Abstract

Scattering-enhanced absorption in silicon is well-known and has been applied in a variety of silicon-based optoelectronic devices such as photodetectors, solar cells and sensors. However, the actual diffuse scattering mechanism and property in nano-structured silicon remain elusive because of the complicated surface morphologies. In this paper, we study diffuse scattering in high resistivity porous silicon samples in the spectral region below their bandgap, where the surface scattering is accessible with minimum influence from material absorption. The spectral measurements reveal that the diffuse scattering monotonously decreases with wavelength and increases with the pore size, similar to the classical Rayleigh scattering. However, the scattered intensity is inversely proportional to λn with n = 1-3.7 instead of the classical 4. Also, an asymmetry between the forward diffuse transmission and backward diffuse reflection is observed. The hemispherical diffuse transmission is larger than the diffuse reflection by a factor of 2-4. This asymmetry in scattering is supported with numerical simulations, which suggest that the nanopores favor forward light scattering into the substrate. These results are helpful in further understanding the interaction between light and nano-structured silicon.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced Raman scattering in porous silicon grating

Jiajia Wang, Zhenhong Jia, and Changwu Lv
Opt. Express 26(6) 6507-6518 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
    [Crossref]
  2. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
    [Crossref]
  3. M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull. 36(6), 439–445 (2011).
    [Crossref]
  4. D. Dimova-Malinovska, M. Sendova-Vassileva, N. Tzenov, and M. Kamenova, “Preparation of thin porous silicon layers by stain etching,” Thin Solid Films 297(1-2), 9–12 (1997).
    [Crossref]
  5. M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tunnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107(5), 051103 (2015).
    [Crossref]
  6. I. R. Putraa, J.-Y. Lia, and C.-Y. Chen, “18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact,” Appl. Surf. Sci. 478, 725–732 (2019).
    [Crossref]
  7. J. O. Lee, V. Narasimhan, J. Du, B. Ndjamen, D. Sretavan, and H. Choo, “Biocompatible multifunctional black-silicon for implantable intraocular sensor,” Adv. Healthcare Mater. 6(4), 1601356 (2017).
    [Crossref]
  8. K.-S. Tücking, R. B. Vasani, A. A. Cavallaro, N. H. Voelcker, H. Schönherr, and B. Prieto-Simon, “Hyaluronic acid–modified porous silicon films for the electrochemical sensing of bacterial hyaluronidase,” Macromol. Rapid Commun. 39(19), 1800178 (2018).
    [Crossref]
  9. G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 330(3), 377–445 (1908).
    [Crossref]
  10. S. Chandrasekhar, Radiative Transfer (Oxford University Press, 1950).
  11. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).
  12. G. Lérondel, R. Romestain, F. Madéore, and F. Muller, “Light scattering from porous silicon,” Thin Solid Films 276(1-2), 80–83 (1996).
    [Crossref]
  13. H. Seel and R. Brendel, “Optical absorption in crystalline Si films containing spherical voids for internal light scattering,” Thin Solid Films 451-452, 608–611 (2004).
    [Crossref]
  14. A. Wolf, B. Terheiden, and R. Brendel, “Light scattering and diffuse light propagation in sintered porous silicon,” J. Appl. Phys. 104(3), 033106 (2008).
    [Crossref]
  15. A. A. Elsayed, Y. M. Sabry, D. Khalil, F. Marty, and T. Bourouina, “Optical diffuse reflectance of black silicon and its isotropicity,” URSI Asia-Pacific Radio Science Conference, Seoul, South Korea, August 21-25, 2016.
  16. X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett. 77(16), 2572–2574 (2000).
    [Crossref]
  17. H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
    [Crossref]
  18. J. Jiang, S. Li, Z. Xiao, Y. Su, Z. Wu, and Y. Jiang, “Investigation of nanostructured silicon as a candidate for heat sensitive material,” J. Mater. Sci.: Mater. Electron. 24(6), 1770–1774 (2013).
    [Crossref]
  19. D. Gräf, S. Bauer-Mayer, and A. Schnegg, “Influence of HF-H2O2 treatment on Si(100) and Si(111) surfaces,” J. Appl. Phys. 74(3), 1679–1683 (1993).
    [Crossref]
  20. Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: A review,” Adv. Mater. 23(2), 285–308 (2011).
    [Crossref]
  21. P. Honnerová, J. Martan, Z. Veselý, and M. Honner, “Method for emissivity measurement of semitransparent coatings at ambient temperature,” Sci. Rep. 7(1), 1386 (2017).
    [Crossref]
  22. Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Mid-infrared metasurface made of composite right/left-handed transmission-line,” Appl. Phys. Lett. 108(23), 231103 (2016).
    [Crossref]
  23. P. R. L. Sarma, T. R. R. Mohan, S. Venkatachalam, V. P. Sundarsingh, and J. Singh, “Vibrational modes in electrodeposited amorphous silicon: FT-IR analysis,” J. Mater. Sci. 27(17), 4762–4771 (1992).
    [Crossref]
  24. R. J. Collins and H. Y. Fan, “Infrared lattice absorption bands in germanium, silicon, and diamond,” Phys. Rev. 93(4), 674–678 (1954).
    [Crossref]
  25. P. A. Gerakines, W. A. Schutte, J. M. Greenberg, and E. F. van Dishoeck, “The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures,” Astron. Astrophys. 296(3), 810–818 (1995).
  26. Z. Pan and J. Guo, “Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas,” Opt. Express 21(26), 32491–32500 (2013).
    [Crossref]
  27. F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, L. L. Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13(6), 2285–2291 (2018).
    [Crossref]
  28. D. F. Edwards and E. Ochoa, “Infrared refractive index of silicon,” Appl. Opt. 19(24), 4130–4131 (1980).
    [Crossref]
  29. J.-S. Wi, J. H. Park, S. Tominaka, and J. Y. Lee, “Enhanced two-photon luminescence from nanoporous gold capped with microcontact-printed salts,” Phys. Status Solidi RRL 8(1), 52–55 (2014).
    [Crossref]
  30. D. Ge, J. Shi, J. Wei, L. Zhang, and Z. Zhang, “Optical sensing analysis of bilayer porous silicon nanostructure,” J. Phys. Chem. Solids 130, 217–221 (2019).
    [Crossref]
  31. A. K. Sekone, Y.-B. Chen, M.-C. Lu, W.-K. Chen, C.-A. Liu, and M.-T. Lee, “Silicon nanowires for solar thermal energy harvesting: an experimental evaluation on the trade-off effects of the spectral optical properties,” Nanoscale Res. Lett. 11(1), 1 (2016).
    [Crossref]
  32. A. Kumar and A. Chowdhury, “Reassessment of different antireflection coatings for crystalline silicon solar cell in view of their passive radiative cooling properties,” Sol. Energy 183, 410–418 (2019).
    [Crossref]

