Abstract

Transition metal ion (TM = Fe3+, Cr3+, Ti4+) doped stoichiometric LiNbO3 crystals have been grown by the high temperature top-seeded solution growth and Czochralski methods. Vibrational bands of hydroxyl ions ($O{H^ - }$) have been observed for dopants above a threshold concentration at wavenumbers of 3502 cm−1 for Fe3+ and Cr3+, and 3486 cm−1 for Ti4+. The absorption bands have been attributed to the stretching vibration of $O{H^ - }$ ions in $M_{Nb}^{n + }$$O{H^ - }$ type complexes, where the dopant $M\; $ occupies a Nb site. The observed vibrational frequencies of the $O{H^ - }$ ions and their polarization dependences agree well with the model established for LiNbO3 doped with optical damage resistant (Mg2+, Zn2+, In3+, Sc3+, Hf4+, Zr4+, Sn4+) and rare-earth ions (Nd3+, Er3+, Yb3+), confirming its general validity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics

Yasunori Furukawa, Kenji Kitamura, Shunji Takekawa, Kazuo Niwa, and Hideki Hatano
Opt. Lett. 23(24) 1892-1894 (1998)

Photorefractive damage resistance threshold in stoichiometric LiNbO3:Zr crystals

László Kovács, Zsuzsanna Szaller, Krisztián Lengyel, Ágnes Péter, Ivett Hajdara, Gábor Mandula, László Pálfalvi, and János Hebling
Opt. Lett. 38(15) 2861-2864 (2013)

Characterization of near-stoichiometric Ti:LiNbO3 strip waveguides with varied substrate refractive index in the guiding layer

De-Long Zhang, Pei Zhang, Hao-Jiang Zhou, and Edwin Yue-Bun Pun
J. Opt. Soc. Am. A 25(10) 2558-2570 (2008)

References

  • View by:
  • |
  • |
  • |

  1. “Properties of Lithium Niobate,” EMIS Datareviews Series No. 28. K. K. Wong, Ed., INSPEC, The Institution of Electrical Engineers, London, UK, 2002.
  2. K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
    [Crossref]
  3. Special Issue “Lithium Niobate: Bulk Crystals, Composites, Thin Films and Nanocrystals” Guest Editors M. Imlau, L. Kovács, Crystals (2018), and Special Issue “Recent Progress in Lithium Niobate” Guest Editors R. A. Jackson, Zs. Szaller, Crystals (2019).
  4. “Photorefractive Materials and Their Applications 2,” P. Günter and J.-P. Huignard, eds., Springer Science + Business Media, LLC2007.
  5. T. Volk and M. Wöhlecke, “Lithium Niobate, Defects, Photorefraction and Ferroelectric Switching,” Springer Series in Materials Science 115, Springer-Verlag, Berlin Heidelberg, 2008.
  6. A. A. Kaminskii, “Laser Crystals,” 2nd ed. (Springer-Verlag, 1990) pp. 210–212.
  7. Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98(1-4), 281–287 (2002).
    [Crossref]
  8. M. Wöhlecke and L. Kovács, “OH− ions in Oxide Crystals,” Crit. Rev. Solid State Mater. Sci. 26(1), 1–86 (2001).
    [Crossref]
  9. L. Kovács, M. Wöhlecke, A. Jovanovic, K. Polgár, and S. Kapphan, “Infrared absorption study of the OH vibrational band in LiNbO3 crystals,” J. Phys. Chem. Solids 52(6), 797–803 (1991).
    [Crossref]
  10. Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, “OH absorption spectra of pure lithium niobate crystals,” J. Phys.: Condens. Matter 11(9), 2139–2143 (1999).
    [Crossref]
  11. Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH− absorption spectra of low doped lithium niobate crystals,” Infrared Phys. Technol. 45(4), 281–289 (2004).
    [Crossref]
  12. G. Dravecz and L. Kovács, “Determination of the crystal composition from the OH− vibrational spectrum in lithium niobate,” Appl. Phys. B: Lasers Opt. 88(2), 305–307 (2007).
    [Crossref]
  13. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
    [Crossref]
  14. T. R. Volk, N. M. Rubinina, V. I. Pryalkin, V. V. Krasnikov, and V. V. Volkov, “Optical and non-linear optical investigations in LiNbO3:Mg and LiNbO3:Zn,” Ferroelectrics 109(1), 345–350 (1990).
    [Crossref]
  15. T. R. Volk and N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr., Lett. Sect. 14(1-2), 37–43 (1992).
    [Crossref]
  16. Y. Kong, J. Deng, W. Zhang, J. Wen, G. Zhang, and H. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. 196(1-2), 128–132 (1994).
    [Crossref]
  17. S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
    [Crossref]
  18. S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
    [Crossref]
  19. L. Sun, F. Guo, Q. Lv, H. Yu, H. Li, W. Cai, Y. Xu, and L. Zhao, “Increased optical damage resistance of Zr:LiNbO3 crystals,” Cryst. Res. Technol. 42(11), 1117–1122 (2007).
    [Crossref]
  20. L. Wang, S. Liu, Y. Kong, S. Chen, Z. Huang, L. Wu, R. Rupp, and J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
    [Crossref]
  21. X. Feng, Q. Zhang, J. Ying, J. Liu, and Z. Yon, “Study of threshold effect of Mg-doped lithium niobate crystals,” Sci. China 33, 108–118 (1990).
  22. L. Kovács, I. Földvári, I. Cravero, K. Polgár, and R. Capelletti, “An infrared absorption band caused by OH− ions in a LiNbO3:Mg,Cr crystal,” Phys. Lett. A 133(7-8), 433–437 (1988).
    [Crossref]
  23. M. J. de Rosendo, L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Incorporation of H+ into Mg-doped LiNbO3,” Solid State Commun. 59(7), 499–501 (1986).
    [Crossref]
  24. X. Feng, L. Tang, and J. Ying, “A study of Optical Absorption, ESR Spectra and Photorefraction in LiNbO3:Mg + Fe Crystals,” Ferroelectrics 107(1), 21–26 (1990).
    [Crossref]
  25. L. Kovács, Z. Szaller, I. Cravero, I. Földvári, and C. Zaldo, “OH-related defects in LiNbO3:Mg,M (M = Nd, Cr, Ti, Mn) crystals,” J. Phys. Chem. Solids 51(5), 417–420 (1990).
    [Crossref]
  26. Y. Kong, J. Xu, W. Zhang, and G. Zhang, “The site occupation of protons in lithium niobate crystals,” J. Phys. Chem. Solids 61(8), 1331–1335 (2000).
    [Crossref]
  27. D. Xiao, J. Zhu, S. Zhao, X. Wang, and G. Xu, “The OH− absorption spectrum of LiNbO3:Mg + Ti single crystals,” Phys. Stat. Sol. (a) 127(2), K143–K146 (1991).
    [Crossref]
  28. J. Liu, W. Zhang, and G. Zhang, “Studies of OH− absorption and optical absorption spectra in LiNbO3:Mg,Ti crystals,” Phys. Lett. A 212(5), 275–278 (1996).
    [Crossref]
  29. K. Polgár, Á Péter, L. Kovács, G. Corradi, and Z. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
    [Crossref]
  30. L. Kovács, Z. Szaller, K. Lengyel, and G. Corradi, “Hydroxyl ions in stoichiometric LiNbO3 crystals doped with optical damage resistant ions,” Opt. Mater. 37, 55–58 (2014).
    [Crossref]
  31. L. Kovács, L. Kocsor, Zs. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, and G. Corradi, “Lattice site of rare-earth ions in stoichiometric lithium niobate probed by OH− vibrational spectroscopy,” Crystals 7(8), 230 (2017).
    [Crossref]
  32. L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
    [Crossref]
  33. X.-Q. Feng and T. B. Tang, “Mg-doping threshold effect and H-containing defects in LiNbO3,” J. Phys.: Condens. Matter 5(15), 2423–2430 (1993).
    [Crossref]
  34. V. Grachev and G. Malovichko, “EPR, ENDOR, and optical-absorption study of Cr3+ centers substituting for niobium in Li-rich lithium niobate crystals,” Phys. Rev. B 62(12), 7779–7790 (2000).
    [Crossref]
  35. G. Corradi H, S. J.-M. Spaeth, and K. Polgár, “Electron spin resonance and electron-nuclear double-resonance investigation of a new Cr3+ defect on an Nb site in LiNbO3:Mg:Cr,” J. Phys.: Condens. Matter 3(12), 1901–1908 (1991).
    [Crossref]
  36. G. Turrell, “Infrared and Raman Spectra of Crystals,” Academic Press, London and New York, p. 156. (1972).
  37. K. Lengyel, V. Timón, A. Hernández-Laguna, V. Szalay, and L. Kovács, “Structure of OH defects in LiNbO3,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012015 (2010).
    [Crossref]
  38. M. D. Fontana and P. Bourson, “Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices,” Appl. Phys. Rev. 2(4), 040602 (2015).
    [Crossref]

