Abstract

We study a conductive polymer PEDOT: PSS for infrared thermal detection. We propose to use PEDOT: PSS simultaneously as the thermal sensitive material, infrared absorption layer, thermal insulation layer, as well as the electrical connection material. We demonstrate theoretically and confirm experimentally that PEDOT: PSS has a high temperature coefficient of resistance (TCR) of ∼0.6%/K at room temperature, which is comparable to those inorganic materials commonly used in commercial bolometers. We then experimentally characterize the infrared absorption of a thin PEDOT: PSS film, and we find that it has considerable absorption (over 0.2) in a broad range even with a film as thin as 100nm. This is beneficial to reduce the thermal capacitance and thereby increase the response speed. Finally, we characterize the infrared response of PEDOT: PSS film, and the detectivity is found to be 2×108 cmHz1/2/W. This work is especially inspirational in the design and fabrication of versatile, and highly integrated sensors and detectors, as well as other polymer-based devices and systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical, structural, and electrical properties of PEDOT:PSS thin films doped with silver nanoprisms

Zhixiong Cao, Zhuoying Chen, and Ludovic Escoubas
Opt. Mater. Express 4(12) 2525-2534 (2014)

Towards new fiber optic sensors based on the vapor deposited conducting polymer PEDOT:Tos

Soroush Shahnia, Junaiz Rehmen, David G. Lancaster, Tanya M. Monro, Heike Ebendorff-Heidepriem, Drew Evans, and Shahraam Afshar V.
Opt. Mater. Express 9(12) 4517-4531 (2019)

Broadband infrared thermal detection using manganese cobalt nickel oxide thin film

Wei Zhou, Yiming Yin, Caiyang Wu, Wanli Ma, Niangjuan Yao, Jing Wu, and Zhiming Huang
Opt. Express 27(11) 15726-15734 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  2. P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76(1), 1–24 (1994).
    [Crossref]
  3. A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30(19), 2563–2565 (2005).
    [Crossref]
  4. A. W. M. Lee, B. S. Wil, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
    [Crossref]
  5. S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators, A 66(1-3), 193–199 (1998).
    [Crossref]
  6. M. Abdel-Rahman, N. Al-Khalli, M. F. Zia, M. Alduraibi, B. Ilahi, E. Awad, and N. Debbar, “Fabrication and design of vanadium oxide microbolometer,” AIP Conf. Proc. 1809, 020001 (2017).
    [Crossref]
  7. M. Tanzid, N. J. Hogan, H. Robatjazi, A. Veeraraghavan, and N. J. Halas, “Absorption-enhanced imaging through scattering media using carbon black nano-particles: from visible to near infrared wavelengths,” J. Opt. 20(5), 054001 (2018).
    [Crossref]
  8. S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
    [Crossref]
  9. P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
    [Crossref]
  10. Y. Zhang, Y. Su, C. Qian, M. Zhao, and L. Chen, “Microbridge testing of silicon nitride thin films deposited on silicon wafers,” Acta Mater. 48(11), 2843–2857 (2000).
    [Crossref]
  11. H. S. Dow, W. S. Kim, and J. W. Lee, “Thermal and electrical properties of silicon nitride substrates,” AIP Adv. 7(9), 095022 (2017).
    [Crossref]
  12. Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, and K. Hirao, “A tough silicon nitride ceramic with high thermal conductivity,” Adv. Mater. 23(39), 4563–4567 (2011).
    [Crossref]
  13. X. Wang, K. D. Parrish, J. A. Malen, and P. K. L. Chan, “Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles,” Sci. Rep. 5(1), 16095 (2015).
    [Crossref]
  14. N. Kim, “Thermal transport properties of thin films of small molecule organic semiconductors,” Appl. Phys. Lett. 87(24), 241908 (2005).
    [Crossref]
  15. Y. Jin, S. Nola, K. P. Pipe, and M. Shtein, “Improving thermoelectric efficiency in organic-metal nanocomposites via extra-low thermal boundary conductance,” J. Appl. Phys. 114(19), 194303 (2013).
    [Crossref]
  16. Y. Jin, C. Shao, J. Kieffer, K. P. Pipe, and M. Shtein, “Origins of thermal boundary conductance of interfaces involving organic semiconductors,” J. Appl. Phys. 112(9), 093503 (2012).
    [Crossref]
  17. H. J. Son, W. Kwon, Y. S. Lee, and H. C. Lee, “Poly(3, 4-Ethylenedioxythiophene): poly(Styrenesulfonate) (PEDOT: PSS) films for the microbolometer applications,” IEICE Trans. Electron. E92-C(5), 702–707 (2009).
    [Crossref]
  18. A. Håkansson, M. Shahi, J. W. Brill, S. Fabiano, and X. Crispin, “Conducting-polymer bolometers for low-cost IR-detection systems,” Adv. Electron. Mater. 5(6), 1800975 (2019).
    [Crossref]
  19. S. C. J. Meskers, J. K. J. van Duren, R. A. J. Janssen, F. Louwet, and L. B. Groenendaal, “Infrared detectors with Poly(3,4-ethylenedioxy thiophene)/Poly(styrene sulfonic acid) (PEDOT/PSS) as the active material,” Adv. Mater. 15(78), 613–616 (2003).
    [Crossref]
  20. A. M. Nardes, M. Kemerink, and R. A. J. Janssen, “Anisotropic hopping conduction in spin-coated PEDOT: PSS thin films,” Phys. Rev. B 76(8), 085208 (2007).
    [Crossref]
  21. A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, “Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films,” Adv. Mater. 19(9), 1196–1200 (2007).
    [Crossref]
  22. G. H. Kim, L. Shao, and K. P. Pipe, “Engineered doping of organic semiconductors for enhanced thermoelectric efficiency,” Nat. Mater. 12(8), 719–723 (2013).
    [Crossref]
  23. C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators A Phys. 90(3), 212–214 (2001).
    [Crossref]
  24. R. Ambrosio, M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, “An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys,” Phys. Status Solidi C 7(3–4), 1180–1183 (2010).
    [Crossref]
  25. S. C. J. Meskers, J. K. J. van Duren, and R. A. J. Janssen, “Stimulation of electrical conductivity in a pi-conjugated polymeric conductor with infrared light,” J. Appl. Phys. 92(12), 7041–7050 (2002).
    [Crossref]
  26. J. L. Apperloo, L. Groenendaal, H. Verheyen, M. Jayakannan, R. A. J. Janssen, A. Dikhissi, D. Beljonne, R. Lazzaroni, and J.-L. Brédas, “Optical and redox properties of a series of 3, 4-ethylenedioxythiophene oligomers,” Chem. - Eur. J. 8(10), 2384–2396 (2002).
    [Crossref]
  27. N. C. Anh, H. J. Shin, K. T. Kim, Y. H. Han, and S. Moon, “Characterization of uncooled bolometer with vanadium tungsten oxide infrared-active layer,” J. Korean Phys. Soc. 45, S921–S923 (2002).
  28. G. Hyseni, Y. Seni, N. Caka, and K. Hyseni, “Infrared thermal detectors parameters: semiconductor bolometers versus pyroelectrics,” Wseas Trans. Circuit and Systems 9(4), 238–247 (2010).
  29. I. Lee, G. W. Kim, M. Yang, and T. S. Kim, “Simultaneously enhancing the cohesion and electrical conductivity of PEDOT: PSS conductive polymer films using DMSO additives,” ACS Appl. Mater. Interfaces 8(1), 302–310 (2016).
    [Crossref]
  30. E. Yildirim, G. Wu, X. Yong, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, and S. Yang, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” J. Mater. Chem. C 6(19), 5122–5131 (2018).
    [Crossref]
  31. J. Liu, X. J. Wang, D. Li, N. E. Nelson, R. A. Segalman, and D. G. Cahill, “Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity,” Macromolecules 48(3), 585–591 (2015).
    [Crossref]
  32. F. X. Jiang, J. K. Xu, B. Y. Lu, Y. Xie, R. J. Huang, and L. F. Li, “Thermoelectric performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate),” Chin. Phys. Lett. 25(6), 2202–2205 (2008).
    [Crossref]
  33. S. Zhang, P. Kumar, A. S. Nouas, L. Fontaine, H. Tang, and F. Cicoiraa, “Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors,” APL Mater. 3(1), 014911 (2015).
    [Crossref]
  34. S. Zhang and F. Cicoira, “Water-Enabled Healing of Conducting Polymer Films,” Adv. Mater. 29(40), 1703098 (2017).
    [Crossref]
  35. E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
    [Crossref]
  36. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
    [Crossref]
  37. J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
    [Crossref]
  38. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
    [Crossref]

