Abstract

Meter-scale transparent conductive circuits based on silver nanowire (AgNW) networks are fabricated for transparent light-emitting diode (LED) screens on both rigid and flexible substrates. A 25-cm long AgNW transparent conductive strip is fabricated with a strip resistivity of 9.95 Ω/cm. A high uniformity is achieved in terms of film optical transmission (up to 84.5% in average) and sheet resistance (as low as 4.7 Ω/sq in average), superior to ITO. A transparent LED screen based on a 1.2-m ultralong AgNW circuit is demonstrated with LEDs emitting bright red, green and blue lights under different biases. The AgNW strip on a polyethylene terephthalate substrate shows mechanical flexibility and stable performance in bending tests. Based on this, a flexible transparent LED screen is proposed and presented. It works well when dynamically bent to a radius as small as ∼15 mm. Therefore, the AgNW transparent conductive circuits are very promising as a replacement to ITO circuits for such smart screens, to be integrated into modern glass architectures and display videos in various public places.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flexibility and non-destructive conductivity measurements of Ag nanowire based transparent conductive films via terahertz time domain spectroscopy

Gyujeong Hwang, Soner Balci, M. Zeki Güngördü, Alex Maleski, Joseph Waters, Sunjong Lee, Sangjun Choi, Kyoungkook Kim, Soohaeng Cho, and Seongsin M. Kim
Opt. Express 25(4) 4500-4508 (2017)

GaN-based light-emitting diodes on graphene-coated flexible substrates

Gwangseok Yang, Younghun Jung, Camilo Vélez Cuervo, Fan Ren, Stephen J. Pearton, and Jihyun Kim
Opt. Express 22(S3) A812-A817 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Macrelli, “Electrochromic windows,” Renewable Energy 15(1-4), 306–311 (1998).
    [Crossref]
  2. N. L. Sbar, L. Podbelski, H. M. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” Int. J. Sustainable Built Environ. 1(1), 125–139 (2012).
    [Crossref]
  3. G-SMATT: http://www.g-smattglobal.com/
  4. Tianjin Cecep Brillshow Co., Ltd: http://en.znbxcecep.com/
  5. G. Fang and C. Li, “Multi-functional glass curtain wall, has multiple LED transparent glass modules that are connected together, and LED circuit and electronic intelligent switchable glass that are connected with computer signal control line,” China Patent No. 201810348161.8.
  6. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [Crossref]
  7. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
    [Crossref]
  8. G. U. Kulkarni, S. Kiruthika, R. Gupta, and K. Rao, “Towards low cost materials and methods for transparent electrodes,” Curr. Opin. Chem. Eng. 8, 60–68 (2015).
    [Crossref]
  9. J. Song and H. Zeng, “Transparent electrodes printed with nanocrystal inks for flexible smart devices,” Angew. Chem. Int. Ed. 54(34), 9760–9774 (2015).
    [Crossref]
  10. Y. Xia, K. Sun, and J. Ouyang, “Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices,” Adv. Mater. 24(18), 2436–2440 (2012).
    [Crossref]
  11. Y. Xia, K. Sun, and J. Ouyang, “Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells,” Energy Environ. Sci. 5(1), 5325–5332 (2012).
    [Crossref]
  12. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
    [Crossref]
  13. S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
    [Crossref]
  14. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
    [Crossref]
  15. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
    [Crossref]
  16. K. Rana, J. Singh, and J.-H. Ahn, “A graphene-based transparent electrode for use in flexible optoelectronic devices,” J. Mater. Chem. C 2(15), 2646–2656 (2014).
    [Crossref]
  17. S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: The next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
    [Crossref]
  18. D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
    [Crossref]
  19. J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
    [Crossref]
  20. F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
    [Crossref]
  21. H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
    [Crossref]
  22. B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
    [Crossref]
  23. B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
    [Crossref]
  24. Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
    [Crossref]
  25. F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
    [Crossref]
  26. A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
    [Crossref]
  27. S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(S3), A355–A362 (2013).
    [Crossref]
  28. H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
    [Crossref]
  29. H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
    [Crossref]
  30. P. Kou, L. Yang, K. Chi, and S. He, “Large-area and uniform transparent electrodes fabricated by polymethylmethacrylate-assisted spin-coating of silver nanowires on rigid and flexible substrates,” Opt. Mater. Express 5(10), 2347–2358 (2015).
    [Crossref]
  31. P. Kou, L. Yang, C. Chang, and S. He, “Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach,” Sci. Rep. 7(1), 42052 (2017).
    [Crossref]
  32. V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
    [Crossref]
  33. S.-E. Park, S. Kim, D.-Y. Lee, E. Kim, and J. Hwang, “Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells,” J. Mater. Chem. A 1(45), 14286–14293 (2013).
    [Crossref]
  34. L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
    [Crossref]
  35. C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6(1), 75 (2011).
    [Crossref]
  36. N. Chou, Y. Kim, and S. Kim, “A method to pattern silver nanowires directly on wafer-scale PDMS substrate and its applications,” ACS Appl. Mater. Interfaces 8(9), 6269–6276 (2016).
    [Crossref]
  37. Y. Cheng, R. Wang, J. Sun, and L. Gao, “Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires,” ACS Nano 9(4), 3887–3895 (2015).
    [Crossref]
  38. C. Yan, J. Wang, and P. S. Lee, “Stretchable graphene thermistor with tunable thermal index,” ACS Nano 9(2), 2130–2137 (2015).
    [Crossref]
  39. J. Sun, W. Zhou, H. Yang, X. Zhen, L. Ma, D. Williams, X. Sun, and M.-F. Lang, “Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels,” Chem. Commun. 54(39), 4923–4926 (2018).
    [Crossref]