2017 (1)

L. Kovács, L. Kocsor, Zs. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, and G. Corradi, “Lattice site of rare-earth ions in stoichiometric lithium niobate probed by OH− vibrational spectroscopy,” Crystals 7(8), 230 (2017).
[Crossref]

2015 (2)

M. D. Fontana and P. Bourson, “Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices,” Appl. Phys. Rev. 2(4), 040602 (2015).
[Crossref]

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

2014 (1)

L. Kovács, Z. Szaller, K. Lengyel, and G. Corradi, “Hydroxyl ions in stoichiometric LiNbO3 crystals doped with optical damage resistant ions,” Opt. Mater. 37, 55–58 (2014).
[Crossref]

2012 (1)

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

2010 (2)

K. Lengyel, V. Timón, A. Hernández-Laguna, V. Szalay, and L. Kovács, “Structure of OH defects in LiNbO3,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012015 (2010).
[Crossref]

L. Wang, S. Liu, Y. Kong, S. Chen, Z. Huang, L. Wu, R. Rupp, and J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
[Crossref]

2007 (2)

L. Sun, F. Guo, Q. Lv, H. Yu, H. Li, W. Cai, Y. Xu, and L. Zhao, “Increased optical damage resistance of Zr:LiNbO3 crystals,” Cryst. Res. Technol. 42(11), 1117–1122 (2007).
[Crossref]

G. Dravecz and L. Kovács, “Determination of the crystal composition from the OH− vibrational spectrum in lithium niobate,” Appl. Phys. B: Lasers Opt. 88(2), 305–307 (2007).
[Crossref]

2006 (1)

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

2004 (1)

Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH− absorption spectra of low doped lithium niobate crystals,” Infrared Phys. Technol. 45(4), 281–289 (2004).
[Crossref]

2002 (1)

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98(1-4), 281–287 (2002).
[Crossref]

2001 (1)

M. Wöhlecke and L. Kovács, “OH− ions in Oxide Crystals,” Crit. Rev. Solid State Mater. Sci. 26(1), 1–86 (2001).
[Crossref]

2000 (2)

V. Grachev and G. Malovichko, “EPR, ENDOR, and optical-absorption study of Cr3+ centers substituting for niobium in Li-rich lithium niobate crystals,” Phys. Rev. B 62(12), 7779–7790 (2000).
[Crossref]

Y. Kong, J. Xu, W. Zhang, and G. Zhang, “The site occupation of protons in lithium niobate crystals,” J. Phys. Chem. Solids 61(8), 1331–1335 (2000).
[Crossref]

1999 (1)

Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, “OH absorption spectra of pure lithium niobate crystals,” J. Phys.: Condens. Matter 11(9), 2139–2143 (1999).
[Crossref]

1997 (1)

K. Polgár, Á Péter, L. Kovács, G. Corradi, and Z. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

1996 (2)

J. Liu, W. Zhang, and G. Zhang, “Studies of OH− absorption and optical absorption spectra in LiNbO3:Mg,Ti crystals,” Phys. Lett. A 212(5), 275–278 (1996).
[Crossref]

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

1994 (1)

Y. Kong, J. Deng, W. Zhang, J. Wen, G. Zhang, and H. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. 196(1-2), 128–132 (1994).
[Crossref]

1993 (1)

X.-Q. Feng and T. B. Tang, “Mg-doping threshold effect and H-containing defects in LiNbO3,” J. Phys.: Condens. Matter 5(15), 2423–2430 (1993).
[Crossref]

1992 (1)

T. R. Volk and N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr., Lett. Sect. 14(1-2), 37–43 (1992).
[Crossref]

1991 (3)

G. Corradi H, S. J.-M. Spaeth, and K. Polgár, “Electron spin resonance and electron-nuclear double-resonance investigation of a new Cr3+ defect on an Nb site in LiNbO3:Mg:Cr,” J. Phys.: Condens. Matter 3(12), 1901–1908 (1991).
[Crossref]

L. Kovács, M. Wöhlecke, A. Jovanovic, K. Polgár, and S. Kapphan, “Infrared absorption study of the OH vibrational band in LiNbO3 crystals,” J. Phys. Chem. Solids 52(6), 797–803 (1991).
[Crossref]

D. Xiao, J. Zhu, S. Zhao, X. Wang, and G. Xu, “The OH− absorption spectrum of LiNbO3:Mg + Ti single crystals,” Phys. Stat. Sol. (a) 127(2), K143–K146 (1991).
[Crossref]

1990 (4)

X. Feng, Q. Zhang, J. Ying, J. Liu, and Z. Yon, “Study of threshold effect of Mg-doped lithium niobate crystals,” Sci. China 33, 108–118 (1990).