2019 (1)

A. Håkansson, M. Shahi, J. W. Brill, S. Fabiano, and X. Crispin, “Conducting-polymer bolometers for low-cost IR-detection systems,” Adv. Electron. Mater. 5(6), 1800975 (2019).
[Crossref]

2018 (2)

M. Tanzid, N. J. Hogan, H. Robatjazi, A. Veeraraghavan, and N. J. Halas, “Absorption-enhanced imaging through scattering media using carbon black nano-particles: from visible to near infrared wavelengths,” J. Opt. 20(5), 054001 (2018).
[Crossref]

E. Yildirim, G. Wu, X. Yong, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, and S. Yang, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” J. Mater. Chem. C 6(19), 5122–5131 (2018).
[Crossref]

2017 (4)

S. Zhang and F. Cicoira, “Water-Enabled Healing of Conducting Polymer Films,” Adv. Mater. 29(40), 1703098 (2017).
[Crossref]

M. Abdel-Rahman, N. Al-Khalli, M. F. Zia, M. Alduraibi, B. Ilahi, E. Awad, and N. Debbar, “Fabrication and design of vanadium oxide microbolometer,” AIP Conf. Proc. 1809, 020001 (2017).
[Crossref]

H. S. Dow, W. S. Kim, and J. W. Lee, “Thermal and electrical properties of silicon nitride substrates,” AIP Adv. 7(9), 095022 (2017).
[Crossref]

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
[Crossref]

2016 (1)

I. Lee, G. W. Kim, M. Yang, and T. S. Kim, “Simultaneously enhancing the cohesion and electrical conductivity of PEDOT: PSS conductive polymer films using DMSO additives,” ACS Appl. Mater. Interfaces 8(1), 302–310 (2016).
[Crossref]

2015 (4)

J. Liu, X. J. Wang, D. Li, N. E. Nelson, R. A. Segalman, and D. G. Cahill, “Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity,” Macromolecules 48(3), 585–591 (2015).
[Crossref]

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

X. Wang, K. D. Parrish, J. A. Malen, and P. K. L. Chan, “Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles,” Sci. Rep. 5(1), 16095 (2015).
[Crossref]

S. Zhang, P. Kumar, A. S. Nouas, L. Fontaine, H. Tang, and F. Cicoiraa, “Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors,” APL Mater. 3(1), 014911 (2015).
[Crossref]

2014 (1)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

2013 (2)

G. H. Kim, L. Shao, and K. P. Pipe, “Engineered doping of organic semiconductors for enhanced thermoelectric efficiency,” Nat. Mater. 12(8), 719–723 (2013).
[Crossref]

Y. Jin, S. Nola, K. P. Pipe, and M. Shtein, “Improving thermoelectric efficiency in organic-metal nanocomposites via extra-low thermal boundary conductance,” J. Appl. Phys. 114(19), 194303 (2013).
[Crossref]

2012 (1)

Y. Jin, C. Shao, J. Kieffer, K. P. Pipe, and M. Shtein, “Origins of thermal boundary conductance of interfaces involving organic semiconductors,” J. Appl. Phys. 112(9), 093503 (2012).
[Crossref]

2011 (1)

Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, and K. Hirao, “A tough silicon nitride ceramic with high thermal conductivity,” Adv. Mater. 23(39), 4563–4567 (2011).
[Crossref]

2010 (2)

G. Hyseni, Y. Seni, N. Caka, and K. Hyseni, “Infrared thermal detectors parameters: semiconductor bolometers versus pyroelectrics,” Wseas Trans. Circuit and Systems 9(4), 238–247 (2010).