2019 (3)

I. R. Putraa, J.-Y. Lia, and C.-Y. Chen, “18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact,” Appl. Surf. Sci. 478, 725–732 (2019).
[Crossref]

D. Ge, J. Shi, J. Wei, L. Zhang, and Z. Zhang, “Optical sensing analysis of bilayer porous silicon nanostructure,” J. Phys. Chem. Solids 130, 217–221 (2019).
[Crossref]

A. Kumar and A. Chowdhury, “Reassessment of different antireflection coatings for crystalline silicon solar cell in view of their passive radiative cooling properties,” Sol. Energy 183, 410–418 (2019).
[Crossref]

2018 (2)

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, L. L. Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13(6), 2285–2291 (2018).
[Crossref]

K.-S. Tücking, R. B. Vasani, A. A. Cavallaro, N. H. Voelcker, H. Schönherr, and B. Prieto-Simon, “Hyaluronic acid–modified porous silicon films for the electrochemical sensing of bacterial hyaluronidase,” Macromol. Rapid Commun. 39(19), 1800178 (2018).
[Crossref]

2017 (2)

J. O. Lee, V. Narasimhan, J. Du, B. Ndjamen, D. Sretavan, and H. Choo, “Biocompatible multifunctional black-silicon for implantable intraocular sensor,” Adv. Healthcare Mater. 6(4), 1601356 (2017).
[Crossref]

P. Honnerová, J. Martan, Z. Veselý, and M. Honner, “Method for emissivity measurement of semitransparent coatings at ambient temperature,” Sci. Rep. 7(1), 1386 (2017).
[Crossref]

2016 (2)

Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Mid-infrared metasurface made of composite right/left-handed transmission-line,” Appl. Phys. Lett. 108(23), 231103 (2016).
[Crossref]

A. K. Sekone, Y.-B. Chen, M.-C. Lu, W.-K. Chen, C.-A. Liu, and M.-T. Lee, “Silicon nanowires for solar thermal energy harvesting: an experimental evaluation on the trade-off effects of the spectral optical properties,” Nanoscale Res. Lett. 11(1), 1 (2016).
[Crossref]

2015 (1)

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tunnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107(5), 051103 (2015).
[Crossref]

2014 (1)

J.-S. Wi, J. H. Park, S. Tominaka, and J. Y. Lee, “Enhanced two-photon luminescence from nanoporous gold capped with microcontact-printed salts,” Phys. Status Solidi RRL 8(1), 52–55 (2014).
[Crossref]

2013 (2)

Z. Pan and J. Guo, “Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas,” Opt. Express 21(26), 32491–32500 (2013).
[Crossref]

J. Jiang, S. Li, Z. Xiao, Y. Su, Z. Wu, and Y. Jiang, “Investigation of nanostructured silicon as a candidate for heat sensitive material,” J. Mater. Sci.: Mater. Electron. 24(6), 1770–1774 (2013).
[Crossref]

2011 (2)

M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull. 36(6), 439–445 (2011).
[Crossref]

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: A review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

2009 (1)

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

2008 (1)

A. Wolf, B. Terheiden, and R. Brendel, “Light scattering and diffuse light propagation in sintered porous silicon,” J. Appl. Phys. 104(3), 033106 (2008).
[Crossref]

2004 (1)

H. Seel and R. Brendel, “Optical absorption in crystalline Si films containing spherical voids for internal light scattering,” Thin Solid Films 451-452, 608–611 (2004).
[Crossref]

2001 (1)

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

2000 (1)

X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett. 77(16), 2572–2574 (2000).
[Crossref]

1998 (1)

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

1997 (1)

D. Dimova-Malinovska, M. Sendova-Vassileva, N. Tzenov, and M. Kamenova, “Preparation of thin porous silicon layers by stain etching,” Thin Solid Films 297(1-2), 9–12 (1997).
[Crossref]

1996 (1)

G. Lérondel, R. Romestain, F. Madéore, and F. Muller, “Light scattering from porous silicon,” Thin Solid Films 276(1-2), 80–83 (1996).
[Crossref]

1995 (1)

P. A. Gerakines, W. A. Schutte, J. M. Greenberg, and E. F. van Dishoeck, “The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures,” Astron. Astrophys. 296(3), 810–818 (1995).