2018 (1)

J. Sun, W. Zhou, H. Yang, X. Zhen, L. Ma, D. Williams, X. Sun, and M.-F. Lang, “Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels,” Chem. Commun. 54(39), 4923–4926 (2018).
[Crossref]

2017 (1)

P. Kou, L. Yang, C. Chang, and S. He, “Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach,” Sci. Rep. 7(1), 42052 (2017).
[Crossref]

2016 (1)

N. Chou, Y. Kim, and S. Kim, “A method to pattern silver nanowires directly on wafer-scale PDMS substrate and its applications,” ACS Appl. Mater. Interfaces 8(9), 6269–6276 (2016).
[Crossref]

2015 (7)

Y. Cheng, R. Wang, J. Sun, and L. Gao, “Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires,” ACS Nano 9(4), 3887–3895 (2015).
[Crossref]

C. Yan, J. Wang, and P. S. Lee, “Stretchable graphene thermistor with tunable thermal index,” ACS Nano 9(2), 2130–2137 (2015).
[Crossref]

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref]

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

P. Kou, L. Yang, K. Chi, and S. He, “Large-area and uniform transparent electrodes fabricated by polymethylmethacrylate-assisted spin-coating of silver nanowires on rigid and flexible substrates,” Opt. Mater. Express 5(10), 2347–2358 (2015).
[Crossref]

G. U. Kulkarni, S. Kiruthika, R. Gupta, and K. Rao, “Towards low cost materials and methods for transparent electrodes,” Curr. Opin. Chem. Eng. 8, 60–68 (2015).
[Crossref]

J. Song and H. Zeng, “Transparent electrodes printed with nanocrystal inks for flexible smart devices,” Angew. Chem. Int. Ed. 54(34), 9760–9774 (2015).
[Crossref]

2014 (7)

K. Rana, J. Singh, and J.-H. Ahn, “A graphene-based transparent electrode for use in flexible optoelectronic devices,” J. Mater. Chem. C 2(15), 2646–2656 (2014).
[Crossref]

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: The next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref]

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
[Crossref]

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref]

2013 (5)

S.-E. Park, S. Kim, D.-Y. Lee, E. Kim, and J. Hwang, “Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells,” J. Mater. Chem. A 1(45), 14286–14293 (2013).
[Crossref]

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(S3), A355–A362 (2013).
[Crossref]