X. Feng, L. Tang, and J. Ying, “A study of Optical Absorption, ESR Spectra and Photorefraction in LiNbO3:Mg + Fe Crystals,” Ferroelectrics 107(1), 21–26 (1990).
[Crossref]

L. Kovács, Z. Szaller, I. Cravero, I. Földvári, and C. Zaldo, “OH-related defects in LiNbO3:Mg,M (M = Nd, Cr, Ti, Mn) crystals,” J. Phys. Chem. Solids 51(5), 417–420 (1990).
[Crossref]

T. R. Volk, N. M. Rubinina, V. I. Pryalkin, V. V. Krasnikov, and V. V. Volkov, “Optical and non-linear optical investigations in LiNbO3:Mg and LiNbO3:Zn,” Ferroelectrics 109(1), 345–350 (1990).
[Crossref]

1988 (1)

L. Kovács, I. Földvári, I. Cravero, K. Polgár, and R. Capelletti, “An infrared absorption band caused by OH− ions in a LiNbO3:Mg,Cr crystal,” Phys. Lett. A 133(7-8), 433–437 (1988).
[Crossref]

1986 (1)

M. J. de Rosendo, L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Incorporation of H+ into Mg-doped LiNbO3,” Solid State Commun. 59(7), 499–501 (1986).
[Crossref]

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Agulló-López, F.

M. J. de Rosendo, L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Incorporation of H+ into Mg-doped LiNbO3,” Solid State Commun. 59(7), 499–501 (1986).
[Crossref]

Ajtony, Z.

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

Alföldy, B.

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

Arizmendi, L.

M. J. de Rosendo, L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Incorporation of H+ into Mg-doped LiNbO3,” Solid State Commun. 59(7), 499–501 (1986).
[Crossref]

Bencs, L.

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

Bourson, P.

M. D. Fontana and P. Bourson, “Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices,” Appl. Phys. Rev. 2(4), 040602 (2015).
[Crossref]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Cabrera, J. M.

M. J. de Rosendo, L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Incorporation of H+ into Mg-doped LiNbO3,” Solid State Commun. 59(7), 499–501 (1986).
[Crossref]

Cai, W.

L. Sun, F. Guo, Q. Lv, H. Yu, H. Li, W. Cai, Y. Xu, and L. Zhao, “Increased optical damage resistance of Zr:LiNbO3 crystals,” Cryst. Res. Technol. 42(11), 1117–1122 (2007).
[Crossref]

Capelletti, R.

L. Kovács, I. Földvári, I. Cravero, K. Polgár, and R. Capelletti, “An infrared absorption band caused by OH− ions in a LiNbO3:Mg,Cr crystal,” Phys. Lett. A 133(7-8), 433–437 (1988).
[Crossref]

Chen, S.

L. Wang, S. Liu, Y. Kong, S. Chen, Z. Huang, L. Wu, R. Rupp, and J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
[Crossref]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Chen, X.

Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, “OH absorption spectra of pure lithium niobate crystals,” J. Phys.: Condens. Matter 11(9), 2139–2143 (1999).
[Crossref]

Cone, R. L.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98(1-4), 281–287 (2002).
[Crossref]

Corradi, G.

L. Kovács, L. Kocsor, Zs. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, and G. Corradi, “Lattice site of rare-earth ions in stoichiometric lithium niobate probed by OH− vibrational spectroscopy,” Crystals 7(8), 230 (2017).
[Crossref]

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

L. Kovács, Z. Szaller, K. Lengyel, and G. Corradi, “Hydroxyl ions in stoichiometric LiNbO3 crystals doped with optical damage resistant ions,” Opt. Mater. 37, 55–58 (2014).
[Crossref]

K. Polgár, Á Péter, L. Kovács, G. Corradi, and Z. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

Corradi H, G.

G. Corradi H, S. J.-M. Spaeth, and K. Polgár, “Electron spin resonance and electron-nuclear double-resonance investigation of a new Cr3+ defect on an Nb site in LiNbO3:Mg:Cr,” J. Phys.: Condens. Matter 3(12), 1901–1908 (1991).
[Crossref]

Cravero, I.

L. Kovács, Z. Szaller, I. Cravero, I. Földvári, and C. Zaldo, “OH-related defects in LiNbO3:Mg,M (M = Nd, Cr, Ti, Mn) crystals,” J. Phys. Chem. Solids 51(5), 417–420 (1990).
[Crossref]

L. Kovács, I. Földvári, I. Cravero, K. Polgár, and R. Capelletti, “An infrared absorption band caused by OH− ions in a LiNbO3:Mg,Cr crystal,” Phys. Lett. A 133(7-8), 433–437 (1988).
[Crossref]

de Rosendo, M. J.

M. J. de Rosendo, L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Incorporation of H+ into Mg-doped LiNbO3,” Solid State Commun. 59(7), 499–501 (1986).
[Crossref]

Deng, D.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Deng, J.

Y. Kong, J. Deng, W. Zhang, J. Wen, G. Zhang, and H. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. 196(1-2), 128–132 (1994).
[Crossref]

Dravecz, G.

L. Kovács, L. Kocsor, Zs. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, and G. Corradi, “Lattice site of rare-earth ions in stoichiometric lithium niobate probed by OH− vibrational spectroscopy,” Crystals 7(8), 230 (2017).
[Crossref]

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

G. Dravecz and L. Kovács, “Determination of the crystal composition from the OH− vibrational spectrum in lithium niobate,” Appl. Phys. B: Lasers Opt. 88(2), 305–307 (2007).
[Crossref]

Equall, R. W.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98(1-4), 281–287 (2002).
[Crossref]

Feng, X.

X. Feng, Q. Zhang, J. Ying, J. Liu, and Z. Yon, “Study of threshold effect of Mg-doped lithium niobate crystals,” Sci. China 33, 108–118 (1990).

X. Feng, L. Tang, and J. Ying, “A study of Optical Absorption, ESR Spectra and Photorefraction in LiNbO3:Mg + Fe Crystals,” Ferroelectrics 107(1), 21–26 (1990).
[Crossref]

Feng, X.-Q.