1993 (1)

D. Gräf, S. Bauer-Mayer, and A. Schnegg, “Influence of HF-H2O2 treatment on Si(100) and Si(111) surfaces,” J. Appl. Phys. 74(3), 1679–1683 (1993).
[Crossref]

1992 (1)

P. R. L. Sarma, T. R. R. Mohan, S. Venkatachalam, V. P. Sundarsingh, and J. Singh, “Vibrational modes in electrodeposited amorphous silicon: FT-IR analysis,” J. Mater. Sci. 27(17), 4762–4771 (1992).
[Crossref]

1980 (1)

1954 (1)

R. J. Collins and H. Y. Fan, “Infrared lattice absorption bands in germanium, silicon, and diamond,” Phys. Rev. 93(4), 674–678 (1954).
[Crossref]

1908 (1)

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Bauer-Mayer, S.

D. Gräf, S. Bauer-Mayer, and A. Schnegg, “Influence of HF-H2O2 treatment on Si(100) and Si(111) surfaces,” J. Appl. Phys. 74(3), 1679–1683 (1993).
[Crossref]

Bohn, P. W.

X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett. 77(16), 2572–2574 (2000).
[Crossref]

Bohren, C.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).

Bourouina, T.

A. A. Elsayed, Y. M. Sabry, D. Khalil, F. Marty, and T. Bourouina, “Optical diffuse reflectance of black silicon and its isotropicity,” URSI Asia-Pacific Radio Science Conference, Seoul, South Korea, August 21-25, 2016.

Branz, H. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Brendel, R.

A. Wolf, B. Terheiden, and R. Brendel, “Light scattering and diffuse light propagation in sintered porous silicon,” J. Appl. Phys. 104(3), 033106 (2008).
[Crossref]

H. Seel and R. Brendel, “Optical absorption in crystalline Si films containing spherical voids for internal light scattering,” Thin Solid Films 451-452, 608–611 (2004).
[Crossref]

Carey, J. E.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Cavallaro, A. A.

K.-S. Tücking, R. B. Vasani, A. A. Cavallaro, N. H. Voelcker, H. Schönherr, and B. Prieto-Simon, “Hyaluronic acid–modified porous silicon films for the electrochemical sensing of bacterial hyaluronidase,” Macromol. Rapid Commun. 39(19), 1800178 (2018).
[Crossref]

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Oxford University Press, 1950).

Chen, C.-Y.

I. R. Putraa, J.-Y. Lia, and C.-Y. Chen, “18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact,” Appl. Surf. Sci. 478, 725–732 (2019).
[Crossref]

Chen, W.-K.

A. K. Sekone, Y.-B. Chen, M.-C. Lu, W.-K. Chen, C.-A. Liu, and M.-T. Lee, “Silicon nanowires for solar thermal energy harvesting: an experimental evaluation on the trade-off effects of the spectral optical properties,” Nanoscale Res. Lett. 11(1), 1 (2016).
[Crossref]

Chen, Y.-B.

A. K. Sekone, Y.-B. Chen, M.-C. Lu, W.-K. Chen, C.-A. Liu, and M.-T. Lee, “Silicon nanowires for solar thermal energy harvesting: an experimental evaluation on the trade-off effects of the spectral optical properties,” Nanoscale Res. Lett. 11(1), 1 (2016).
[Crossref]

Choo, H.

J. O. Lee, V. Narasimhan, J. Du, B. Ndjamen, D. Sretavan, and H. Choo, “Biocompatible multifunctional black-silicon for implantable intraocular sensor,” Adv. Healthcare Mater. 6(4), 1601356 (2017).
[Crossref]

Chowdhury, A.

A. Kumar and A. Chowdhury, “Reassessment of different antireflection coatings for crystalline silicon solar cell in view of their passive radiative cooling properties,” Sol. Energy 183, 410–418 (2019).
[Crossref]

Collins, R. J.

R. J. Collins and H. Y. Fan, “Infrared lattice absorption bands in germanium, silicon, and diamond,” Phys. Rev. 93(4), 674–678 (1954).
[Crossref]

Crouch, C. H.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Davis, A.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, L. L. Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13(6), 2285–2291 (2018).
[Crossref]

de Boor, J.

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: A review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Dimova-Malinovska, D.

D. Dimova-Malinovska, M. Sendova-Vassileva, N. Tzenov, and M. Kamenova, “Preparation of thin porous silicon layers by stain etching,” Thin Solid Films 297(1-2), 9–12 (1997).
[Crossref]

Du, J.

J. O. Lee, V. Narasimhan, J. Du, B. Ndjamen, D. Sretavan, and H. Choo, “Biocompatible multifunctional black-silicon for implantable intraocular sensor,” Adv. Healthcare Mater. 6(4), 1601356 (2017).
[Crossref]

Edwards, D. F.

Elsayed, A. A.

A. A. Elsayed, Y. M. Sabry, D. Khalil, F. Marty, and T. Bourouina, “Optical diffuse reflectance of black silicon and its isotropicity,” URSI Asia-Pacific Radio Science Conference, Seoul, South Korea, August 21-25, 2016.

Fan, H. Y.