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

2012 (5)

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref]

Y. Xia, K. Sun, and J. Ouyang, “Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref]

Y. Xia, K. Sun, and J. Ouyang, “Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells,” Energy Environ. Sci. 5(1), 5325–5332 (2012).
[Crossref]

N. L. Sbar, L. Podbelski, H. M. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” Int. J. Sustainable Built Environ. 1(1), 125–139 (2012).
[Crossref]

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

2011 (4)

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref]

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref]

C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6(1), 75 (2011).
[Crossref]

2010 (1)

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref]

2009 (1)

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

2008 (1)

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref]

2004 (1)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

1998 (1)

G. Macrelli, “Electrochromic windows,” Renewable Energy 15(1-4), 306–311 (1998).
[Crossref]

Afshinmanesh, F.

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref]

Ahn, J.-H.

K. Rana, J. Singh, and J.-H. Ahn, “A graphene-based transparent electrode for use in flexible optoelectronic devices,” J. Mater. Chem. C 2(15), 2646–2656 (2014).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

An, K.-S.

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

Bellet, D.

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

Brenner, T. J. K.

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Brongersma, M. L.

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref]

Carnahan, D.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Carney, T. J.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Celle, C.

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

Chang, C.

P. Kou, L. Yang, C. Chang, and S. He, “Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach,” Sci. Rep. 7(1), 42052 (2017).
[Crossref]

Chang, S.-J.

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

Chen, Z.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: The next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

Cheng, J.

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

Cheng, Y.

Y. Cheng, R. Wang, J. Sun, and L. Gao, “Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires,” ACS Nano 9(4), 3887–3895 (2015).
[Crossref]

Chi, K.

Choi, J.-Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Chou, N.

N. Chou, Y. Kim, and S. Kim, “A method to pattern silver nanowires directly on wafer-scale PDMS substrate and its applications,” ACS Appl. Mater. Interfaces 8(9), 6269–6276 (2016).
[Crossref]

Choy, W. C. H.

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref]

Coleman, J. N.

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref]

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Coull, R.

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref]

Cui, Y.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref]

Curto, A. G.

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref]

Du, X.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

Ellmer, K.

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

Fan, S.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Fang, G.

G. Fang and C. Li, “Multi-functional glass curtain wall, has multiple LED transparent glass modules that are connected together, and LED circuit and electronic intelligent switchable glass that are connected with computer signal control line,” China Patent No. 201810348161.8.

Friend, R. H.

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Gao, J.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
[Crossref]

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Gao, L.

Y. Cheng, R. Wang, J. Sun, and L. Gao, “Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires,” ACS Nano 9(4), 3887–3895 (2015).
[Crossref]

Giersig, M.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Giusti, G.

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

Gu, M.

Guo, C.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Guo, Y.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Gupta, R.

G. U. Kulkarni, S. Kiruthika, R. Gupta, and K. Rao, “Towards low cost materials and methods for transparent electrodes,” Curr. Opin. Chem. Eng. 8, 60–68 (2015).
[Crossref]

Han, B.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
[Crossref]

He, S.

P. Kou, L. Yang, C. Chang, and S. He, “Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach,” Sci. Rep. 7(1), 42052 (2017).
[Crossref]

P. Kou, L. Yang, K. Chi, and S. He, “Large-area and uniform transparent electrodes fabricated by polymethylmethacrylate-assisted spin-coating of silver nanowires on rigid and flexible substrates,” Opt. Mater. Express 5(10), 2347–2358 (2015).
[Crossref]

Hebard, A. F.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

Hecht, D. S.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref]

Herczynski, A.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
[Crossref]

Hong, B. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Hsu, P.-C.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Hu, L.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref]

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref]

Huang, Y.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
[Crossref]

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Hwang, J.

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

S.-E. Park, S. Kim, D.-Y. Lee, E. Kim, and J. Hwang, “Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells,” J. Mater. Chem. A 1(45), 14286–14293 (2013).
[Crossref]

Irvin, G.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref]

Jang, H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Jia, B.