X.-Q. Feng and T. B. Tang, “Mg-doping threshold effect and H-containing defects in LiNbO3,” J. Phys.: Condens. Matter 5(15), 2423–2430 (1993).
[Crossref]

Földvári, I.

L. Kovács, Z. Szaller, I. Cravero, I. Földvári, and C. Zaldo, “OH-related defects in LiNbO3:Mg,M (M = Nd, Cr, Ti, Mn) crystals,” J. Phys. Chem. Solids 51(5), 417–420 (1990).
[Crossref]

L. Kovács, I. Földvári, I. Cravero, K. Polgár, and R. Capelletti, “An infrared absorption band caused by OH− ions in a LiNbO3:Mg,Cr crystal,” Phys. Lett. A 133(7-8), 433–437 (1988).
[Crossref]

Fontana, M. D.

M. D. Fontana and P. Bourson, “Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices,” Appl. Phys. Rev. 2(4), 040602 (2015).
[Crossref]

Gao, G.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Gao, H.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Grachev, V.

V. Grachev and G. Malovichko, “EPR, ENDOR, and optical-absorption study of Cr3+ centers substituting for niobium in Li-rich lithium niobate crystals,” Phys. Rev. B 62(12), 7779–7790 (2000).
[Crossref]

Guo, F.

L. Sun, F. Guo, Q. Lv, H. Yu, H. Li, W. Cai, Y. Xu, and L. Zhao, “Increased optical damage resistance of Zr:LiNbO3 crystals,” Cryst. Res. Technol. 42(11), 1117–1122 (2007).
[Crossref]

György, K.

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

Hajdara, I.

L. Kovács, L. Kocsor, Zs. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, and G. Corradi, “Lattice site of rare-earth ions in stoichiometric lithium niobate probed by OH− vibrational spectroscopy,” Crystals 7(8), 230 (2017).
[Crossref]

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

Hang, Z.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Hebling, J.

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

Hernández-Laguna, A.

K. Lengyel, V. Timón, A. Hernández-Laguna, V. Szalay, and L. Kovács, “Structure of OH defects in LiNbO3,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012015 (2010).
[Crossref]

Huang, Z.

Hutcheson, R. L.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98(1-4), 281–287 (2002).
[Crossref]

Iyi, N.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Jovanovic, A.

L. Kovács, M. Wöhlecke, A. Jovanovic, K. Polgár, and S. Kapphan, “Infrared absorption study of the OH vibrational band in LiNbO3 crystals,” J. Phys. Chem. Solids 52(6), 797–803 (1991).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, “Laser Crystals,” 2nd ed. (Springer-Verlag, 1990) pp. 210–212.

Kapphan, S.

L. Kovács, M. Wöhlecke, A. Jovanovic, K. Polgár, and S. Kapphan, “Infrared absorption study of the OH vibrational band in LiNbO3 crystals,” J. Phys. Chem. Solids 52(6), 797–803 (1991).
[Crossref]

Kardos, M.

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

Kitamura, K.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Kocsor, L.

L. Kovács, L. Kocsor, Zs. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, and G. Corradi, “Lattice site of rare-earth ions in stoichiometric lithium niobate probed by OH− vibrational spectroscopy,” Crystals 7(8), 230 (2017).
[Crossref]

Kong, Y.

L. Wang, S. Liu, Y. Kong, S. Chen, Z. Huang, L. Wu, R. Rupp, and J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
[Crossref]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH− absorption spectra of low doped lithium niobate crystals,” Infrared Phys. Technol. 45(4), 281–289 (2004).
[Crossref]

Y. Kong, J. Xu, W. Zhang, and G. Zhang, “The site occupation of protons in lithium niobate crystals,” J. Phys. Chem. Solids 61(8), 1331–1335 (2000).
[Crossref]

Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, “OH absorption spectra of pure lithium niobate crystals,” J. Phys.: Condens. Matter 11(9), 2139–2143 (1999).
[Crossref]

Y. Kong, J. Deng, W. Zhang, J. Wen, G. Zhang, and H. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. 196(1-2), 128–132 (1994).
[Crossref]

Kovács, L.

L. Kovács, L. Kocsor, Zs. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, and G. Corradi, “Lattice site of rare-earth ions in stoichiometric lithium niobate probed by OH− vibrational spectroscopy,” Crystals 7(8), 230 (2017).
[Crossref]

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

L. Kovács, Z. Szaller, K. Lengyel, and G. Corradi, “Hydroxyl ions in stoichiometric LiNbO3 crystals doped with optical damage resistant ions,” Opt. Mater. 37, 55–58 (2014).
[Crossref]

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

K. Lengyel, V. Timón, A. Hernández-Laguna, V. Szalay, and L. Kovács, “Structure of OH defects in LiNbO3,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012015 (2010).
[Crossref]

G. Dravecz and L. Kovács, “Determination of the crystal composition from the OH− vibrational spectrum in lithium niobate,” Appl. Phys. B: Lasers Opt. 88(2), 305–307 (2007).
[Crossref]

M. Wöhlecke and L. Kovács, “OH− ions in Oxide Crystals,” Crit. Rev. Solid State Mater. Sci. 26(1), 1–86 (2001).
[Crossref]

K. Polgár, Á Péter, L. Kovács, G. Corradi, and Z. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

L. Kovács, M. Wöhlecke, A. Jovanovic, K. Polgár, and S. Kapphan, “Infrared absorption study of the OH vibrational band in LiNbO3 crystals,” J. Phys. Chem. Solids 52(6), 797–803 (1991).
[Crossref]

L. Kovács, Z. Szaller, I. Cravero, I. Földvári, and C. Zaldo, “OH-related defects in LiNbO3:Mg,M (M = Nd, Cr, Ti, Mn) crystals,” J. Phys. Chem. Solids 51(5), 417–420 (1990).
[Crossref]

L. Kovács, I. Földvári, I. Cravero, K. Polgár, and R. Capelletti, “An infrared absorption band caused by OH− ions in a LiNbO3:Mg,Cr crystal,” Phys. Lett. A 133(7-8), 433–437 (1988).
[Crossref]

Krasnikov, V. V.

T. R. Volk, N. M. Rubinina, V. I. Pryalkin, V. V. Krasnikov, and V. V. Volkov, “Optical and non-linear optical investigations in LiNbO3:Mg and LiNbO3:Zn,” Ferroelectrics 109(1), 345–350 (1990).
[Crossref]

Lengyel, K.