R. Ambrosio, M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, “An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys,” Phys. Status Solidi C 7(3–4), 1180–1183 (2010).
[Crossref]

2009 (2)

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

H. J. Son, W. Kwon, Y. S. Lee, and H. C. Lee, “Poly(3, 4-Ethylenedioxythiophene): poly(Styrenesulfonate) (PEDOT: PSS) films for the microbolometer applications,” IEICE Trans. Electron. E92-C(5), 702–707 (2009).
[Crossref]

2008 (2)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

F. X. Jiang, J. K. Xu, B. Y. Lu, Y. Xie, R. J. Huang, and L. F. Li, “Thermoelectric performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate),” Chin. Phys. Lett. 25(6), 2202–2205 (2008).
[Crossref]

2007 (2)

A. M. Nardes, M. Kemerink, and R. A. J. Janssen, “Anisotropic hopping conduction in spin-coated PEDOT: PSS thin films,” Phys. Rev. B 76(8), 085208 (2007).
[Crossref]

A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, “Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films,” Adv. Mater. 19(9), 1196–1200 (2007).
[Crossref]

2006 (1)

A. W. M. Lee, B. S. Wil, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

2005 (2)

N. Kim, “Thermal transport properties of thin films of small molecule organic semiconductors,” Appl. Phys. Lett. 87(24), 241908 (2005).
[Crossref]

A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30(19), 2563–2565 (2005).
[Crossref]

2003 (1)

S. C. J. Meskers, J. K. J. van Duren, R. A. J. Janssen, F. Louwet, and L. B. Groenendaal, “Infrared detectors with Poly(3,4-ethylenedioxy thiophene)/Poly(styrene sulfonic acid) (PEDOT/PSS) as the active material,” Adv. Mater. 15(78), 613–616 (2003).
[Crossref]

2002 (3)

S. C. J. Meskers, J. K. J. van Duren, and R. A. J. Janssen, “Stimulation of electrical conductivity in a pi-conjugated polymeric conductor with infrared light,” J. Appl. Phys. 92(12), 7041–7050 (2002).
[Crossref]

J. L. Apperloo, L. Groenendaal, H. Verheyen, M. Jayakannan, R. A. J. Janssen, A. Dikhissi, D. Beljonne, R. Lazzaroni, and J.-L. Brédas, “Optical and redox properties of a series of 3, 4-ethylenedioxythiophene oligomers,” Chem. - Eur. J. 8(10), 2384–2396 (2002).
[Crossref]

N. C. Anh, H. J. Shin, K. T. Kim, Y. H. Han, and S. Moon, “Characterization of uncooled bolometer with vanadium tungsten oxide infrared-active layer,” J. Korean Phys. Soc. 45, S921–S923 (2002).

2001 (1)

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators A Phys. 90(3), 212–214 (2001).
[Crossref]

2000 (1)

Y. Zhang, Y. Su, C. Qian, M. Zhao, and L. Chen, “Microbridge testing of silicon nitride thin films deposited on silicon wafers,” Acta Mater. 48(11), 2843–2857 (2000).
[Crossref]

1998 (1)

S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators, A 66(1-3), 193–199 (1998).
[Crossref]

1997 (1)

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

1994 (1)

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76(1), 1–24 (1994).
[Crossref]

Abdel-Rahman, M.

M. Abdel-Rahman, N. Al-Khalli, M. F. Zia, M. Alduraibi, B. Ilahi, E. Awad, and N. Debbar, “Fabrication and design of vanadium oxide microbolometer,” AIP Conf. Proc. 1809, 020001 (2017).
[Crossref]

Alduraibi, M.

M. Abdel-Rahman, N. Al-Khalli, M. F. Zia, M. Alduraibi, B. Ilahi, E. Awad, and N. Debbar, “Fabrication and design of vanadium oxide microbolometer,” AIP Conf. Proc. 1809, 020001 (2017).
[Crossref]

Al-Khalli, N.

M. Abdel-Rahman, N. Al-Khalli, M. F. Zia, M. Alduraibi, B. Ilahi, E. Awad, and N. Debbar, “Fabrication and design of vanadium oxide microbolometer,” AIP Conf. Proc. 1809, 020001 (2017).
[Crossref]

Ambrosio, R.

R. Ambrosio, M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, “An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys,” Phys. Status Solidi C 7(3–4), 1180–1183 (2010).
[Crossref]

Andersson, J. Y.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

Anh, N. C.

N. C. Anh, H. J. Shin, K. T. Kim, Y. H. Han, and S. Moon, “Characterization of uncooled bolometer with vanadium tungsten oxide infrared-active layer,” J. Korean Phys. Soc. 45, S921–S923 (2002).

Apperloo, J. L.

J. L. Apperloo, L. Groenendaal, H. Verheyen, M. Jayakannan, R. A. J. Janssen, A. Dikhissi, D. Beljonne, R. Lazzaroni, and J.-L. Brédas, “Optical and redox properties of a series of 3, 4-ethylenedioxythiophene oligomers,” Chem. - Eur. J. 8(10), 2384–2396 (2002).
[Crossref]

Awad, E.

M. Abdel-Rahman, N. Al-Khalli, M. F. Zia, M. Alduraibi, B. Ilahi, E. Awad, and N. Debbar, “Fabrication and design of vanadium oxide microbolometer,” AIP Conf. Proc. 1809, 020001 (2017).
[Crossref]

Baert, C.

S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators, A 66(1-3), 193–199 (1998).
[Crossref]

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Bastiaansen, J. A. M.

A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, “Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films,” Adv. Mater. 19(9), 1196–1200 (2007).
[Crossref]

Beljonne, D.

J. L. Apperloo, L. Groenendaal, H. Verheyen, M. Jayakannan, R. A. J. Janssen, A. Dikhissi, D. Beljonne, R. Lazzaroni, and J.-L. Brédas, “Optical and redox properties of a series of 3, 4-ethylenedioxythiophene oligomers,” Chem. - Eur. J. 8(10), 2384–2396 (2002).
[Crossref]

Brédas, J.-L.