Jung, M. W.

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

Kabra, D.

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Kamaras, K.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

Kang, M.-A.

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

Kempa, K.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
[Crossref]

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Kim, A.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

Kim, C.-H.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

Kim, E.

S.-E. Park, S. Kim, D.-Y. Lee, E. Kim, and J. Hwang, “Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells,” J. Mater. Chem. A 1(45), 14286–14293 (2013).
[Crossref]

Kim, H. S.

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref]

Kim, J. M.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Kim, K.

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

Kim, K. S.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Kim, P.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Kim, S.

N. Chou, Y. Kim, and S. Kim, “A method to pattern silver nanowires directly on wafer-scale PDMS substrate and its applications,” ACS Appl. Mater. Interfaces 8(9), 6269–6276 (2016).
[Crossref]

S.-E. Park, S. Kim, D.-Y. Lee, E. Kim, and J. Hwang, “Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells,” J. Mater. Chem. A 1(45), 14286–14293 (2013).
[Crossref]

Kim, S. H.

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

Kim, Y.

N. Chou, Y. Kim, and S. Kim, “A method to pattern silver nanowires directly on wafer-scale PDMS substrate and its applications,” ACS Appl. Mater. Interfaces 8(9), 6269–6276 (2016).
[Crossref]

Kiruthika, S.

G. U. Kulkarni, S. Kiruthika, R. Gupta, and K. Rao, “Towards low cost materials and methods for transparent electrodes,” Curr. Opin. Chem. Eng. 8, 60–68 (2015).
[Crossref]

Kong, D.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Kou, P.

P. Kou, L. Yang, C. Chang, and S. He, “Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach,” Sci. Rep. 7(1), 42052 (2017).
[Crossref]

P. Kou, L. Yang, K. Chi, and S. He, “Large-area and uniform transparent electrodes fabricated by polymethylmethacrylate-assisted spin-coating of silver nanowires on rigid and flexible substrates,” Opt. Mater. Express 5(10), 2347–2358 (2015).
[Crossref]

Kulkarni, G. U.

G. U. Kulkarni, S. Kiruthika, R. Gupta, and K. Rao, “Towards low cost materials and methods for transparent electrodes,” Curr. Opin. Chem. Eng. 8, 60–68 (2015).
[Crossref]

Lang, M.-F.

J. Sun, W. Zhou, H. Yang, X. Zhen, L. Ma, D. Williams, X. Sun, and M.-F. Lang, “Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels,” Chem. Commun. 54(39), 4923–4926 (2018).
[Crossref]

Langley, D.

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

Lee, D.-Y.

S.-E. Park, S. Kim, D.-Y. Lee, E. Kim, and J. Hwang, “Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells,” J. Mater. Chem. A 1(45), 14286–14293 (2013).
[Crossref]

Lee, J. Y.

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref]

Lee, P. S.

C. Yan, J. Wang, and P. S. Lee, “Stretchable graphene thermistor with tunable thermal index,” ACS Nano 9(2), 2130–2137 (2015).
[Crossref]

Lee, S. S.

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

Lee, S. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Li, C.

G. Fang and C. Li, “Multi-functional glass curtain wall, has multiple LED transparent glass modules that are connected together, and LED circuit and electronic intelligent switchable glass that are connected with computer signal control line,” China Patent No. 201810348161.8.

Li, K.

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref]

Li, R.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
[Crossref]

Lim, J.

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

Lin, Q.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Liu, C.-H.

C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6(1), 75 (2011).
[Crossref]

Liu, J.

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref]

Logan, J. M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

Lu, H.

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref]

Luo, J.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
[Crossref]

Lyons, P. E.

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref]

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Ma, L.

J. Sun, W. Zhou, H. Yang, X. Zhen, L. Ma, D. Williams, X. Sun, and M.-F. Lang, “Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels,” Chem. Commun. 54(39), 4923–4926 (2018).
[Crossref]

Macrelli, G.

G. Macrelli, “Electrochromic windows,” Renewable Energy 15(1-4), 306–311 (1998).
[Crossref]

Mao, J.