R. J. Collins and H. Y. Fan, “Infrared lattice absorption bands in germanium, silicon, and diamond,” Phys. Rev. 93(4), 674–678 (1954).
[Crossref]

Farrell, R. M.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Ge, D.

D. Ge, J. Shi, J. Wei, L. Zhang, and Z. Zhang, “Optical sensing analysis of bilayer porous silicon nanostructure,” J. Phys. Chem. Solids 130, 217–221 (2019).
[Crossref]

Gerakines, P. A.

P. A. Gerakines, W. A. Schutte, J. M. Greenberg, and E. F. van Dishoeck, “The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures,” Astron. Astrophys. 296(3), 810–818 (1995).

Geyer, N.

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: A review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

Gösele, U.

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: A review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

Gothoskar, P.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Gräf, D.

D. Gräf, S. Bauer-Mayer, and A. Schnegg, “Influence of HF-H2O2 treatment on Si(100) and Si(111) surfaces,” J. Appl. Phys. 74(3), 1679–1683 (1993).
[Crossref]

Greenberg, J. M.

P. A. Gerakines, W. A. Schutte, J. M. Greenberg, and E. F. van Dishoeck, “The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures,” Astron. Astrophys. 296(3), 810–818 (1995).

Guo, J.

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Honner, M.

P. Honnerová, J. Martan, Z. Veselý, and M. Honner, “Method for emissivity measurement of semitransparent coatings at ambient temperature,” Sci. Rep. 7(1), 1386 (2017).
[Crossref]

Honnerová, P.

P. Honnerová, J. Martan, Z. Veselý, and M. Honner, “Method for emissivity measurement of semitransparent coatings at ambient temperature,” Sci. Rep. 7(1), 1386 (2017).
[Crossref]

Huang, Z.

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: A review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

Huffman, D.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).

Jiang, J.

J. Jiang, S. Li, Z. Xiao, Y. Su, Z. Wu, and Y. Jiang, “Investigation of nanostructured silicon as a candidate for heat sensitive material,” J. Mater. Sci.: Mater. Electron. 24(6), 1770–1774 (2013).
[Crossref]

Jiang, Y.

Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Mid-infrared metasurface made of composite right/left-handed transmission-line,” Appl. Phys. Lett. 108(23), 231103 (2016).
[Crossref]

J. Jiang, S. Li, Z. Xiao, Y. Su, Z. Wu, and Y. Jiang, “Investigation of nanostructured silicon as a candidate for heat sensitive material,” J. Mater. Sci.: Mater. Electron. 24(6), 1770–1774 (2013).
[Crossref]

Jones, K. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Kamenova, M.

D. Dimova-Malinovska, M. Sendova-Vassileva, N. Tzenov, and M. Kamenova, “Preparation of thin porous silicon layers by stain etching,” Thin Solid Films 297(1-2), 9–12 (1997).
[Crossref]

Karger, A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Käsebier, T.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tunnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107(5), 051103 (2015).
[Crossref]

Khalil, D.

A. A. Elsayed, Y. M. Sabry, D. Khalil, F. Marty, and T. Bourouina, “Optical diffuse reflectance of black silicon and its isotropicity,” URSI Asia-Pacific Radio Science Conference, Seoul, South Korea, August 21-25, 2016.

Kley, E.-B.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tunnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107(5), 051103 (2015).
[Crossref]

Kostecki, K.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tunnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107(5), 051103 (2015).
[Crossref]

Kumar, A.

A. Kumar and A. Chowdhury, “Reassessment of different antireflection coatings for crystalline silicon solar cell in view of their passive radiative cooling properties,” Sol. Energy 183, 410–418 (2019).
[Crossref]

Lai, N. D.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, L. L. Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13(6), 2285–2291 (2018).
[Crossref]

Lee, J. O.

J. O. Lee, V. Narasimhan, J. Du, B. Ndjamen, D. Sretavan, and H. Choo, “Biocompatible multifunctional black-silicon for implantable intraocular sensor,” Adv. Healthcare Mater. 6(4), 1601356 (2017).
[Crossref]

Lee, J. Y.

J.-S. Wi, J. H. Park, S. Tominaka, and J. Y. Lee, “Enhanced two-photon luminescence from nanoporous gold capped with microcontact-printed salts,” Phys. Status Solidi RRL 8(1), 52–55 (2014).
[Crossref]

Lee, M.-T.

A. K. Sekone, Y.-B. Chen, M.-C. Lu, W.-K. Chen, C.-A. Liu, and M.-T. Lee, “Silicon nanowires for solar thermal energy harvesting: an experimental evaluation on the trade-off effects of the spectral optical properties,” Nanoscale Res. Lett. 11(1), 1 (2016).
[Crossref]

Lérondel, G.

G. Lérondel, R. Romestain, F. Madéore, and F. Muller, “Light scattering from porous silicon,” Thin Solid Films 276(1-2), 80–83 (1996).
[Crossref]

Levinson, J. A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Li, S.

J. Jiang, S. Li, Z. Xiao, Y. Su, Z. Wu, and Y. Jiang, “Investigation of nanostructured silicon as a candidate for heat sensitive material,” J. Mater. Sci.: Mater. Electron. 24(6), 1770–1774 (2013).
[Crossref]

Li, X.

X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett. 77(16), 2572–2574 (2000).
[Crossref]

Lia, J.-Y.

