2. S. Choi, B. C. Johnson, S. Castelletto, C. Ton-That, M. R. Phillips, and I. Aharonovich, “Single photon emission from ZnO nanoparticles,” Appl. Phys. Lett. 104(26), 261101 (2014).
    [Crossref]
  3. T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
    [Crossref]
  4. A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
    [Crossref]
  5. A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).
  6. N. K. Nahar and R. G. Rojas, “Coupling loss from free space to large mode area photonic crystal fibers,” J. Lightwave Technol. 26(22), 3669–3676 (2008).
    [Crossref]
  7. H. Mohapatra and S. I. Hosain, “Variational approximations for lpl1 modes of graded-index few-mode fibers,” IEEE Photonics Technol. Lett. 26(4), 372–375 (2014).
    [Crossref]
  8. T. Sakamoto, T. Mori, T. Yamamoto, L. Ma, N. Hanzawa, S. Aozasa, K. Tsujikawa, and S. Tomita, “Transmission over large-core few-mode photonic crystal fiber using distance-independent modal dispersion compensation technique,” Opt. Express 19(26), B478–B485 (2011).
    [Crossref]
  9. H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
    [Crossref]
  10. Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9(1), 2994 (2018).
    [Crossref]
  11. M. Nguyen, S. Kim, T. T. Tran, Z.-Q. Xu, M. Kianinia, M. Toth, and I. Aharonovich, “Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres,” Nanoscale 10(5), 2267–2274 (2018).
    [Crossref]
  12. B. Rodiek, M. Lopez, H. Hofer, G. Porrovecchio, M. Smid, X. L. Chu, S. Gotzinger, V. Sandoghdar, S. Lindner, C. Becher, and S. Kuck, “Experimental realization of an absolute single-photon source based on a single nitrogen vacancy center in a nanodiamond,” Optica 4(1), 71–76 (2017).
    [Crossref]
  13. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11(1), 37–41 (2016).
    [Crossref]
  14. R. Brüning, Y. Zhang, M. McLaren, M. Duparré, and A. Forbes, “Overlap relation between free-space Laguerre Gaussian modes and step-index fiber modes,” J. Opt. Soc. Am. A 32(9), 1678–1682 (2015).
    [Crossref]
  15. E. A. Donley, T. P. Heavner, F. Levi, and M. O. Tataw, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76(6), 063112 (2005).
    [Crossref]
  16. M. Toyoshima, “Maximum fiber coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications,” J. Opt. Soc. Am. A 23(9), 2246–2250 (2006).
    [Crossref]
  17. J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, Volume XI, vol. 11R. R. Shannon and J. C. Wyant, eds. (Academic Press, 1992), chap. 1.
  18. A. Siegman, Lasers (University Science Books, 1986).
  19. P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479–8492 (2018).
    [Crossref]
  20. N. Nikolay, N. Mendelson, E. Özelci, B. Sontheimer, F. Böhm, G. Kewes, M. Toth, I. Aharonovich, and O. Benson, “Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride,” Optica 6(8), 1084–1088 (2019).
    [Crossref]
  21. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  22. N. R. Jungwirth and G. D. Fuchs, “Optical Absorption and Emission Mechanisms of Single Defects in Hexagonal Boron Nitride,” Phys. Rev. Lett. 119(5), 057401 (2017).
    [Crossref]
  23. G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
    [Crossref]
  24. R. Loudon, The Quantum Theory of Light, Oxford Science Publications (Oxford University Press, 2000).
  25. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 89 (2004).
    [Crossref]
  26. C.-M. Lee, H.-J. Lim, M. Lee, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y.-H. Lee, “Microfiber-microcavity system for efficient single photon collection,” Opt. Express 24(20), 23471–23480 (2016).
    [Crossref]
  27. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Submicrosecond correlations in photoluminescence from inas quantum dots,” Phys. Rev. B 69(20), 205324 (2004).
    [Crossref]
  28. A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
    [Crossref]