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

Massip, S.

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Mayousse, C.

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

Milaninia, K. M.

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref]

Moon, J.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

Morgenstern, F. S. F.

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Müllen, K.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref]

Myung, S.

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

Nikolou, M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

Ouyang, J.

Y. Xia, K. Sun, and J. Ouyang, “Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells,” Energy Environ. Sci. 5(1), 5325–5332 (2012).
[Crossref]

Y. Xia, K. Sun, and J. Ouyang, “Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref]

Ouyang, Z.

Park, S.-E.

S.-E. Park, S. Kim, D.-Y. Lee, E. Kim, and J. Hwang, “Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells,” J. Mater. Chem. A 1(45), 14286–14293 (2013).
[Crossref]

Pease, B.

N. L. Sbar, L. Podbelski, H. M. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” Int. J. Sustainable Built Environ. 1(1), 125–139 (2012).
[Crossref]

Pei, K.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
[Crossref]

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Peng, Q.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
[Crossref]

Peumans, P.

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref]

Podbelski, L.

N. L. Sbar, L. Podbelski, H. M. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” Int. J. Sustainable Built Environ. 1(1), 125–139 (2012).
[Crossref]

Polman, A.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref]

Rana, K.

K. Rana, J. Singh, and J.-H. Ahn, “A graphene-based transparent electrode for use in flexible optoelectronic devices,” J. Mater. Chem. C 2(15), 2646–2656 (2014).
[Crossref]

Rao, K.

G. U. Kulkarni, S. Kiruthika, R. Gupta, and K. Rao, “Towards low cost materials and methods for transparent electrodes,” Curr. Opin. Chem. Eng. 8, 60–68 (2015).
[Crossref]

Rathmell, A. R.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: The next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Ren, X.

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref]

Ren, Z.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
[Crossref]

Reynolds, J. R.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

Rickard, D.

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref]

Rinzler, A. G.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

Rong, Q.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Ruan, Z.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Sbar, N. L.

N. L. Sbar, L. Podbelski, H. M. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” Int. J. Sustainable Built Environ. 1(1), 125–139 (2012).
[Crossref]

Scardaci, V.

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref]

Simonato, J.-P.

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

Singh, J.

K. Rana, J. Singh, and J.-H. Ahn, “A graphene-based transparent electrode for use in flexible optoelectronic devices,” J. Mater. Chem. C 2(15), 2646–2656 (2014).
[Crossref]

Sippel, J.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

Song, J.

J. Song and H. Zeng, “Transparent electrodes printed with nanocrystal inks for flexible smart devices,” Angew. Chem. Int. Ed. 54(34), 9760–9774 (2015).
[Crossref]

Song, W.

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

Spinelli, P.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref]

Stewart, I. E.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: The next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Sun, J.

J. Sun, W. Zhou, H. Yang, X. Zhen, L. Ma, D. Williams, X. Sun, and M.-F. Lang, “Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels,” Chem. Commun. 54(39), 4923–4926 (2018).
[Crossref]

Y. Cheng, R. Wang, J. Sun, and L. Gao, “Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires,” ACS Nano 9(4), 3887–3895 (2015).
[Crossref]

Sun, K.

Y. Xia, K. Sun, and J. Ouyang, “Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref]

Y. Xia, K. Sun, and J. Ouyang, “Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells,” Energy Environ. Sci. 5(1), 5325–5332 (2012).
[Crossref]

Sun, T.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Sun, X.

J. Sun, W. Zhou, H. Yang, X. Zhen, L. Ma, D. Williams, X. Sun, and M.-F. Lang, “Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels,” Chem. Commun. 54(39), 4923–4926 (2018).
[Crossref]

Tanner, D. B.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

van de Groep, J.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref]

van Hulst, N. F.

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref]

Wang, J.

C. Yan, J. Wang, and P. S. Lee, “Stretchable graphene thermistor with tunable thermal index,” ACS Nano 9(2), 2130–2137 (2015).
[Crossref]

Wang, R.