L. Kovács, L. Kocsor, Zs. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, and G. Corradi, “Lattice site of rare-earth ions in stoichiometric lithium niobate probed by OH− vibrational spectroscopy,” Crystals 7(8), 230 (2017).
[Crossref]

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

L. Kovács, Z. Szaller, K. Lengyel, and G. Corradi, “Hydroxyl ions in stoichiometric LiNbO3 crystals doped with optical damage resistant ions,” Opt. Mater. 37, 55–58 (2014).
[Crossref]

K. Lengyel, V. Timón, A. Hernández-Laguna, V. Szalay, and L. Kovács, “Structure of OH defects in LiNbO3,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012015 (2010).
[Crossref]

Li, H.

L. Sun, F. Guo, Q. Lv, H. Yu, H. Li, W. Cai, Y. Xu, and L. Zhao, “Increased optical damage resistance of Zr:LiNbO3 crystals,” Cryst. Res. Technol. 42(11), 1117–1122 (2007).
[Crossref]

Li, S.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Li, X.

Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH− absorption spectra of low doped lithium niobate crystals,” Infrared Phys. Technol. 45(4), 281–289 (2004).
[Crossref]

Li, Y.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Liu, H.

Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH− absorption spectra of low doped lithium niobate crystals,” Infrared Phys. Technol. 45(4), 281–289 (2004).
[Crossref]

Liu, J.

J. Liu, W. Zhang, and G. Zhang, “Studies of OH− absorption and optical absorption spectra in LiNbO3:Mg,Ti crystals,” Phys. Lett. A 212(5), 275–278 (1996).
[Crossref]

X. Feng, Q. Zhang, J. Ying, J. Liu, and Z. Yon, “Study of threshold effect of Mg-doped lithium niobate crystals,” Sci. China 33, 108–118 (1990).

Liu, S.

L. Wang, S. Liu, Y. Kong, S. Chen, Z. Huang, L. Wu, R. Rupp, and J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
[Crossref]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Lv, Q.

L. Sun, F. Guo, Q. Lv, H. Yu, H. Li, W. Cai, Y. Xu, and L. Zhao, “Increased optical damage resistance of Zr:LiNbO3 crystals,” Cryst. Res. Technol. 42(11), 1117–1122 (2007).
[Crossref]

Malovichko, G.

V. Grachev and G. Malovichko, “EPR, ENDOR, and optical-absorption study of Cr3+ centers substituting for niobium in Li-rich lithium niobate crystals,” Phys. Rev. B 62(12), 7779–7790 (2000).
[Crossref]

Osán, J.

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

Pálfalvi, L.

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

Péter, Á

K. Polgár, Á Péter, L. Kovács, G. Corradi, and Z. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

Péter, Á.

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

Polgár, K.

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

K. Polgár, Á Péter, L. Kovács, G. Corradi, and Z. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

L. Kovács, M. Wöhlecke, A. Jovanovic, K. Polgár, and S. Kapphan, “Infrared absorption study of the OH vibrational band in LiNbO3 crystals,” J. Phys. Chem. Solids 52(6), 797–803 (1991).
[Crossref]

G. Corradi H, S. J.-M. Spaeth, and K. Polgár, “Electron spin resonance and electron-nuclear double-resonance investigation of a new Cr3+ defect on an Nb site in LiNbO3:Mg:Cr,” J. Phys.: Condens. Matter 3(12), 1901–1908 (1991).
[Crossref]

L. Kovács, I. Földvári, I. Cravero, K. Polgár, and R. Capelletti, “An infrared absorption band caused by OH− ions in a LiNbO3:Mg,Cr crystal,” Phys. Lett. A 133(7-8), 433–437 (1988).
[Crossref]

Pryalkin, V. I.

T. R. Volk, N. M. Rubinina, V. I. Pryalkin, V. V. Krasnikov, and V. V. Volkov, “Optical and non-linear optical investigations in LiNbO3:Mg and LiNbO3:Zn,” Ferroelectrics 109(1), 345–350 (1990).
[Crossref]

Rubinina, N. M.

T. R. Volk and N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr., Lett. Sect. 14(1-2), 37–43 (1992).
[Crossref]

T. R. Volk, N. M. Rubinina, V. I. Pryalkin, V. V. Krasnikov, and V. V. Volkov, “Optical and non-linear optical investigations in LiNbO3:Mg and LiNbO3:Zn,” Ferroelectrics 109(1), 345–350 (1990).
[Crossref]

Rupp, R.

Shi, L.

Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH− absorption spectra of low doped lithium niobate crystals,” Infrared Phys. Technol. 45(4), 281–289 (2004).
[Crossref]

Shimamura, S.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Sota, T.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Spaeth, S. J.-M.

G. Corradi H, S. J.-M. Spaeth, and K. Polgár, “Electron spin resonance and electron-nuclear double-resonance investigation of a new Cr3+ defect on an Nb site in LiNbO3:Mg:Cr,” J. Phys.: Condens. Matter 3(12), 1901–1908 (1991).
[Crossref]

Stefánka, Z.

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

Sugimoto, A.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Sun, L.

L. Sun, F. Guo, Q. Lv, H. Yu, H. Li, W. Cai, Y. Xu, and L. Zhao, “Increased optical damage resistance of Zr:LiNbO3 crystals,” Cryst. Res. Technol. 42(11), 1117–1122 (2007).
[Crossref]

Sun, Y.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98(1-4), 281–287 (2002).
[Crossref]

Suzuki, K.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Szalay, V.

K. Lengyel, V. Timón, A. Hernández-Laguna, V. Szalay, and L. Kovács, “Structure of OH defects in LiNbO3,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012015 (2010).
[Crossref]

Szaller, Z.

L. Kovács, Z. Szaller, K. Lengyel, and G. Corradi, “Hydroxyl ions in stoichiometric LiNbO3 crystals doped with optical damage resistant ions,” Opt. Mater. 37, 55–58 (2014).
[Crossref]

K. Polgár, Á Péter, L. Kovács, G. Corradi, and Z. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

L. Kovács, Z. Szaller, I. Cravero, I. Földvári, and C. Zaldo, “OH-related defects in LiNbO3:Mg,M (M = Nd, Cr, Ti, Mn) crystals,” J. Phys. Chem. Solids 51(5), 417–420 (1990).
[Crossref]

Szaller, Zs.

L. Kovács, L. Kocsor, Zs. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, and G. Corradi, “Lattice site of rare-earth ions in stoichiometric lithium niobate probed by OH− vibrational spectroscopy,” Crystals 7(8), 230 (2017).
[Crossref]

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

Széles, É

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

Szoboszlai, N.