2019 (2)

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

N. Nikolay, N. Mendelson, E. Özelci, B. Sontheimer, F. Böhm, G. Kewes, M. Toth, I. Aharonovich, and O. Benson, “Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride,” Optica 6(8), 1084–1088 (2019).
[Crossref]

2018 (3)

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479–8492 (2018).
[Crossref]

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9(1), 2994 (2018).
[Crossref]

M. Nguyen, S. Kim, T. T. Tran, Z.-Q. Xu, M. Kianinia, M. Toth, and I. Aharonovich, “Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres,” Nanoscale 10(5), 2267–2274 (2018).
[Crossref]

2017 (5)

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

N. R. Jungwirth and G. D. Fuchs, “Optical Absorption and Emission Mechanisms of Single Defects in Hexagonal Boron Nitride,” Phys. Rev. Lett. 119(5), 057401 (2017).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

B. Rodiek, M. Lopez, H. Hofer, G. Porrovecchio, M. Smid, X. L. Chu, S. Gotzinger, V. Sandoghdar, S. Lindner, C. Becher, and S. Kuck, “Experimental realization of an absolute single-photon source based on a single nitrogen vacancy center in a nanodiamond,” Optica 4(1), 71–76 (2017).
[Crossref]

2016 (3)

C.-M. Lee, H.-J. Lim, M. Lee, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y.-H. Lee, “Microfiber-microcavity system for efficient single photon collection,” Opt. Express 24(20), 23471–23480 (2016).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11(1), 37–41 (2016).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
[Crossref]

2015 (1)

2014 (2)

S. Choi, B. C. Johnson, S. Castelletto, C. Ton-That, M. R. Phillips, and I. Aharonovich, “Single photon emission from ZnO nanoparticles,” Appl. Phys. Lett. 104(26), 261101 (2014).
[Crossref]

H. Mohapatra and S. I. Hosain, “Variational approximations for lpl1 modes of graded-index few-mode fibers,” IEEE Photonics Technol. Lett. 26(4), 372–375 (2014).
[Crossref]

2011 (2)

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

T. Sakamoto, T. Mori, T. Yamamoto, L. Ma, N. Hanzawa, S. Aozasa, K. Tsujikawa, and S. Tomita, “Transmission over large-core few-mode photonic crystal fiber using distance-independent modal dispersion compensation technique,” Opt. Express 19(26), B478–B485 (2011).
[Crossref]

2008 (1)

2006 (1)

2005 (1)

E. A. Donley, T. P. Heavner, F. Levi, and M. O. Tataw, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76(6), 063112 (2005).
[Crossref]

2004 (2)

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 89 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Submicrosecond correlations in photoluminescence from inas quantum dots,” Phys. Rev. B 69(20), 205324 (2004).
[Crossref]

Aharonovich, I.

N. Nikolay, N. Mendelson, E. Özelci, B. Sontheimer, F. Böhm, G. Kewes, M. Toth, I. Aharonovich, and O. Benson, “Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride,” Optica 6(8), 1084–1088 (2019).
[Crossref]

M. Nguyen, S. Kim, T. T. Tran, Z.-Q. Xu, M. Kianinia, M. Toth, and I. Aharonovich, “Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres,” Nanoscale 10(5), 2267–2274 (2018).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11(1), 37–41 (2016).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
[Crossref]

S. Choi, B. C. Johnson, S. Castelletto, C. Ton-That, M. R. Phillips, and I. Aharonovich, “Single photon emission from ZnO nanoparticles,” Appl. Phys. Lett. 104(26), 261101 (2014).
[Crossref]

Ali, S.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Aozasa, S.

Becher, C.