I. R. Putraa, J.-Y. Lia, and C.-Y. Chen, “18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact,” Appl. Surf. Sci. 478, 725–732 (2019).
[Crossref]

Liu, C.-A.

A. K. Sekone, Y.-B. Chen, M.-C. Lu, W.-K. Chen, C.-A. Liu, and M.-T. Lee, “Silicon nanowires for solar thermal energy harvesting: an experimental evaluation on the trade-off effects of the spectral optical properties,” Nanoscale Res. Lett. 11(1), 1 (2016).
[Crossref]

Liu, Z.

Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Mid-infrared metasurface made of composite right/left-handed transmission-line,” Appl. Phys. Lett. 108(23), 231103 (2016).
[Crossref]

Lu, M.-C.

A. K. Sekone, Y.-B. Chen, M.-C. Lu, W.-K. Chen, C.-A. Liu, and M.-T. Lee, “Silicon nanowires for solar thermal energy harvesting: an experimental evaluation on the trade-off effects of the spectral optical properties,” Nanoscale Res. Lett. 11(1), 1 (2016).
[Crossref]

Luo, Y.

Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Mid-infrared metasurface made of composite right/left-handed transmission-line,” Appl. Phys. Lett. 108(23), 231103 (2016).
[Crossref]

Luong, M. H.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, L. L. Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13(6), 2285–2291 (2018).
[Crossref]

Madéore, F.

G. Lérondel, R. Romestain, F. Madéore, and F. Muller, “Light scattering from porous silicon,” Thin Solid Films 276(1-2), 80–83 (1996).
[Crossref]

Mao, F.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, L. L. Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13(6), 2285–2291 (2018).
[Crossref]

Martan, J.

P. Honnerová, J. Martan, Z. Veselý, and M. Honner, “Method for emissivity measurement of semitransparent coatings at ambient temperature,” Sci. Rep. 7(1), 1386 (2017).
[Crossref]

Marty, F.

A. A. Elsayed, Y. M. Sabry, D. Khalil, F. Marty, and T. Bourouina, “Optical diffuse reflectance of black silicon and its isotropicity,” URSI Asia-Pacific Radio Science Conference, Seoul, South Korea, August 21-25, 2016.

Mazur, E.

M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull. 36(6), 439–445 (2011).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Mie, G.

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Mohan, T. R. R.

P. R. L. Sarma, T. R. R. Mohan, S. Venkatachalam, V. P. Sundarsingh, and J. Singh, “Vibrational modes in electrodeposited amorphous silicon: FT-IR analysis,” J. Mater. Sci. 27(17), 4762–4771 (1992).
[Crossref]

Muller, F.

G. Lérondel, R. Romestain, F. Madéore, and F. Muller, “Light scattering from porous silicon,” Thin Solid Films 276(1-2), 80–83 (1996).
[Crossref]

Narasimhan, V.

J. O. Lee, V. Narasimhan, J. Du, B. Ndjamen, D. Sretavan, and H. Choo, “Biocompatible multifunctional black-silicon for implantable intraocular sensor,” Adv. Healthcare Mater. 6(4), 1601356 (2017).
[Crossref]

Ndjamen, B.

J. O. Lee, V. Narasimhan, J. Du, B. Ndjamen, D. Sretavan, and H. Choo, “Biocompatible multifunctional black-silicon for implantable intraocular sensor,” Adv. Healthcare Mater. 6(4), 1601356 (2017).
[Crossref]

Nguyen, C. T.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, L. L. Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13(6), 2285–2291 (2018).
[Crossref]

Ochoa, E.

Oehme, M.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tunnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107(5), 051103 (2015).
[Crossref]

Pan, Z.

Park, J. H.

J.-S. Wi, J. H. Park, S. Tominaka, and J. Y. Lee, “Enhanced two-photon luminescence from nanoporous gold capped with microcontact-printed salts,” Phys. Status Solidi RRL 8(1), 52–55 (2014).
[Crossref]

Prieto-Simon, B.

K.-S. Tücking, R. B. Vasani, A. A. Cavallaro, N. H. Voelcker, H. Schönherr, and B. Prieto-Simon, “Hyaluronic acid–modified porous silicon films for the electrochemical sensing of bacterial hyaluronidase,” Macromol. Rapid Commun. 39(19), 1800178 (2018).
[Crossref]

Pu, Y.

Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Mid-infrared metasurface made of composite right/left-handed transmission-line,” Appl. Phys. Lett. 108(23), 231103 (2016).
[Crossref]

Putraa, I. R.

I. R. Putraa, J.-Y. Lia, and C.-Y. Chen, “18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact,” Appl. Surf. Sci. 478, 725–732 (2019).
[Crossref]

Rak, L. L.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, L. L. Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13(6), 2285–2291 (2018).
[Crossref]

Romestain, R.

G. Lérondel, R. Romestain, F. Madéore, and F. Muller, “Light scattering from porous silicon,” Thin Solid Films 276(1-2), 80–83 (1996).
[Crossref]

Sabry, Y. M.

A. A. Elsayed, Y. M. Sabry, D. Khalil, F. Marty, and T. Bourouina, “Optical diffuse reflectance of black silicon and its isotropicity,” URSI Asia-Pacific Radio Science Conference, Seoul, South Korea, August 21-25, 2016.

Sarma, P. R. L.

P. R. L. Sarma, T. R. R. Mohan, S. Venkatachalam, V. P. Sundarsingh, and J. Singh, “Vibrational modes in electrodeposited amorphous silicon: FT-IR analysis,” J. Mater. Sci. 27(17), 4762–4771 (1992).
[Crossref]

Schnegg, A.