J. L. Apperloo, L. Groenendaal, H. Verheyen, M. Jayakannan, R. A. J. Janssen, A. Dikhissi, D. Beljonne, R. Lazzaroni, and J.-L. Brédas, “Optical and redox properties of a series of 3, 4-ethylenedioxythiophene oligomers,” Chem. - Eur. J. 8(10), 2384–2396 (2002).
[Crossref]

Brill, J. W.

A. Håkansson, M. Shahi, J. W. Brill, S. Fabiano, and X. Crispin, “Conducting-polymer bolometers for low-cost IR-detection systems,” Adv. Electron. Mater. 5(6), 1800975 (2019).
[Crossref]

Cahill, D. G.

J. Liu, X. J. Wang, D. Li, N. E. Nelson, R. A. Segalman, and D. G. Cahill, “Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity,” Macromolecules 48(3), 585–591 (2015).
[Crossref]

Caka, N.

G. Hyseni, Y. Seni, N. Caka, and K. Hyseni, “Infrared thermal detectors parameters: semiconductor bolometers versus pyroelectrics,” Wseas Trans. Circuit and Systems 9(4), 238–247 (2010).

Caymax, M.

S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators, A 66(1-3), 193–199 (1998).
[Crossref]

Chan, P. K. L.

X. Wang, K. D. Parrish, J. A. Malen, and P. K. L. Chan, “Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles,” Sci. Rep. 5(1), 16095 (2015).
[Crossref]

Chan, W. L.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Chen, C.

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators A Phys. 90(3), 212–214 (2001).
[Crossref]

Chen, L.

Y. Zhang, Y. Su, C. Qian, M. Zhao, and L. Chen, “Microbridge testing of silicon nitride thin films deposited on silicon wafers,” Acta Mater. 48(11), 2843–2857 (2000).
[Crossref]

Choulis, S. A.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Cicoira, F.

S. Zhang and F. Cicoira, “Water-Enabled Healing of Conducting Polymer Films,” Adv. Mater. 29(40), 1703098 (2017).
[Crossref]

Cicoiraa, F.

S. Zhang, P. Kumar, A. S. Nouas, L. Fontaine, H. Tang, and F. Cicoiraa, “Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors,” APL Mater. 3(1), 014911 (2015).
[Crossref]

Crispin, X.

A. Håkansson, M. Shahi, J. W. Brill, S. Fabiano, and X. Crispin, “Conducting-polymer bolometers for low-cost IR-detection systems,” Adv. Electron. Mater. 5(6), 1800975 (2019).
[Crossref]

Dalas, E.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

de Kok, M. M.

A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, “Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films,” Adv. Mater. 19(9), 1196–1200 (2007).
[Crossref]

Debbar, N.

M. Abdel-Rahman, N. Al-Khalli, M. F. Zia, M. Alduraibi, B. Ilahi, E. Awad, and N. Debbar, “Fabrication and design of vanadium oxide microbolometer,” AIP Conf. Proc. 1809, 020001 (2017).
[Crossref]

Dikhissi, A.

J. L. Apperloo, L. Groenendaal, H. Verheyen, M. Jayakannan, R. A. J. Janssen, A. Dikhissi, D. Beljonne, R. Lazzaroni, and J.-L. Brédas, “Optical and redox properties of a series of 3, 4-ethylenedioxythiophene oligomers,” Chem. - Eur. J. 8(10), 2384–2396 (2002).
[Crossref]

Dow, H. S.

H. S. Dow, W. S. Kim, and J. W. Lee, “Thermal and electrical properties of silicon nitride substrates,” AIP Adv. 7(9), 095022 (2017).
[Crossref]

Eriksson, P.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

Fabiano, S.

A. Håkansson, M. Shahi, J. W. Brill, S. Fabiano, and X. Crispin, “Conducting-polymer bolometers for low-cost IR-detection systems,” Adv. Electron. Mater. 5(6), 1800975 (2019).
[Crossref]

Fiorini, P.

S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators, A 66(1-3), 193–199 (1998).
[Crossref]

Fontaine, L.

S. Zhang, P. Kumar, A. S. Nouas, L. Fontaine, H. Tang, and F. Cicoiraa, “Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors,” APL Mater. 3(1), 014911 (2015).
[Crossref]

Fujisawa, D.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Groenendaal, L.

J. L. Apperloo, L. Groenendaal, H. Verheyen, M. Jayakannan, R. A. J. Janssen, A. Dikhissi, D. Beljonne, R. Lazzaroni, and J.-L. Brédas, “Optical and redox properties of a series of 3, 4-ethylenedioxythiophene oligomers,” Chem. - Eur. J. 8(10), 2384–2396 (2002).
[Crossref]

Groenendaal, L. B.

S. C. J. Meskers, J. K. J. van Duren, R. A. J. Janssen, F. Louwet, and L. B. Groenendaal, “Infrared detectors with Poly(3,4-ethylenedioxy thiophene)/Poly(styrene sulfonic acid) (PEDOT/PSS) as the active material,” Adv. Mater. 15(78), 613–616 (2003).
[Crossref]

Guerboukha, H.

Håkansson, A.

A. Håkansson, M. Shahi, J. W. Brill, S. Fabiano, and X. Crispin, “Conducting-polymer bolometers for low-cost IR-detection systems,” Adv. Electron. Mater. 5(6), 1800975 (2019).
[Crossref]

Halas, N. J.

M. Tanzid, N. J. Hogan, H. Robatjazi, A. Veeraraghavan, and N. J. Halas, “Absorption-enhanced imaging through scattering media using carbon black nano-particles: from visible to near infrared wavelengths,” J. Opt. 20(5), 054001 (2018).
[Crossref]

Han, Y. H.

N. C. Anh, H. J. Shin, K. T. Kim, Y. H. Han, and S. Moon, “Characterization of uncooled bolometer with vanadium tungsten oxide infrared-active layer,” J. Korean Phys. Soc. 45, S921–S923 (2002).

Hata, H.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Heredia, A.

R. Ambrosio, M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, “An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys,” Phys. Status Solidi C 7(3–4), 1180–1183 (2010).
[Crossref]

Hirao, K.

Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, and K. Hirao, “A tough silicon nitride ceramic with high thermal conductivity,” Adv. Mater. 23(39), 4563–4567 (2011).
[Crossref]

Hogan, N. J.

M. Tanzid, N. J. Hogan, H. Robatjazi, A. Veeraraghavan, and N. J. Halas, “Absorption-enhanced imaging through scattering media using carbon black nano-particles: from visible to near infrared wavelengths,” J. Opt. 20(5), 054001 (2018).
[Crossref]

Hu, Q.

A. W. M. Lee, B. S. Wil, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30(19), 2563–2565 (2005).
[Crossref]

Huang, R. J.

F. X. Jiang, J. K. Xu, B. Y. Lu, Y. Xie, R. J. Huang, and L. F. Li, “Thermoelectric performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate),” Chin. Phys. Lett. 25(6), 2202–2205 (2008).
[Crossref]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Hyseni, G.

G. Hyseni, Y. Seni, N. Caka, and K. Hyseni, “Infrared thermal detectors parameters: semiconductor bolometers versus pyroelectrics,” Wseas Trans. Circuit and Systems 9(4), 238–247 (2010).

Hyseni, K.

G. Hyseni, Y. Seni, N. Caka, and K. Hyseni, “Infrared thermal detectors parameters: semiconductor bolometers versus pyroelectrics,” Wseas Trans. Circuit and Systems 9(4), 238–247 (2010).

Hyuga, H.

Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, and K. Hirao, “A tough silicon nitride ceramic with high thermal conductivity,” Adv. Mater. 23(39), 4563–4567 (2011).
[Crossref]

Ilahi, B.

M. Abdel-Rahman, N. Al-Khalli, M. F. Zia, M. Alduraibi, B. Ilahi, E. Awad, and N. Debbar, “Fabrication and design of vanadium oxide microbolometer,” AIP Conf. Proc. 1809, 020001 (2017).
[Crossref]

Janssen, R. A. J.

A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, “Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films,” Adv. Mater. 19(9), 1196–1200 (2007).
[Crossref]

A. M. Nardes, M. Kemerink, and R. A. J. Janssen, “Anisotropic hopping conduction in spin-coated PEDOT: PSS thin films,” Phys. Rev. B 76(8), 085208 (2007).
[Crossref]

S. C. J. Meskers, J. K. J. van Duren, R. A. J. Janssen, F. Louwet, and L. B. Groenendaal, “Infrared detectors with Poly(3,4-ethylenedioxy thiophene)/Poly(styrene sulfonic acid) (PEDOT/PSS) as the active material,” Adv. Mater. 15(78), 613–616 (2003).
[Crossref]

J. L. Apperloo, L. Groenendaal, H. Verheyen, M. Jayakannan, R. A. J. Janssen, A. Dikhissi, D. Beljonne, R. Lazzaroni, and J.-L. Brédas, “Optical and redox properties of a series of 3, 4-ethylenedioxythiophene oligomers,” Chem. - Eur. J. 8(10), 2384–2396 (2002).
[Crossref]

S. C. J. Meskers, J. K. J. van Duren, and R. A. J. Janssen, “Stimulation of electrical conductivity in a pi-conjugated polymeric conductor with infrared light,” J. Appl. Phys. 92(12), 7041–7050 (2002).
[Crossref]

Jayakannan, M.

J. L. Apperloo, L. Groenendaal, H. Verheyen, M. Jayakannan, R. A. J. Janssen, A. Dikhissi, D. Beljonne, R. Lazzaroni, and J.-L. Brédas, “Optical and redox properties of a series of 3, 4-ethylenedioxythiophene oligomers,” Chem. - Eur. J. 8(10), 2384–2396 (2002).
[Crossref]

Jiang, F. X.

F. X. Jiang, J. K. Xu, B. Y. Lu, Y. Xie, R. J. Huang, and L. F. Li, “Thermoelectric performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate),” Chin. Phys. Lett. 25(6), 2202–2205 (2008).
[Crossref]

Jin, Y.

Y. Jin, S. Nola, K. P. Pipe, and M. Shtein, “Improving thermoelectric efficiency in organic-metal nanocomposites via extra-low thermal boundary conductance,” J. Appl. Phys. 114(19), 194303 (2013).
[Crossref]

Y. Jin, C. Shao, J. Kieffer, K. P. Pipe, and M. Shtein, “Origins of thermal boundary conductance of interfaces involving organic semiconductors,” J. Appl. Phys. 112(9), 093503 (2012).
[Crossref]

Karageorgopoulos, D.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Kemerink, M.

A. M. Nardes, M. Kemerink, and R. A. J. Janssen, “Anisotropic hopping conduction in spin-coated PEDOT: PSS thin films,” Phys. Rev. B 76(8), 085208 (2007).
[Crossref]

A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, “Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films,” Adv. Mater. 19(9), 1196–1200 (2007).
[Crossref]

Kennou, S.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Kieffer, J.

Y. Jin, C. Shao, J. Kieffer, K. P. Pipe, and M. Shtein, “Origins of thermal boundary conductance of interfaces involving organic semiconductors,” J. Appl. Phys. 112(9), 093503 (2012).
[Crossref]

Kiggen, N. M. M.

A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, “Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films,” Adv. Mater. 19(9), 1196–1200 (2007).
[Crossref]

Kim, G. H.

G. H. Kim, L. Shao, and K. P. Pipe, “Engineered doping of organic semiconductors for enhanced thermoelectric efficiency,” Nat. Mater. 12(8), 719–723 (2013).
[Crossref]

Kim, G. W.

I. Lee, G. W. Kim, M. Yang, and T. S. Kim, “Simultaneously enhancing the cohesion and electrical conductivity of PEDOT: PSS conductive polymer films using DMSO additives,” ACS Appl. Mater. Interfaces 8(1), 302–310 (2016).
[Crossref]

Kim, K. T.

N. C. Anh, H. J. Shin, K. T. Kim, Y. H. Han, and S. Moon, “Characterization of uncooled bolometer with vanadium tungsten oxide infrared-active layer,” J. Korean Phys. Soc. 45, S921–S923 (2002).

Kim, N.