B. Rodiek, M. Lopez, H. Hofer, G. Porrovecchio, M. Smid, X. L. Chu, S. Gotzinger, V. Sandoghdar, S. Lindner, C. Becher, and S. Kuck, “Experimental realization of an absolute single-photon source based on a single nitrogen vacancy center in a nanodiamond,” Optica 4(1), 71–76 (2017).
[Crossref]

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Benson, O.

Berhane, A. M.

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

Bernard, M.

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

Bodrog, Z.

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

Böhm, F.

Brash, A. J.

A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).

Bray, K.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11(1), 37–41 (2016).
[Crossref]

Brüning, R.

Burger, S.

Castelletto, S.

S. Choi, B. C. Johnson, S. Castelletto, C. Ton-That, M. R. Phillips, and I. Aharonovich, “Single photon emission from ZnO nanoparticles,” Appl. Phys. Lett. 104(26), 261101 (2014).
[Crossref]

Chen, Y.

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9(1), 2994 (2018).
[Crossref]

Choi, S.

S. Choi, B. C. Johnson, S. Castelletto, C. Ton-That, M. R. Phillips, and I. Aharonovich, “Single photon emission from ZnO nanoparticles,” Appl. Phys. Lett. 104(26), 261101 (2014).
[Crossref]

Chu, X. L.

Chung, T. H.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Clarke, E.

A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).

Creath, K.

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, Volume XI, vol. 11R. R. Shannon and J. C. Wyant, eds. (Academic Press, 1992), chap. 1.

Dai, Q.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Deng, Y. H.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Ding, F.

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9(1), 2994 (2018).
[Crossref]

Ding, X.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Donley, E. A.

E. A. Donley, T. P. Heavner, F. Levi, and M. O. Tataw, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76(6), 063112 (2005).
[Crossref]

Duparré, M.

Efetov, D. K.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Elbadawi, C.

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
[Crossref]

Englund, D.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

Englund, D. R.

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
[Crossref]

Fattal, D.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 89 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Submicrosecond correlations in photoluminescence from inas quantum dots,” Phys. Rev. B 69(20), 205324 (2004).
[Crossref]

Fiedler, S.

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

Fischer, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Forbes, A.

Ford, M. J.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11(1), 37–41 (2016).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
[Crossref]

Fox, A. M.

A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).

Fuchs, G. D.

N. R. Jungwirth and G. D. Fuchs, “Optical Absorption and Emission Mechanisms of Single Defects in Hexagonal Boron Nitride,” Phys. Rev. Lett. 119(5), 057401 (2017).
[Crossref]

Furchi, M. M.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Gali, A.

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

Gotzinger, S.

Grosso, G.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
[Crossref]

Gsell, S.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Hanzawa, N.

He, Y. M.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Heavner, T. P.

E. A. Donley, T. P. Heavner, F. Levi, and M. O. Tataw, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76(6), 063112 (2005).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Hofer, H.

Höfling, S.

Höfling, S. H

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Hosain, S. I.

H. Mohapatra and S. I. Hosain, “Variational approximations for lpl1 modes of graded-index few-mode fibers,” IEEE Photonics Technol. Lett. 26(4), 372–375 (2014).
[Crossref]

Hostein, R.

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

Hu, H.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Huo, Y. H.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Iles-Smith, J.

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).

Jarillo-Herrero, P.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Jeong, K.-Y.

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

Johnson, B. C.

S. Choi, B. C. Johnson, S. Castelletto, C. Ton-That, M. R. Phillips, and I. Aharonovich, “Single photon emission from ZnO nanoparticles,” Appl. Phys. Lett. 104(26), 261101 (2014).
[Crossref]

Jungwirth, N. R.

N. R. Jungwirth and G. D. Fuchs, “Optical Absorption and Emission Mechanisms of Single Defects in Hexagonal Boron Nitride,” Phys. Rev. Lett. 119(5), 057401 (2017).
[Crossref]

Kamp, M.

Keil, R.

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9(1), 2994 (2018).
[Crossref]

Kewes, G.

Kianinia, M.