D. Gräf, S. Bauer-Mayer, and A. Schnegg, “Influence of HF-H2O2 treatment on Si(100) and Si(111) surfaces,” J. Appl. Phys. 74(3), 1679–1683 (1993).
[Crossref]

Schönherr, H.

K.-S. Tücking, R. B. Vasani, A. A. Cavallaro, N. H. Voelcker, H. Schönherr, and B. Prieto-Simon, “Hyaluronic acid–modified porous silicon films for the electrochemical sensing of bacterial hyaluronidase,” Macromol. Rapid Commun. 39(19), 1800178 (2018).
[Crossref]

Schulze, J.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tunnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107(5), 051103 (2015).
[Crossref]

Schutte, W. A.

P. A. Gerakines, W. A. Schutte, J. M. Greenberg, and E. F. van Dishoeck, “The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures,” Astron. Astrophys. 296(3), 810–818 (1995).

Seel, H.

H. Seel and R. Brendel, “Optical absorption in crystalline Si films containing spherical voids for internal light scattering,” Thin Solid Films 451-452, 608–611 (2004).
[Crossref]

Sekone, A. K.

A. K. Sekone, Y.-B. Chen, M.-C. Lu, W.-K. Chen, C.-A. Liu, and M.-T. Lee, “Silicon nanowires for solar thermal energy harvesting: an experimental evaluation on the trade-off effects of the spectral optical properties,” Nanoscale Res. Lett. 11(1), 1 (2016).
[Crossref]

Sendova-Vassileva, M.

D. Dimova-Malinovska, M. Sendova-Vassileva, N. Tzenov, and M. Kamenova, “Preparation of thin porous silicon layers by stain etching,” Thin Solid Films 297(1-2), 9–12 (1997).
[Crossref]

Sher, M.-J.

M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull. 36(6), 439–445 (2011).
[Crossref]

Shi, J.

D. Ge, J. Shi, J. Wei, L. Zhang, and Z. Zhang, “Optical sensing analysis of bilayer porous silicon nanostructure,” J. Phys. Chem. Solids 130, 217–221 (2019).
[Crossref]

Singh, J.

P. R. L. Sarma, T. R. R. Mohan, S. Venkatachalam, V. P. Sundarsingh, and J. Singh, “Vibrational modes in electrodeposited amorphous silicon: FT-IR analysis,” J. Mater. Sci. 27(17), 4762–4771 (1992).
[Crossref]

Sretavan, D.

J. O. Lee, V. Narasimhan, J. Du, B. Ndjamen, D. Sretavan, and H. Choo, “Biocompatible multifunctional black-silicon for implantable intraocular sensor,” Adv. Healthcare Mater. 6(4), 1601356 (2017).
[Crossref]

Steglich, M.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tunnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107(5), 051103 (2015).
[Crossref]

Stradins, P.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Su, Y.

J. Jiang, S. Li, Z. Xiao, Y. Su, Z. Wu, and Y. Jiang, “Investigation of nanostructured silicon as a candidate for heat sensitive material,” J. Mater. Sci.: Mater. Electron. 24(6), 1770–1774 (2013).
[Crossref]

Sundarsingh, V. P.

P. R. L. Sarma, T. R. R. Mohan, S. Venkatachalam, V. P. Sundarsingh, and J. Singh, “Vibrational modes in electrodeposited amorphous silicon: FT-IR analysis,” J. Mater. Sci. 27(17), 4762–4771 (1992).
[Crossref]

Terheiden, B.

A. Wolf, B. Terheiden, and R. Brendel, “Light scattering and diffuse light propagation in sintered porous silicon,” J. Appl. Phys. 104(3), 033106 (2008).
[Crossref]

To, B.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Tominaka, S.

J.-S. Wi, J. H. Park, S. Tominaka, and J. Y. Lee, “Enhanced two-photon luminescence from nanoporous gold capped with microcontact-printed salts,” Phys. Status Solidi RRL 8(1), 52–55 (2014).
[Crossref]

Tong, Q. C.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, L. L. Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13(6), 2285–2291 (2018).
[Crossref]

Tücking, K.-S.

K.-S. Tücking, R. B. Vasani, A. A. Cavallaro, N. H. Voelcker, H. Schönherr, and B. Prieto-Simon, “Hyaluronic acid–modified porous silicon films for the electrochemical sensing of bacterial hyaluronidase,” Macromol. Rapid Commun. 39(19), 1800178 (2018).
[Crossref]

Tunnermann, A.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tunnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107(5), 051103 (2015).
[Crossref]

Tzenov, N.

D. Dimova-Malinovska, M. Sendova-Vassileva, N. Tzenov, and M. Kamenova, “Preparation of thin porous silicon layers by stain etching,” Thin Solid Films 297(1-2), 9–12 (1997).
[Crossref]

van Dishoeck, E. F.

P. A. Gerakines, W. A. Schutte, J. M. Greenberg, and E. F. van Dishoeck, “The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures,” Astron. Astrophys. 296(3), 810–818 (1995).

Vasani, R. B.

K.-S. Tücking, R. B. Vasani, A. A. Cavallaro, N. H. Voelcker, H. Schönherr, and B. Prieto-Simon, “Hyaluronic acid–modified porous silicon films for the electrochemical sensing of bacterial hyaluronidase,” Macromol. Rapid Commun. 39(19), 1800178 (2018).
[Crossref]

Venkatachalam, S.