N. Kim, “Thermal transport properties of thin films of small molecule organic semiconductors,” Appl. Phys. Lett. 87(24), 241908 (2005).
[Crossref]

Kim, T. S.

I. Lee, G. W. Kim, M. Yang, and T. S. Kim, “Simultaneously enhancing the cohesion and electrical conductivity of PEDOT: PSS conductive polymer films using DMSO additives,” ACS Appl. Mater. Interfaces 8(1), 302–310 (2016).
[Crossref]

Kim, W. S.

H. S. Dow, W. S. Kim, and J. W. Lee, “Thermal and electrical properties of silicon nitride substrates,” AIP Adv. 7(9), 095022 (2017).
[Crossref]

Kimata, M.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Kosarev, A.

R. Ambrosio, M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, “An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys,” Phys. Status Solidi C 7(3–4), 1180–1183 (2010).
[Crossref]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Kumar, P.

S. Zhang, P. Kumar, A. S. Nouas, L. Fontaine, H. Tang, and F. Cicoiraa, “Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors,” APL Mater. 3(1), 014911 (2015).
[Crossref]

Kumar, S.

A. W. M. Lee, B. S. Wil, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

Kusano, D.

Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, and K. Hirao, “A tough silicon nitride ceramic with high thermal conductivity,” Adv. Mater. 23(39), 4563–4567 (2011).
[Crossref]

Kwon, W.

H. J. Son, W. Kwon, Y. S. Lee, and H. C. Lee, “Poly(3, 4-Ethylenedioxythiophene): poly(Styrenesulfonate) (PEDOT: PSS) films for the microbolometer applications,” IEICE Trans. Electron. E92-C(5), 702–707 (2009).
[Crossref]

Langeveld, B. M. W.

A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, “Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films,” Adv. Mater. 19(9), 1196–1200 (2007).
[Crossref]

Lazzaroni, R.

J. L. Apperloo, L. Groenendaal, H. Verheyen, M. Jayakannan, R. A. J. Janssen, A. Dikhissi, D. Beljonne, R. Lazzaroni, and J.-L. Brédas, “Optical and redox properties of a series of 3, 4-ethylenedioxythiophene oligomers,” Chem. - Eur. J. 8(10), 2384–2396 (2002).
[Crossref]

Lee, A. W.

Lee, A. W. M.

A. W. M. Lee, B. S. Wil, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

Lee, H. C.

H. J. Son, W. Kwon, Y. S. Lee, and H. C. Lee, “Poly(3, 4-Ethylenedioxythiophene): poly(Styrenesulfonate) (PEDOT: PSS) films for the microbolometer applications,” IEICE Trans. Electron. E92-C(5), 702–707 (2009).
[Crossref]

Lee, I.

I. Lee, G. W. Kim, M. Yang, and T. S. Kim, “Simultaneously enhancing the cohesion and electrical conductivity of PEDOT: PSS conductive polymer films using DMSO additives,” ACS Appl. Mater. Interfaces 8(1), 302–310 (2016).
[Crossref]

Lee, J. W.

H. S. Dow, W. S. Kim, and J. W. Lee, “Thermal and electrical properties of silicon nitride substrates,” AIP Adv. 7(9), 095022 (2017).
[Crossref]

Lee, Y. S.

H. J. Son, W. Kwon, Y. S. Lee, and H. C. Lee, “Poly(3, 4-Ethylenedioxythiophene): poly(Styrenesulfonate) (PEDOT: PSS) films for the microbolometer applications,” IEICE Trans. Electron. E92-C(5), 702–707 (2009).
[Crossref]

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Li, D.

J. Liu, X. J. Wang, D. Li, N. E. Nelson, R. A. Segalman, and D. G. Cahill, “Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity,” Macromolecules 48(3), 585–591 (2015).
[Crossref]

Li, J.

Li, L. F.

F. X. Jiang, J. K. Xu, B. Y. Lu, Y. Xie, R. J. Huang, and L. F. Li, “Thermoelectric performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate),” Chin. Phys. Lett. 25(6), 2202–2205 (2008).
[Crossref]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Liu, J.

J. Liu, X. J. Wang, D. Li, N. E. Nelson, R. A. Segalman, and D. G. Cahill, “Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity,” Macromolecules 48(3), 585–591 (2015).
[Crossref]

Louwet, F.

S. C. J. Meskers, J. K. J. van Duren, R. A. J. Janssen, F. Louwet, and L. B. Groenendaal, “Infrared detectors with Poly(3,4-ethylenedioxy thiophene)/Poly(styrene sulfonic acid) (PEDOT/PSS) as the active material,” Adv. Mater. 15(78), 613–616 (2003).
[Crossref]

Lu, B. Y.

F. X. Jiang, J. K. Xu, B. Y. Lu, Y. Xie, R. J. Huang, and L. F. Li, “Thermoelectric performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate),” Chin. Phys. Lett. 25(6), 2202–2205 (2008).
[Crossref]

Malen, J. A.

X. Wang, K. D. Parrish, J. A. Malen, and P. K. L. Chan, “Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles,” Sci. Rep. 5(1), 16095 (2015).
[Crossref]

Meskers, S. C. J.

S. C. J. Meskers, J. K. J. van Duren, R. A. J. Janssen, F. Louwet, and L. B. Groenendaal, “Infrared detectors with Poly(3,4-ethylenedioxy thiophene)/Poly(styrene sulfonic acid) (PEDOT/PSS) as the active material,” Adv. Mater. 15(78), 613–616 (2003).
[Crossref]

S. C. J. Meskers, J. K. J. van Duren, and R. A. J. Janssen, “Stimulation of electrical conductivity in a pi-conjugated polymeric conductor with infrared light,” J. Appl. Phys. 92(12), 7041–7050 (2002).
[Crossref]

Mireles, J.

R. Ambrosio, M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, “An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys,” Phys. Status Solidi C 7(3–4), 1180–1183 (2010).
[Crossref]

Misaki, K.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Mittleman, D. M.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Moon, S.

N. C. Anh, H. J. Shin, K. T. Kim, Y. H. Han, and S. Moon, “Characterization of uncooled bolometer with vanadium tungsten oxide infrared-active layer,” J. Korean Phys. Soc. 45, S921–S923 (2002).