M. Nguyen, S. Kim, T. T. Tran, Z.-Q. Xu, M. Kianinia, M. Toth, and I. Aharonovich, “Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres,” Nanoscale 10(5), 2267–2274 (2018).
[Crossref]

Kim, S.

M. Nguyen, S. Kim, T. T. Tran, Z.-Q. Xu, M. Kianinia, M. Toth, and I. Aharonovich, “Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres,” Nanoscale 10(5), 2267–2274 (2018).
[Crossref]

Kuck, S.

Lee, C.-M.

Lee, M.

Lee, Y.-H.

Lemaitre, A.

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

Levi, F.

E. A. Donley, T. P. Heavner, F. Levi, and M. O. Tataw, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76(6), 063112 (2005).
[Crossref]

Li, J. P.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Lienhard, B.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Lim, H.-J.

Lindner, S.

Liu, R. Z.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Lobo, C. J.

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
[Crossref]

Lopez, M.

Loudon, R.

R. Loudon, The Quantum Theory of Light, Oxford Science Publications (Oxford University Press, 2000).

Lu, C.-Y.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Lux, F.

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

Ma, L.

Maier, S.

Margaillan, F.

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

Martinez, A.

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

McCutcheon, D. P. S.

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).

McLaren, M.

Mendelson, N.

Mohapatra, H.

H. Mohapatra and S. I. Hosain, “Variational approximations for lpl1 modes of graded-index few-mode fibers,” IEEE Photonics Technol. Lett. 26(4), 372–375 (2014).
[Crossref]

Monniello, L.

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

Moon, H.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
[Crossref]

Mori, T.

Mørk, J.

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).

Nahar, N. K.

Nazir, A.

A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).

Neu, E.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Nguyen, M.

M. Nguyen, S. Kim, T. T. Tran, Z.-Q. Xu, M. Kianinia, M. Toth, and I. Aharonovich, “Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres,” Nanoscale 10(5), 2267–2274 (2018).
[Crossref]

Nikolay, N.

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

O’Hara, J.

A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).

Özelci, E.

Palacios, T.

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

Pan, J.-W.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Phillips, C. L.

A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).

Phillips, M. R.

S. Choi, B. C. Johnson, S. Castelletto, C. Ton-That, M. R. Phillips, and I. Aharonovich, “Single photon emission from ZnO nanoparticles,” Appl. Phys. Lett. 104(26), 261101 (2014).
[Crossref]

Porrovecchio, G.

Qin, J.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Reigue, A.

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

Reitzenstein, S.

Riedrich-Möller, J.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Rodiek, B.

Rodt, S.

Rojas, R. G.

Royall, B.

A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).

Sakamoto, T.

Sandoghdar, V.

Santori, C.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Submicrosecond correlations in photoluminescence from inas quantum dots,” Phys. Rev. B 69(20), 205324 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 89 (2004).
[Crossref]

Schmidt, O. G.

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9(1), 2994 (2018).
[Crossref]

Schneider, C.

Schneider, P.-I.

Schreck, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Schröder, T.

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

Siegman, A.

A. Siegman, Lasers (University Science Books, 1986).

Skolnick, M. S.

A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).

Smid, M.

Solomon, G. S.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 89 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Submicrosecond correlations in photoluminescence from inas quantum dots,” Phys. Rev. B 69(20), 205324 (2004).
[Crossref]

Sontheimer, B.

Srocka, N.

Steinmetz, D.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Tataw, M. O.

E. A. Donley, T. P. Heavner, F. Levi, and M. O. Tataw, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76(6), 063112 (2005).
[Crossref]

Tomita, S.

Ton-That, C.

S. Choi, B. C. Johnson, S. Castelletto, C. Ton-That, M. R. Phillips, and I. Aharonovich, “Single photon emission from ZnO nanoparticles,” Appl. Phys. Lett. 104(26), 261101 (2014).
[Crossref]

Toth, M.