Y. Cheng, R. Wang, J. Sun, and L. Gao, “Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires,” ACS Nano 9(4), 3887–3895 (2015).
[Crossref]

Wang, S.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Wang, X.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref]

Wang, Y.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Wiley, B. J.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: The next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Williams, D.

J. Sun, W. Zhou, H. Yang, X. Zhen, L. Ma, D. Williams, X. Sun, and M.-F. Lang, “Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels,” Chem. Commun. 54(39), 4923–4926 (2018).
[Crossref]

Won, Y.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

Woo, K.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

Wu, H.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Wu, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

Xia, Y.

Y. Xia, K. Sun, and J. Ouyang, “Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref]

Y. Xia, K. Sun, and J. Ouyang, “Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells,” Energy Environ. Sci. 5(1), 5325–5332 (2012).
[Crossref]

Xie, S.

Yan, C.

C. Yan, J. Wang, and P. S. Lee, “Stretchable graphene thermistor with tunable thermal index,” ACS Nano 9(2), 2130–2137 (2015).
[Crossref]

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref]

Yang, H.

J. Sun, W. Zhou, H. Yang, X. Zhen, L. Ma, D. Williams, X. Sun, and M.-F. Lang, “Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels,” Chem. Commun. 54(39), 4923–4926 (2018).
[Crossref]

Yang, H. M.

N. L. Sbar, L. Podbelski, H. M. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” Int. J. Sustainable Built Environ. 1(1), 125–139 (2012).
[Crossref]

Yang, L.

P. Kou, L. Yang, C. Chang, and S. He, “Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach,” Sci. Rep. 7(1), 42052 (2017).
[Crossref]

P. Kou, L. Yang, K. Chi, and S. He, “Large-area and uniform transparent electrodes fabricated by polymethylmethacrylate-assisted spin-coating of silver nanowires on rigid and flexible substrates,” Opt. Mater. Express 5(10), 2347–2358 (2015).
[Crossref]

Ye, S.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: The next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Yu, X.

C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6(1), 75 (2011).
[Crossref]

Yu, Y.

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref]

Yu, Z.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Zeng, H.

J. Song and H. Zeng, “Transparent electrodes printed with nanocrystal inks for flexible smart devices,” Angew. Chem. Int. Ed. 54(34), 9760–9774 (2015).
[Crossref]

Zhang, D.

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref]

Zhang, X.

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

Zhang, Y.

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref]

Zhao, Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Zhen, X.

J. Sun, W. Zhou, H. Yang, X. Zhen, L. Ma, D. Williams, X. Sun, and M.-F. Lang, “Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels,” Chem. Commun. 54(39), 4923–4926 (2018).
[Crossref]

Zheng, Z.

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref]

Zhi, L.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref]

Zhou, W.

J. Sun, W. Zhou, H. Yang, X. Zhen, L. Ma, D. Williams, X. Sun, and M.-F. Lang, “Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels,” Chem. Commun. 54(39), 4923–4926 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

N. Chou, Y. Kim, and S. Kim, “A method to pattern silver nanowires directly on wafer-scale PDMS substrate and its applications,” ACS Appl. Mater. Interfaces 8(9), 6269–6276 (2016).
[Crossref]

ACS Nano (5)

Y. Cheng, R. Wang, J. Sun, and L. Gao, “Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires,” ACS Nano 9(4), 3887–3895 (2015).
[Crossref]

C. Yan, J. Wang, and P. S. Lee, “Stretchable graphene thermistor with tunable thermal index,” ACS Nano 9(2), 2130–2137 (2015).
[Crossref]

H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980–10987 (2014).
[Crossref]

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref]

Adv. Funct. Mater. (1)

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, and W. C. H. Choy, “Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach,” Adv. Funct. Mater. 25(27), 4211–4218 (2015).
[Crossref]

Adv. Mater. (5)

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, and K. Kempa, “Uniform self-forming metallic network as a high-performance transparent conductive electrode,” Adv. Mater. 26(6), 873–877 (2014).
[Crossref]

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref]