Moreno, M.

R. Ambrosio, M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, “An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys,” Phys. Status Solidi C 7(3–4), 1180–1183 (2010).
[Crossref]

Nallappan, K.

Nardes, A. M.

A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, “Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films,” Adv. Mater. 19(9), 1196–1200 (2007).
[Crossref]

A. M. Nardes, M. Kemerink, and R. A. J. Janssen, “Anisotropic hopping conduction in spin-coated PEDOT: PSS thin films,” Phys. Rev. B 76(8), 085208 (2007).
[Crossref]

Nelson, N. E.

J. Liu, X. J. Wang, D. Li, N. E. Nelson, R. A. Segalman, and D. G. Cahill, “Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity,” Macromolecules 48(3), 585–591 (2015).
[Crossref]

Nola, S.

Y. Jin, S. Nola, K. P. Pipe, and M. Shtein, “Improving thermoelectric efficiency in organic-metal nanocomposites via extra-low thermal boundary conductance,” J. Appl. Phys. 114(19), 194303 (2013).
[Crossref]

Nouas, A. S.

S. Zhang, P. Kumar, A. S. Nouas, L. Fontaine, H. Tang, and F. Cicoiraa, “Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors,” APL Mater. 3(1), 014911 (2015).
[Crossref]

Ogawa, S.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Ouyang, J.

E. Yildirim, G. Wu, X. Yong, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, and S. Yang, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” J. Mater. Chem. C 6(19), 5122–5131 (2018).
[Crossref]

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Paliatsas, N.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Parrish, K. D.

X. Wang, K. D. Parrish, J. A. Malen, and P. K. L. Chan, “Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles,” Sci. Rep. 5(1), 16095 (2015).
[Crossref]

Petraki, F.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Pipe, K. P.

Y. Jin, S. Nola, K. P. Pipe, and M. Shtein, “Improving thermoelectric efficiency in organic-metal nanocomposites via extra-low thermal boundary conductance,” J. Appl. Phys. 114(19), 194303 (2013).
[Crossref]

G. H. Kim, L. Shao, and K. P. Pipe, “Engineered doping of organic semiconductors for enhanced thermoelectric efficiency,” Nat. Mater. 12(8), 719–723 (2013).
[Crossref]

Y. Jin, C. Shao, J. Kieffer, K. P. Pipe, and M. Shtein, “Origins of thermal boundary conductance of interfaces involving organic semiconductors,” J. Appl. Phys. 112(9), 093503 (2012).
[Crossref]

Qian, C.

Y. Zhang, Y. Su, C. Qian, M. Zhao, and L. Chen, “Microbridge testing of silicon nitride thin films deposited on silicon wafers,” Acta Mater. 48(11), 2843–2857 (2000).
[Crossref]

Reno, J. L.

A. W. M. Lee, B. S. Wil, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

Richards, P. L.

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76(1), 1–24 (1994).
[Crossref]

Robatjazi, H.

M. Tanzid, N. J. Hogan, H. Robatjazi, A. Veeraraghavan, and N. J. Halas, “Absorption-enhanced imaging through scattering media using carbon black nano-particles: from visible to near infrared wavelengths,” J. Opt. 20(5), 054001 (2018).
[Crossref]

Sakkopoulos, S.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Sedky, S.

S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators, A 66(1-3), 193–199 (1998).
[Crossref]

Segalman, R. A.

J. Liu, X. J. Wang, D. Li, N. E. Nelson, R. A. Segalman, and D. G. Cahill, “Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity,” Macromolecules 48(3), 585–591 (2015).
[Crossref]

Seni, Y.

G. Hyseni, Y. Seni, N. Caka, and K. Hyseni, “Infrared thermal detectors parameters: semiconductor bolometers versus pyroelectrics,” Wseas Trans. Circuit and Systems 9(4), 238–247 (2010).

Shahi, M.

A. Håkansson, M. Shahi, J. W. Brill, S. Fabiano, and X. Crispin, “Conducting-polymer bolometers for low-cost IR-detection systems,” Adv. Electron. Mater. 5(6), 1800975 (2019).
[Crossref]

Shao, C.

Y. Jin, C. Shao, J. Kieffer, K. P. Pipe, and M. Shtein, “Origins of thermal boundary conductance of interfaces involving organic semiconductors,” J. Appl. Phys. 112(9), 093503 (2012).
[Crossref]

Shao, L.

G. H. Kim, L. Shao, and K. P. Pipe, “Engineered doping of organic semiconductors for enhanced thermoelectric efficiency,” Nat. Mater. 12(8), 719–723 (2013).
[Crossref]

Shin, H. J.

N. C. Anh, H. J. Shin, K. T. Kim, Y. H. Han, and S. Moon, “Characterization of uncooled bolometer with vanadium tungsten oxide infrared-active layer,” J. Korean Phys. Soc. 45, S921–S923 (2002).

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Shtein, M.

Y. Jin, S. Nola, K. P. Pipe, and M. Shtein, “Improving thermoelectric efficiency in organic-metal nanocomposites via extra-low thermal boundary conductance,” J. Appl. Phys. 114(19), 194303 (2013).
[Crossref]

Y. Jin, C. Shao, J. Kieffer, K. P. Pipe, and M. Shtein, “Origins of thermal boundary conductance of interfaces involving organic semiconductors,” J. Appl. Phys. 112(9), 093503 (2012).
[Crossref]

Skorobogatiy, M.

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Son, H. J.

H. J. Son, W. Kwon, Y. S. Lee, and H. C. Lee, “Poly(3, 4-Ethylenedioxythiophene): poly(Styrenesulfonate) (PEDOT: PSS) films for the microbolometer applications,” IEICE Trans. Electron. E92-C(5), 702–707 (2009).
[Crossref]

Stemme, G.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

Su, Y.

Y. Zhang, Y. Su, C. Qian, M. Zhao, and L. Chen, “Microbridge testing of silicon nitride thin films deposited on silicon wafers,” Acta Mater. 48(11), 2843–2857 (2000).
[Crossref]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Tan, T. L.