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

Tang, L.

X. Feng, L. Tang, and J. Ying, “A study of Optical Absorption, ESR Spectra and Photorefraction in LiNbO3:Mg + Fe Crystals,” Ferroelectrics 107(1), 21–26 (1990).
[Crossref]

Tang, T. B.

X.-Q. Feng and T. B. Tang, “Mg-doping threshold effect and H-containing defects in LiNbO3,” J. Phys.: Condens. Matter 5(15), 2423–2430 (1993).
[Crossref]

Thiel, C. W.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98(1-4), 281–287 (2002).
[Crossref]

Timón, V.

K. Lengyel, V. Timón, A. Hernández-Laguna, V. Szalay, and L. Kovács, “Structure of OH defects in LiNbO3,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012015 (2010).
[Crossref]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Turrell, G.

G. Turrell, “Infrared and Raman Spectra of Crystals,” Academic Press, London and New York, p. 156. (1972).

Unferdorben, M.

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

Varga, I.

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

Volk, T.

T. Volk and M. Wöhlecke, “Lithium Niobate, Defects, Photorefraction and Ferroelectric Switching,” Springer Series in Materials Science 115, Springer-Verlag, Berlin Heidelberg, 2008.

Volk, T. R.

T. R. Volk and N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr., Lett. Sect. 14(1-2), 37–43 (1992).
[Crossref]

T. R. Volk, N. M. Rubinina, V. I. Pryalkin, V. V. Krasnikov, and V. V. Volkov, “Optical and non-linear optical investigations in LiNbO3:Mg and LiNbO3:Zn,” Ferroelectrics 109(1), 345–350 (1990).
[Crossref]

Volkov, V. V.

T. R. Volk, N. M. Rubinina, V. I. Pryalkin, V. V. Krasnikov, and V. V. Volkov, “Optical and non-linear optical investigations in LiNbO3:Mg and LiNbO3:Zn,” Ferroelectrics 109(1), 345–350 (1990).
[Crossref]

Wang, H.

Y. Kong, J. Deng, W. Zhang, J. Wen, G. Zhang, and H. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. 196(1-2), 128–132 (1994).
[Crossref]

Wang, L.

Wang, X.

D. Xiao, J. Zhu, S. Zhao, X. Wang, and G. Xu, “The OH− absorption spectrum of LiNbO3:Mg + Ti single crystals,” Phys. Stat. Sol. (a) 127(2), K143–K146 (1991).
[Crossref]

Watanabe, Y.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Wen, J.

Y. Kong, J. Deng, W. Zhang, J. Wen, G. Zhang, and H. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. 196(1-2), 128–132 (1994).
[Crossref]

Wöhlecke, M.

M. Wöhlecke and L. Kovács, “OH− ions in Oxide Crystals,” Crit. Rev. Solid State Mater. Sci. 26(1), 1–86 (2001).
[Crossref]

L. Kovács, M. Wöhlecke, A. Jovanovic, K. Polgár, and S. Kapphan, “Infrared absorption study of the OH vibrational band in LiNbO3 crystals,” J. Phys. Chem. Solids 52(6), 797–803 (1991).
[Crossref]

T. Volk and M. Wöhlecke, “Lithium Niobate, Defects, Photorefraction and Ferroelectric Switching,” Springer Series in Materials Science 115, Springer-Verlag, Berlin Heidelberg, 2008.

Wu, L.

Xiao, D.

D. Xiao, J. Zhu, S. Zhao, X. Wang, and G. Xu, “The OH− absorption spectrum of LiNbO3:Mg + Ti single crystals,” Phys. Stat. Sol. (a) 127(2), K143–K146 (1991).
[Crossref]

Xie, X.

Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH− absorption spectra of low doped lithium niobate crystals,” Infrared Phys. Technol. 45(4), 281–289 (2004).
[Crossref]

Xu, G.

D. Xiao, J. Zhu, S. Zhao, X. Wang, and G. Xu, “The OH− absorption spectrum of LiNbO3:Mg + Ti single crystals,” Phys. Stat. Sol. (a) 127(2), K143–K146 (1991).
[Crossref]

Xu, J.

L. Wang, S. Liu, Y. Kong, S. Chen, Z. Huang, L. Wu, R. Rupp, and J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
[Crossref]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH− absorption spectra of low doped lithium niobate crystals,” Infrared Phys. Technol. 45(4), 281–289 (2004).
[Crossref]

Y. Kong, J. Xu, W. Zhang, and G. Zhang, “The site occupation of protons in lithium niobate crystals,” J. Phys. Chem. Solids 61(8), 1331–1335 (2000).
[Crossref]

Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, “OH absorption spectra of pure lithium niobate crystals,” J. Phys.: Condens. Matter 11(9), 2139–2143 (1999).
[Crossref]

Xu, Y.

L. Sun, F. Guo, Q. Lv, H. Yu, H. Li, W. Cai, Y. Xu, and L. Zhao, “Increased optical damage resistance of Zr:LiNbO3 crystals,” Cryst. Res. Technol. 42(11), 1117–1122 (2007).
[Crossref]

Yajima, Y.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Yamagishi, K.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Yamazaki, T.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Yan, W.

Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH− absorption spectra of low doped lithium niobate crystals,” Infrared Phys. Technol. 45(4), 281–289 (2004).
[Crossref]

Ying, J.

X. Feng, Q. Zhang, J. Ying, J. Liu, and Z. Yon, “Study of threshold effect of Mg-doped lithium niobate crystals,” Sci. China 33, 108–118 (1990).

X. Feng, L. Tang, and J. Ying, “A study of Optical Absorption, ESR Spectra and Photorefraction in LiNbO3:Mg + Fe Crystals,” Ferroelectrics 107(1), 21–26 (1990).
[Crossref]

Yon, Z.

X. Feng, Q. Zhang, J. Ying, J. Liu, and Z. Yon, “Study of threshold effect of Mg-doped lithium niobate crystals,” Sci. China 33, 108–118 (1990).

Yu, H.

L. Sun, F. Guo, Q. Lv, H. Yu, H. Li, W. Cai, Y. Xu, and L. Zhao, “Increased optical damage resistance of Zr:LiNbO3 crystals,” Cryst. Res. Technol. 42(11), 1117–1122 (2007).
[Crossref]

Zaldo, C.

L. Kovács, Z. Szaller, I. Cravero, I. Földvári, and C. Zaldo, “OH-related defects in LiNbO3:Mg,M (M = Nd, Cr, Ti, Mn) crystals,” J. Phys. Chem. Solids 51(5), 417–420 (1990).
[Crossref]

Zhang, G.

Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH− absorption spectra of low doped lithium niobate crystals,” Infrared Phys. Technol. 45(4), 281–289 (2004).
[Crossref]

Y. Kong, J. Xu, W. Zhang, and G. Zhang, “The site occupation of protons in lithium niobate crystals,” J. Phys. Chem. Solids 61(8), 1331–1335 (2000).
[Crossref]

Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, “OH absorption spectra of pure lithium niobate crystals,” J. Phys.: Condens. Matter 11(9), 2139–2143 (1999).
[Crossref]

J. Liu, W. Zhang, and G. Zhang, “Studies of OH− absorption and optical absorption spectra in LiNbO3:Mg,Ti crystals,” Phys. Lett. A 212(5), 275–278 (1996).
[Crossref]

Y. Kong, J. Deng, W. Zhang, J. Wen, G. Zhang, and H. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. 196(1-2), 128–132 (1994).
[Crossref]

Zhang, L.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Zhang, Q.

X. Feng, Q. Zhang, J. Ying, J. Liu, and Z. Yon, “Study of threshold effect of Mg-doped lithium niobate crystals,” Sci. China 33, 108–118 (1990).

Zhang, W.

Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH− absorption spectra of low doped lithium niobate crystals,” Infrared Phys. Technol. 45(4), 281–289 (2004).
[Crossref]

Y. Kong, J. Xu, W. Zhang, and G. Zhang, “The site occupation of protons in lithium niobate crystals,” J. Phys. Chem. Solids 61(8), 1331–1335 (2000).
[Crossref]

Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, “OH absorption spectra of pure lithium niobate crystals,” J. Phys.: Condens. Matter 11(9), 2139–2143 (1999).
[Crossref]

J. Liu, W. Zhang, and G. Zhang, “Studies of OH− absorption and optical absorption spectra in LiNbO3:Mg,Ti crystals,” Phys. Lett. A 212(5), 275–278 (1996).
[Crossref]

Y. Kong, J. Deng, W. Zhang, J. Wen, G. Zhang, and H. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. 196(1-2), 128–132 (1994).
[Crossref]

Zhao, L.

L. Sun, F. Guo, Q. Lv, H. Yu, H. Li, W. Cai, Y. Xu, and L. Zhao, “Increased optical damage resistance of Zr:LiNbO3 crystals,” Cryst. Res. Technol. 42(11), 1117–1122 (2007).
[Crossref]

Zhao, S.

D. Xiao, J. Zhu, S. Zhao, X. Wang, and G. Xu, “The OH− absorption spectrum of LiNbO3:Mg + Ti single crystals,” Phys. Stat. Sol. (a) 127(2), K143–K146 (1991).
[Crossref]

Zhu, J.

D. Xiao, J. Zhu, S. Zhao, X. Wang, and G. Xu, “The OH− absorption spectrum of LiNbO3:Mg + Ti single crystals,” Phys. Stat. Sol. (a) 127(2), K143–K146 (1991).
[Crossref]

Anal. Chim. Acta (1)

L. Bencs, K. György, M. Kardos, J. Osán, B. Alföldy, I. Varga, N. Szoboszlai, Z. Ajtony, Z. Stefánka, É Széles, and L. Kovács, “Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods,” Anal. Chim. Acta 726, 1–8 (2012).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

G. Dravecz and L. Kovács, “Determination of the crystal composition from the OH− vibrational spectrum in lithium niobate,” Appl. Phys. B: Lasers Opt. 88(2), 305–307 (2007).
[Crossref]

Appl. Phys. Lett. (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Appl. Phys. Rev. (2)

K. Lengyel, Á. Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgár, “Growth, defect structure and THz application of stoichiometric lithium niobate,” Appl. Phys. Rev. 2(4), 040601 (2015).
[Crossref]

M. D. Fontana and P. Bourson, “Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices,” Appl. Phys. Rev. 2(4), 040602 (2015).
[Crossref]

Crit. Rev. Solid State Mater. Sci. (1)

M. Wöhlecke and L. Kovács, “OH− ions in Oxide Crystals,” Crit. Rev. Solid State Mater. Sci. 26(1), 1–86 (2001).
[Crossref]

Cryst. Res. Technol. (1)

L. Sun, F. Guo, Q. Lv, H. Yu, H. Li, W. Cai, Y. Xu, and L. Zhao, “Increased optical damage resistance of Zr:LiNbO3 crystals,” Cryst. Res. Technol. 42(11), 1117–1122 (2007).
[Crossref]

Crystals (1)

L. Kovács, L. Kocsor, Zs. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, and G. Corradi, “Lattice site of rare-earth ions in stoichiometric lithium niobate probed by OH− vibrational spectroscopy,” Crystals 7(8), 230 (2017).
[Crossref]

Ferroelectr., Lett. Sect. (1)

T. R. Volk and N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr., Lett. Sect. 14(1-2), 37–43 (1992).
[Crossref]

Ferroelectrics (2)

T. R. Volk, N. M. Rubinina, V. I. Pryalkin, V. V. Krasnikov, and V. V. Volkov, “Optical and non-linear optical investigations in LiNbO3:Mg and LiNbO3:Zn,” Ferroelectrics 109(1), 345–350 (1990).
[Crossref]

X. Feng, L. Tang, and J. Ying, “A study of Optical Absorption, ESR Spectra and Photorefraction in LiNbO3:Mg + Fe Crystals,” Ferroelectrics 107(1), 21–26 (1990).
[Crossref]

Infrared Phys. Technol. (1)

Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH− absorption spectra of low doped lithium niobate crystals,” Infrared Phys. Technol. 45(4), 281–289 (2004).
[Crossref]

IOP Conf. Ser.: Mater. Sci. Eng. (1)

K. Lengyel, V. Timón, A. Hernández-Laguna, V. Szalay, and L. Kovács, “Structure of OH defects in LiNbO3,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012015 (2010).
[Crossref]

J. Cryst. Growth (1)

K. Polgár, Á Péter, L. Kovács, G. Corradi, and Z. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

J. Lumin. (1)

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98(1-4), 281–287 (2002).
[Crossref]

J. Phys. Chem. Solids (3)

L. Kovács, M. Wöhlecke, A. Jovanovic, K. Polgár, and S. Kapphan, “Infrared absorption study of the OH vibrational band in LiNbO3 crystals,” J. Phys. Chem. Solids 52(6), 797–803 (1991).
[Crossref]