Y. Xia, K. Sun, and J. Ouyang, “Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref]

S. H. Kim, W. Song, M. W. Jung, M.-A. Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K.-S. An, “Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors,” Adv. Mater. 26(25), 4247–4252 (2014).
[Crossref]

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: The next generation of transparent conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Angew. Chem. Int. Ed. (1)

J. Song and H. Zeng, “Transparent electrodes printed with nanocrystal inks for flexible smart devices,” Angew. Chem. Int. Ed. 54(34), 9760–9774 (2015).
[Crossref]

Appl. Phys. Lett. (1)

F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, “Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Appl. Phys. Lett. 99(18), 183307 (2011).
[Crossref]

Chem. Commun. (1)

J. Sun, W. Zhou, H. Yang, X. Zhen, L. Ma, D. Williams, X. Sun, and M.-F. Lang, “Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels,” Chem. Commun. 54(39), 4923–4926 (2018).
[Crossref]

Curr. Opin. Chem. Eng. (1)

G. U. Kulkarni, S. Kiruthika, R. Gupta, and K. Rao, “Towards low cost materials and methods for transparent electrodes,” Curr. Opin. Chem. Eng. 8, 60–68 (2015).
[Crossref]

Energy Environ. Sci. (1)

Y. Xia, K. Sun, and J. Ouyang, “Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells,” Energy Environ. Sci. 5(1), 5325–5332 (2012).
[Crossref]

Int. J. Sustainable Built Environ. (1)

N. L. Sbar, L. Podbelski, H. M. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” Int. J. Sustainable Built Environ. 1(1), 125–139 (2012).
[Crossref]

J. Mater. Chem. A (1)

S.-E. Park, S. Kim, D.-Y. Lee, E. Kim, and J. Hwang, “Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells,” J. Mater. Chem. A 1(45), 14286–14293 (2013).
[Crossref]

J. Mater. Chem. C (1)

K. Rana, J. Singh, and J.-H. Ahn, “A graphene-based transparent electrode for use in flexible optoelectronic devices,” J. Mater. Chem. C 2(15), 2646–2656 (2014).
[Crossref]

Nano Lett. (3)

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref]

F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14(9), 5068–5074 (2014).
[Crossref]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref]

Nanoscale Res. Lett. (1)

C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6(1), 75 (2011).
[Crossref]

Nanotechnology (1)

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

Nat. Commun. (1)

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat. Commun. 5(1), 5674 (2014).
[Crossref]

Nat. Nanotechnol. (1)

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref]

Nat. Photonics (1)

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

Nature (1)

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Renewable Energy (1)

G. Macrelli, “Electrochromic windows,” Renewable Energy 15(1-4), 306–311 (1998).
[Crossref]

Sci. Rep. (1)

P. Kou, L. Yang, C. Chang, and S. He, “Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach,” Sci. Rep. 7(1), 42052 (2017).
[Crossref]

Science (1)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref]

Small (2)

V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small 7(18), 2621–2628 (2011).
[Crossref]

Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, “Bio-inspired chemical fabrication of stretchable transparent electrodes,” Small 11(28), 3444–3449 (2015).
[Crossref]

Other (3)

G-SMATT: http://www.g-smattglobal.com/

Tianjin Cecep Brillshow Co., Ltd: http://en.znbxcecep.com/

G. Fang and C. Li, “Multi-functional glass curtain wall, has multiple LED transparent glass modules that are connected together, and LED circuit and electronic intelligent switchable glass that are connected with computer signal control line,” China Patent No. 201810348161.8.