P. R. L. Sarma, T. R. R. Mohan, S. Venkatachalam, V. P. Sundarsingh, and J. Singh, “Vibrational modes in electrodeposited amorphous silicon: FT-IR analysis,” J. Mater. Sci. 27(17), 4762–4771 (1992).
[Crossref]

Veselý, Z.

P. Honnerová, J. Martan, Z. Veselý, and M. Honner, “Method for emissivity measurement of semitransparent coatings at ambient temperature,” Sci. Rep. 7(1), 1386 (2017).
[Crossref]

Voelcker, N. H.

K.-S. Tücking, R. B. Vasani, A. A. Cavallaro, N. H. Voelcker, H. Schönherr, and B. Prieto-Simon, “Hyaluronic acid–modified porous silicon films for the electrochemical sensing of bacterial hyaluronidase,” Macromol. Rapid Commun. 39(19), 1800178 (2018).
[Crossref]

Ward, S.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Wei, J.

D. Ge, J. Shi, J. Wei, L. Zhang, and Z. Zhang, “Optical sensing analysis of bilayer porous silicon nanostructure,” J. Phys. Chem. Solids 130, 217–221 (2019).
[Crossref]

Werner, P.

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: A review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

Wi, J.-S.

J.-S. Wi, J. H. Park, S. Tominaka, and J. Y. Lee, “Enhanced two-photon luminescence from nanoporous gold capped with microcontact-printed salts,” Phys. Status Solidi RRL 8(1), 52–55 (2014).
[Crossref]

Winkler, M. T.

M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull. 36(6), 439–445 (2011).
[Crossref]

Wolf, A.

A. Wolf, B. Terheiden, and R. Brendel, “Light scattering and diffuse light propagation in sintered porous silicon,” J. Appl. Phys. 104(3), 033106 (2008).
[Crossref]

Wu, C.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Wu, Z.

J. Jiang, S. Li, Z. Xiao, Y. Su, Z. Wu, and Y. Jiang, “Investigation of nanostructured silicon as a candidate for heat sensitive material,” J. Mater. Sci.: Mater. Electron. 24(6), 1770–1774 (2013).
[Crossref]

Xiao, Z.

J. Jiang, S. Li, Z. Xiao, Y. Su, Z. Wu, and Y. Jiang, “Investigation of nanostructured silicon as a candidate for heat sensitive material,” J. Mater. Sci.: Mater. Electron. 24(6), 1770–1774 (2013).
[Crossref]

Xu, J.

Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Mid-infrared metasurface made of composite right/left-handed transmission-line,” Appl. Phys. Lett. 108(23), 231103 (2016).
[Crossref]

Ying, X.

Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Mid-infrared metasurface made of composite right/left-handed transmission-line,” Appl. Phys. Lett. 108(23), 231103 (2016).
[Crossref]

Yost, V. E.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Younkin, R.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Zhang, L.

D. Ge, J. Shi, J. Wei, L. Zhang, and Z. Zhang, “Optical sensing analysis of bilayer porous silicon nanostructure,” J. Phys. Chem. Solids 130, 217–221 (2019).
[Crossref]

Zhang, Z.

D. Ge, J. Shi, J. Wei, L. Zhang, and Z. Zhang, “Optical sensing analysis of bilayer porous silicon nanostructure,” J. Phys. Chem. Solids 130, 217–221 (2019).
[Crossref]

Zhao, L.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Zilk, M.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tunnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107(5), 051103 (2015).
[Crossref]

Adv. Healthcare Mater. (1)

J. O. Lee, V. Narasimhan, J. Du, B. Ndjamen, D. Sretavan, and H. Choo, “Biocompatible multifunctional black-silicon for implantable intraocular sensor,” Adv. Healthcare Mater. 6(4), 1601356 (2017).
[Crossref]

Adv. Mater. (1)

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: A review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

Ann. Phys. (1)

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Mid-infrared metasurface made of composite right/left-handed transmission-line,” Appl. Phys. Lett. 108(23), 231103 (2016).
[Crossref]

X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett. 77(16), 2572–2574 (2000).
[Crossref]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tunnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107(5), 051103 (2015).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Appl. Surf. Sci. (1)

I. R. Putraa, J.-Y. Lia, and C.-Y. Chen, “18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact,” Appl. Surf. Sci. 478, 725–732 (2019).
[Crossref]

Astron. Astrophys. (1)

P. A. Gerakines, W. A. Schutte, J. M. Greenberg, and E. F. van Dishoeck, “The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures,” Astron. Astrophys. 296(3), 810–818 (1995).