N. Nikolay, N. Mendelson, E. Özelci, B. Sontheimer, F. Böhm, G. Kewes, M. Toth, I. Aharonovich, and O. Benson, “Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride,” Optica 6(8), 1084–1088 (2019).
[Crossref]

M. Nguyen, S. Kim, T. T. Tran, Z.-Q. Xu, M. Kianinia, M. Toth, and I. Aharonovich, “Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres,” Nanoscale 10(5), 2267–2274 (2018).
[Crossref]

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11(1), 37–41 (2016).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
[Crossref]

Totonjian, D.

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
[Crossref]

Toyoshima, M.

Tran, T. T.

M. Nguyen, S. Kim, T. T. Tran, Z.-Q. Xu, M. Kianinia, M. Toth, and I. Aharonovich, “Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres,” Nanoscale 10(5), 2267–2274 (2018).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11(1), 37–41 (2016).
[Crossref]

Triviño, N. V.

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

Tsujikawa, K.

Voliotis, V.

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

Vuckovic, J.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Submicrosecond correlations in photoluminescence from inas quantum dots,” Phys. Rev. B 69(20), 205324 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 89 (2004).
[Crossref]

Waks, E.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Submicrosecond correlations in photoluminescence from inas quantum dots,” Phys. Rev. B 69(20), 205324 (2004).
[Crossref]

Wang, H.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Wyant, J. C.

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, Volume XI, vol. 11R. R. Shannon and J. C. Wyant, eds. (Academic Press, 1992), chap. 1.

Xu, Z.-Q.

M. Nguyen, S. Kim, T. T. Tran, Z.-Q. Xu, M. Kianinia, M. Toth, and I. Aharonovich, “Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres,” Nanoscale 10(5), 2267–2274 (2018).
[Crossref]

Yamamoto, T.

Yamamoto, Y.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Submicrosecond correlations in photoluminescence from inas quantum dots,” Phys. Rev. B 69(20), 205324 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 89 (2004).
[Crossref]

Yang, X.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Zhang, Y.

Zhong, H. S.

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Zopf, M.

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9(1), 2994 (2018).
[Crossref]

Zschiedrich, L.

ACS Nano (1)

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride,” ACS Nano 10(8), 7331–7338 (2016).
[Crossref]

Adv. Mater. (1)

A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, “Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride,” Adv. Mater. 29(12), 1605092 (2017).
[Crossref]

Appl. Phys. Lett. (1)

S. Choi, B. C. Johnson, S. Castelletto, C. Ton-That, M. R. Phillips, and I. Aharonovich, “Single photon emission from ZnO nanoparticles,” Appl. Phys. Lett. 104(26), 261101 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Mohapatra and S. I. Hosain, “Variational approximations for lpl1 modes of graded-index few-mode fibers,” IEEE Photonics Technol. Lett. 26(4), 372–375 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Nanoscale (1)

M. Nguyen, S. Kim, T. T. Tran, Z.-Q. Xu, M. Kianinia, M. Toth, and I. Aharonovich, “Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres,” Nanoscale 10(5), 2267–2274 (2018).
[Crossref]

Nat. Commun. (2)

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9(1), 2994 (2018).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Nat. Nanotechnol. (1)

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11(1), 37–41 (2016).
[Crossref]

New J. Phys. (2)

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New J. Phys. 6, 89 (2004).
[Crossref]

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Opt. Express (3)

Optica (2)

Phys. Rev. B (1)

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Submicrosecond correlations in photoluminescence from inas quantum dots,” Phys. Rev. B 69(20), 205324 (2004).
[Crossref]

Phys. Rev. Lett. (3)

N. R. Jungwirth and G. D. Fuchs, “Optical Absorption and Emission Mechanisms of Single Defects in Hexagonal Boron Nitride,” Phys. Rev. Lett. 119(5), 057401 (2017).
[Crossref]