Supplementary Material (1)

NameDescription
» Visualization 1       When the transparent LED screen is being dynamically bent into a radius as small as about 15 mm, the LEDs can still work.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a-d) Schematic diagram of the fabrication procedure of AgNW transparent conductive strips: (a) PVC mask on a piece of clean glass or PET substrate; (b) poly-L-lysine treatment; (c) spray coating of AgNWs; (d) peel-off of the PVC mask. Schematic diagrams of (e) the PVC mask for the LED-connected AgNW transparent conductive circuit and (f) the final AgNW transparent circuit with LEDs connected.
Fig. 2.
Fig. 2. (a) Photos of our fabricated AgNW transparent conductive strip with different spray doses on a piece of toughened glass (spray step distance: 1.5 cm), which was put on two pieces of white paper with and without Zhejiang University logos. SEM images of AgNW transparent conductive strips fabricated on a piece of glass coverslip with the same method (spray step distance: 1.3 cm) but different spray doses of: (b) 20 µL, (c) 30 µL, (d) 40 µL, (e) 50 µL, and (f) 60 µL, respectively. (c1) gives a zoomed-in image for the case of 30 µL.
Fig. 3.
Fig. 3. Measured resistances (discrete dots) as a function of length, and their fitting lines (solid lines) for AgNW transparent conductive strips fabricated with different spray doses (spray step distance: 1.3 cm; concentration of AgNWs in ethanol: 5 mg/mL) as well as a 160-nm thick ITO strip. Resistivity per unit length is also indicated for each strip. The red up-triangles are average resistances of three strips fabricated with the same spray dose of 30 µL. The error bars are indicated by vertical black sticks.
Fig. 4.
Fig. 4. (a) Averaged optical transmission spectra (Tave) measured at the central position of a spray area and at the intersection position of adjacent spray areas, and (b) their spectrally averaged differences (ΔT; squares); (c) averaged sheet resistances (Rsh_ave; diamonds) and their mean square deviations (ΔRsh; spheres) at 5 random positions for different transparent conductive films on pieces of glass coverslip fabricated with the same spray dose of 30 µL but different spray step distances. For comparison, the optical transmission spectrum and sheet resistance of ITO (160 nm in thickness) are also plotted in (a) and (c), respectively.
Fig. 5.
Fig. 5. (a) Schematic diagram of an EL measurement sample, (b) measured EL spectra when 2 V (for red), 3 V (for green), and 3 V (for blue) are applied to the probes 1 and 2 connecting to the corresponding pairs of LED pins. The two probes move away from the LED in step of 1 cm as indicated by the blue dashed vertical lines.
Fig. 6.
Fig. 6. Photos of a transparent LED screen based on a 1.2-m long transparent conductive circuit on toughened glass taken: (a, b) with unbiased LEDs (a zoomed-in photo shown in (b1)); and with 30 V partially biased LEDs emitting (c) red, (d) green, and (e) blue lights.
Fig. 7.
Fig. 7. Photos of a transparent LED screen with a “ZJU” pattern on toughened glass, emitting different colors under corresponding biases.
Fig. 8.
Fig. 8. Measured resistance (R) normalized to its initial value (R0) as functions of (a) the bending radius and (b) the bending cycles (with a fixed bending radius of 9 mm) for both AgNW (red) and ITO (black) pure strips, respectively. The inset of (b) shows how the strips are fixed and bent.
Fig. 9.
Fig. 9. Demonstration of flexible transparent LED screens based on AgNW transparent conductive circuits on PET: (a) when the screen is attached to a 65-mm diameter bottle; (b) when the screen is bent to a radius as small as ∼15 mm.
Fig. 10.
Fig. 10. (a) Transmission spectra measured respectively at the central position of a spray area (solid curves) and at the intersection position of adjacent spray areas (dashed curves) for five transparent conductive films on pieces of glass coverslip fabricated by the spray coating method with different spray step distances. (b) Photo of the five samples, on which the central spray areas as well as the intersection positions of adjacent spray areas are indicated by solid and dashed circles, respectively. The non-uniformity induced by the spray step distance was clearly seen in this figure.
Fig. 11.
Fig. 11. XPS (X-ray photoelectron spectroscopy) spectra of the Ag 3d core level of fresh AgNW film immediately after fabrication (red curve) and the AgNW film stored in air at room temperature for two days (black curve). The film was sufficiently thick to avoid any transmission of X-ray into the Si substrate. In comparison with the fresh sample, the two peaks of the sample stored for two days moves to the lower binding energy, clearly indicating that Ag can be easily oxidized in air.