J. Appl. Phys. (2)

D. Gräf, S. Bauer-Mayer, and A. Schnegg, “Influence of HF-H2O2 treatment on Si(100) and Si(111) surfaces,” J. Appl. Phys. 74(3), 1679–1683 (1993).
[Crossref]

A. Wolf, B. Terheiden, and R. Brendel, “Light scattering and diffuse light propagation in sintered porous silicon,” J. Appl. Phys. 104(3), 033106 (2008).
[Crossref]

J. Mater. Sci. (1)

P. R. L. Sarma, T. R. R. Mohan, S. Venkatachalam, V. P. Sundarsingh, and J. Singh, “Vibrational modes in electrodeposited amorphous silicon: FT-IR analysis,” J. Mater. Sci. 27(17), 4762–4771 (1992).
[Crossref]

J. Mater. Sci.: Mater. Electron. (1)

J. Jiang, S. Li, Z. Xiao, Y. Su, Z. Wu, and Y. Jiang, “Investigation of nanostructured silicon as a candidate for heat sensitive material,” J. Mater. Sci.: Mater. Electron. 24(6), 1770–1774 (2013).
[Crossref]

J. Phys. Chem. Solids (1)

D. Ge, J. Shi, J. Wei, L. Zhang, and Z. Zhang, “Optical sensing analysis of bilayer porous silicon nanostructure,” J. Phys. Chem. Solids 130, 217–221 (2019).
[Crossref]

Macromol. Rapid Commun. (1)

K.-S. Tücking, R. B. Vasani, A. A. Cavallaro, N. H. Voelcker, H. Schönherr, and B. Prieto-Simon, “Hyaluronic acid–modified porous silicon films for the electrochemical sensing of bacterial hyaluronidase,” Macromol. Rapid Commun. 39(19), 1800178 (2018).
[Crossref]

MRS Bull. (1)

M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull. 36(6), 439–445 (2011).
[Crossref]

Nanoscale Res. Lett. (1)

A. K. Sekone, Y.-B. Chen, M.-C. Lu, W.-K. Chen, C.-A. Liu, and M.-T. Lee, “Silicon nanowires for solar thermal energy harvesting: an experimental evaluation on the trade-off effects of the spectral optical properties,” Nanoscale Res. Lett. 11(1), 1 (2016).
[Crossref]

Opt. Express (1)

Phys. Rev. (1)

R. J. Collins and H. Y. Fan, “Infrared lattice absorption bands in germanium, silicon, and diamond,” Phys. Rev. 93(4), 674–678 (1954).
[Crossref]

Phys. Status Solidi RRL (1)

J.-S. Wi, J. H. Park, S. Tominaka, and J. Y. Lee, “Enhanced two-photon luminescence from nanoporous gold capped with microcontact-printed salts,” Phys. Status Solidi RRL 8(1), 52–55 (2014).
[Crossref]

Plasmonics (1)

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, L. L. Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13(6), 2285–2291 (2018).
[Crossref]

Sci. Rep. (1)

P. Honnerová, J. Martan, Z. Veselý, and M. Honner, “Method for emissivity measurement of semitransparent coatings at ambient temperature,” Sci. Rep. 7(1), 1386 (2017).
[Crossref]

Sol. Energy (1)

A. Kumar and A. Chowdhury, “Reassessment of different antireflection coatings for crystalline silicon solar cell in view of their passive radiative cooling properties,” Sol. Energy 183, 410–418 (2019).
[Crossref]

Thin Solid Films (3)

D. Dimova-Malinovska, M. Sendova-Vassileva, N. Tzenov, and M. Kamenova, “Preparation of thin porous silicon layers by stain etching,” Thin Solid Films 297(1-2), 9–12 (1997).
[Crossref]

G. Lérondel, R. Romestain, F. Madéore, and F. Muller, “Light scattering from porous silicon,” Thin Solid Films 276(1-2), 80–83 (1996).
[Crossref]

H. Seel and R. Brendel, “Optical absorption in crystalline Si films containing spherical voids for internal light scattering,” Thin Solid Films 451-452, 608–611 (2004).
[Crossref]

Other (3)

S. Chandrasekhar, Radiative Transfer (Oxford University Press, 1950).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).

A. A. Elsayed, Y. M. Sabry, D. Khalil, F. Marty, and T. Bourouina, “Optical diffuse reflectance of black silicon and its isotropicity,” URSI Asia-Pacific Radio Science Conference, Seoul, South Korea, August 21-25, 2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Top-view SEM images of porous silicon samples etched by (a) 3 minutes, (b) 7 minutes, (c) 11 minutes, (d) 15 minutes and (e) 25 minutes. Statistical average radius of nanopores in the samples is given in (f).
Fig. 2.
Fig. 2. Cross-section SEM images of porous silicon samples etched by (a) 3 minutes, (b) 7 minutes, (c) 11minutes, (d) 15minutes, and (e) 25 minutes. Average depth of nanopores in the samples is given in (f).
Fig. 3.
Fig. 3. Schematic view of our measurement system using an integrating sphere with a FTIR.
Fig. 4.
Fig. 4. Measured (a) absorption, (b) diffuse reflection and (c) its linear fitting curves in logarithmic scale of the porous silicon samples. The fitting functions for the five etched samples are y1=1.065x + 0.3686, y2=1.885x + 0.7765, y3=2.818x + 1.29, y4=3.688x + 1.859 and y5=2.518x + 1.897, respectively. (d) Diffuse transmission spectra of the samples.
Fig. 5.
Fig. 5. (a) Schematic illustration of the FDTD simulation geometry of single nanopore in silicon. (b) Calculated scattering cross-sections of nanopores with five different sizes, corresponding to the statistical average diameter and depth values of our five samples as given in Figs. 1(f) and 2(f). Far-field scattering patterns of the five nanopores at 2 µm wavelength are given in (c)-(g), respectively.
Fig. 6.
Fig. 6. (a) Representative size and position distribution of nanopores extracted from contrast-enhanced top-view SEM image of the sample etched by 3 minutes. (b) Schematic illustration of the FDTD simulation geometry of random nanopores in silicon. Simulated (c) forward and (d) backward scattering cross-sections of the five sample structures with random naopore distributions.