H. Wang, H. Hu, T. H. Chung, J. Qin, X. Yang, J. P. Li, R. Z. Liu, H. S. Zhong, Y. M. He, X. Ding, Y. H. Deng, Q. Dai, Y. H. Huo, S. H Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

A. Reigue, J. Iles-Smith, F. Lux, L. Monniello, M. Bernard, F. Margaillan, A. Lemaitre, A. Martinez, D. P. S. McCutcheon, J. Mørk, R. Hostein, and V. Voliotis, “Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots,” Phys. Rev. Lett. 118(23), 233602 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

E. A. Donley, T. P. Heavner, F. Levi, and M. O. Tataw, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76(6), 063112 (2005).
[Crossref]

Other (5)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, Volume XI, vol. 11R. R. Shannon and J. C. Wyant, eds. (Academic Press, 1992), chap. 1.

A. Siegman, Lasers (University Science Books, 1986).

A. J. Brash, J. Iles-Smith, C. L. Phillips, D. P. S. McCutcheon, J. O’Hara, E. Clarke, B. Royall, J. Mørk, M. S. Skolnick, A. M. Fox, and A. Nazir, “Light scattering from solid-state quantum emitters: Beyond the atomic picture,” arXiv:1904.05284 (2019).

R. Loudon, The Quantum Theory of Light, Oxford Science Publications (Oxford University Press, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Outline of a system made up by optical and test modules for single photon generation. One of single mode fiber outputs is reserved for practical applications of single photons. Definition used is HBT: Hanbury Brown-Twiss interferometer for measurements of photon number statistics.
Fig. 2.
Fig. 2. (a) Layout of the single mode fiber collection module that works for conversions between free-space and fiber optics, and has two fiber outputs (SMF$_{\mathrm {Out-1}}$ and SMF$_{\mathrm {Out-2}}$). Definitions used are $\mathrm {M}_{ij}$: mirror, $\mathrm {MFM}_i$: motorized flip mirror, L$_i$: lens, NPBS: non-polarizing beam splitter, BD: beam dump, IR$_i$: iris. (b) Picture of the module used for a confocal scanning microscope. The third SMF output (SMF$_{\mathrm {Out-3}}$) is out of the photo range in (b), and shorten in (a).
Fig. 3.
Fig. 3. (a) General method to connect modules. A setup made up of an imaging camera and retroreflector intermediates connections, comparing angles between two reference beams. (b) Modularized confocal scanning microscopy system. Definition used are SMF: single mode fiber, DCHM: dichroic mirror, PEL: pellicle, M$_i$: mirror, IR$_i$: iris, OBJ: objective lens, and HBT: Hanbury Brown-Twiss interferometer.
Fig. 4.
Fig. 4. (a) Spectrum of photoluminescence collected from a fluorescence center inside hexagonal boron nitride nano-particle. An inset shows the intensity map of a fluorescence center measured by position scanning. The map is fitted to a model: $I(x) =I_0 \exp (-2 x^2/w^2)$, and a waist ($w$) 275 nm. (b, c) Time correlation histograms of photon detection events collected in the Hanbury Brown-Twiss interferometer module. Both histograms were acquired from the same photoluminescence signal, but under different excitation power ($P$) of (b) $0.35\times P_{\mathrm {sat}}$ and (c) $4.7\times P_{\mathrm {sat}}$ compared to the power at a saturation point of count rate ($P_{\mathrm {sat}}$).
Fig. 5.
Fig. 5. Stability of the system represented by photon count rates traced over time ($n(t)$). A shot is measured for 1000 second with a sampling rate of 1 Hz. The original data was acquired with a sampling rate of 100 Hz and reproduced in Fourier domain ($n(f)$), and shown in the inset. The red line is a ratio of the root mean square fluctuation to the average count rate.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f a s p h × Δ θ d e v < M F D 2 .
Δ θ r e s = 2 λ π D .
w = 0.425 λ N A ,