L. Kovács, Z. Szaller, I. Cravero, I. Földvári, and C. Zaldo, “OH-related defects in LiNbO3:Mg,M (M = Nd, Cr, Ti, Mn) crystals,” J. Phys. Chem. Solids 51(5), 417–420 (1990).
[Crossref]

Y. Kong, J. Xu, W. Zhang, and G. Zhang, “The site occupation of protons in lithium niobate crystals,” J. Phys. Chem. Solids 61(8), 1331–1335 (2000).
[Crossref]

J. Phys.: Condens. Matter (5)

X.-Q. Feng and T. B. Tang, “Mg-doping threshold effect and H-containing defects in LiNbO3,” J. Phys.: Condens. Matter 5(15), 2423–2430 (1993).
[Crossref]

G. Corradi H, S. J.-M. Spaeth, and K. Polgár, “Electron spin resonance and electron-nuclear double-resonance investigation of a new Cr3+ defect on an Nb site in LiNbO3:Mg:Cr,” J. Phys.: Condens. Matter 3(12), 1901–1908 (1991).
[Crossref]

Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, “OH absorption spectra of pure lithium niobate crystals,” J. Phys.: Condens. Matter 11(9), 2139–2143 (1999).
[Crossref]

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys.: Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

L. Kovács, Z. Szaller, K. Lengyel, and G. Corradi, “Hydroxyl ions in stoichiometric LiNbO3 crystals doped with optical damage resistant ions,” Opt. Mater. 37, 55–58 (2014).
[Crossref]

Phys. Lett. (1)

Y. Kong, J. Deng, W. Zhang, J. Wen, G. Zhang, and H. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. 196(1-2), 128–132 (1994).
[Crossref]

Phys. Lett. A (2)

J. Liu, W. Zhang, and G. Zhang, “Studies of OH− absorption and optical absorption spectra in LiNbO3:Mg,Ti crystals,” Phys. Lett. A 212(5), 275–278 (1996).
[Crossref]

L. Kovács, I. Földvári, I. Cravero, K. Polgár, and R. Capelletti, “An infrared absorption band caused by OH− ions in a LiNbO3:Mg,Cr crystal,” Phys. Lett. A 133(7-8), 433–437 (1988).
[Crossref]

Phys. Rev. B (1)

V. Grachev and G. Malovichko, “EPR, ENDOR, and optical-absorption study of Cr3+ centers substituting for niobium in Li-rich lithium niobate crystals,” Phys. Rev. B 62(12), 7779–7790 (2000).
[Crossref]

Phys. Stat. Sol. (a) (1)

D. Xiao, J. Zhu, S. Zhao, X. Wang, and G. Xu, “The OH− absorption spectrum of LiNbO3:Mg + Ti single crystals,” Phys. Stat. Sol. (a) 127(2), K143–K146 (1991).
[Crossref]

Sci. China (1)

X. Feng, Q. Zhang, J. Ying, J. Liu, and Z. Yon, “Study of threshold effect of Mg-doped lithium niobate crystals,” Sci. China 33, 108–118 (1990).

Solid State Commun. (1)

M. J. de Rosendo, L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Incorporation of H+ into Mg-doped LiNbO3,” Solid State Commun. 59(7), 499–501 (1986).
[Crossref]

Other (6)

G. Turrell, “Infrared and Raman Spectra of Crystals,” Academic Press, London and New York, p. 156. (1972).

“Properties of Lithium Niobate,” EMIS Datareviews Series No. 28. K. K. Wong, Ed., INSPEC, The Institution of Electrical Engineers, London, UK, 2002.

Special Issue “Lithium Niobate: Bulk Crystals, Composites, Thin Films and Nanocrystals” Guest Editors M. Imlau, L. Kovács, Crystals (2018), and Special Issue “Recent Progress in Lithium Niobate” Guest Editors R. A. Jackson, Zs. Szaller, Crystals (2019).

“Photorefractive Materials and Their Applications 2,” P. Günter and J.-P. Huignard, eds., Springer Science + Business Media, LLC2007.

T. Volk and M. Wöhlecke, “Lithium Niobate, Defects, Photorefraction and Ferroelectric Switching,” Springer Series in Materials Science 115, Springer-Verlag, Berlin Heidelberg, 2008.

A. A. Kaminskii, “Laser Crystals,” 2nd ed. (Springer-Verlag, 1990) pp. 210–212.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. IR absorption spectra of sLN crystals doped only with Fe. The arrow indicates a new absorption band appearing above a threshold Fe concentration.
Fig. 2.
Fig. 2. IR absorption spectra of sLN crystals single-doped with Ti. The arrow indicates a new absorption band appearing above a threshold Ti concentration.
Fig. 3.
Fig. 3. IR absorption spectra of sLN crystals double-doped with Fe and Ti. The arrows indicate the absorption bands appearing above a threshold Fe or Ti concentration.
Fig. 4.
Fig. 4. Sample cut from the lower part of the 0.1 mol% Cr-doped HTTSSG-grown sLN crystal with a diameter of 16 mm (a), and the IR absorption spectra of the central green and the violet regions (b). The inset shows the narrow overlapping bands between 3480-3520 cm-1.
Fig. 5.
Fig. 5. IR absorption spectra of 0.5 mol% Cr doped sLN crystals grown by the HTTSSG and Czochralski methods. The arrow indicates a new absorption band appearing in the crystal grown by the Czochralski method.
Fig. 6.
Fig. 6. Angular dependence of the intensity of the $\textrm{O}{\textrm{H}^ - }$ absorption band for Ti4+ (a), Fe3+ (b), and Cr3+ (c) doped sLN crystals (dots are measurement points, the solid lines are fits using the function taken from Ref. [36]).
Fig. 7.
Fig. 7. Vibrational frequencies of $\textrm{O}{\textrm{H}^ - }$ ions in transition metal doped sLN crystals as compared to those observed in optical damage resistant and rare-earth ion doped and undoped sLN published in Refs. [30,31,29] (a). Angle Θ between the O–H dipole and the oxygen plane perpendicular to the c axis (b). The full square represents Θ calculated for the undoped sLN crystal [37].
Fig. 8.
Fig. 8. Schematic drawing of the $\textrm{O}{\textrm{H}^ - }$ location in Mn+ doped sLN crystals

Tables (2)

Tables Icon

Table 1. Concentrations of Fe and Ti dopants in the growth solution and in the sLN:M (M = Fe3+and/or Ti4+) crystals determined by FAAS and GFAAS, respectively, and the corresponding OH bands in the crystal characterized by FTIR spectroscopy

Tables Icon

Table 2. Cr-doped sLN crystals grown from solution and melt

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A max / A min =   1 / 2   cot 2 Θ .