E. Yildirim, G. Wu, X. Yong, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, and S. Yang, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” J. Mater. Chem. C 6(19), 5122–5131 (2018).
[Crossref]

Tang, H.

S. Zhang, P. Kumar, A. S. Nouas, L. Fontaine, H. Tang, and F. Cicoiraa, “Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors,” APL Mater. 3(1), 014911 (2015).
[Crossref]

Tanzid, M.

M. Tanzid, N. J. Hogan, H. Robatjazi, A. Veeraraghavan, and N. J. Halas, “Absorption-enhanced imaging through scattering media using carbon black nano-particles: from visible to near infrared wavelengths,” J. Opt. 20(5), 054001 (2018).
[Crossref]

Torres, A.

R. Ambrosio, M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, “An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys,” Phys. Status Solidi C 7(3–4), 1180–1183 (2010).
[Crossref]

Uetsuki, M.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

van Breemen, A. J. J. M.

A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, “Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films,” Adv. Mater. 19(9), 1196–1200 (2007).
[Crossref]

van Duren, J. K. J.

S. C. J. Meskers, J. K. J. van Duren, R. A. J. Janssen, F. Louwet, and L. B. Groenendaal, “Infrared detectors with Poly(3,4-ethylenedioxy thiophene)/Poly(styrene sulfonic acid) (PEDOT/PSS) as the active material,” Adv. Mater. 15(78), 613–616 (2003).
[Crossref]

S. C. J. Meskers, J. K. J. van Duren, and R. A. J. Janssen, “Stimulation of electrical conductivity in a pi-conjugated polymeric conductor with infrared light,” J. Appl. Phys. 92(12), 7041–7050 (2002).
[Crossref]

Veeraraghavan, A.

M. Tanzid, N. J. Hogan, H. Robatjazi, A. Veeraraghavan, and N. J. Halas, “Absorption-enhanced imaging through scattering media using carbon black nano-particles: from visible to near infrared wavelengths,” J. Opt. 20(5), 054001 (2018).
[Crossref]

Verbist, A.

S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators, A 66(1-3), 193–199 (1998).
[Crossref]

Verheyen, H.

J. L. Apperloo, L. Groenendaal, H. Verheyen, M. Jayakannan, R. A. J. Janssen, A. Dikhissi, D. Beljonne, R. Lazzaroni, and J.-L. Brédas, “Optical and redox properties of a series of 3, 4-ethylenedioxythiophene oligomers,” Chem. - Eur. J. 8(10), 2384–2396 (2002).
[Crossref]

Vitoratos, E.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Wang, J.

E. Yildirim, G. Wu, X. Yong, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, and S. Yang, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” J. Mater. Chem. C 6(19), 5122–5131 (2018).
[Crossref]

Wang, X.

X. Wang, K. D. Parrish, J. A. Malen, and P. K. L. Chan, “Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles,” Sci. Rep. 5(1), 16095 (2015).
[Crossref]

Wang, X. J.

J. Liu, X. J. Wang, D. Li, N. E. Nelson, R. A. Segalman, and D. G. Cahill, “Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity,” Macromolecules 48(3), 585–591 (2015).
[Crossref]

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Wil, B. S.

A. W. M. Lee, B. S. Wil, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

Wu, G.

E. Yildirim, G. Wu, X. Yong, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, and S. Yang, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” J. Mater. Chem. C 6(19), 5122–5131 (2018).
[Crossref]

Xie, Y.

F. X. Jiang, J. K. Xu, B. Y. Lu, Y. Xie, R. J. Huang, and L. F. Li, “Thermoelectric performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate),” Chin. Phys. Lett. 25(6), 2202–2205 (2008).
[Crossref]

Xiong, B.

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators A Phys. 90(3), 212–214 (2001).
[Crossref]

Xu, J.

E. Yildirim, G. Wu, X. Yong, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, and S. Yang, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” J. Mater. Chem. C 6(19), 5122–5131 (2018).
[Crossref]

Xu, J. K.

F. X. Jiang, J. K. Xu, B. Y. Lu, Y. Xie, R. J. Huang, and L. F. Li, “Thermoelectric performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate),” Chin. Phys. Lett. 25(6), 2202–2205 (2008).
[Crossref]

Yang, M.

I. Lee, G. W. Kim, M. Yang, and T. S. Kim, “Simultaneously enhancing the cohesion and electrical conductivity of PEDOT: PSS conductive polymer films using DMSO additives,” ACS Appl. Mater. Interfaces 8(1), 302–310 (2016).
[Crossref]

Yang, S.

E. Yildirim, G. Wu, X. Yong, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, and S. Yang, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” J. Mater. Chem. C 6(19), 5122–5131 (2018).
[Crossref]

Yi, X.

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators A Phys. 90(3), 212–214 (2001).
[Crossref]

Yildirim, E.

E. Yildirim, G. Wu, X. Yong, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, and S. Yang, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” J. Mater. Chem. C 6(19), 5122–5131 (2018).
[Crossref]

Yong, X.

E. Yildirim, G. Wu, X. Yong, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, and S. Yang, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” J. Mater. Chem. C 6(19), 5122–5131 (2018).
[Crossref]

Yoshizawa, Y.

Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, and K. Hirao, “A tough silicon nitride ceramic with high thermal conductivity,” Adv. Mater. 23(39), 4563–4567 (2011).
[Crossref]

Zhang, S.

S. Zhang and F. Cicoira, “Water-Enabled Healing of Conducting Polymer Films,” Adv. Mater. 29(40), 1703098 (2017).
[Crossref]

S. Zhang, P. Kumar, A. S. Nouas, L. Fontaine, H. Tang, and F. Cicoiraa, “Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors,” APL Mater. 3(1), 014911 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Su, C. Qian, M. Zhao, and L. Chen, “Microbridge testing of silicon nitride thin films deposited on silicon wafers,” Acta Mater. 48(11), 2843–2857 (2000).
[Crossref]

Zhao, M.

Y. Zhang, Y. Su, C. Qian, M. Zhao, and L. Chen, “Microbridge testing of silicon nitride thin films deposited on silicon wafers,” Acta Mater. 48(11), 2843–2857 (2000).
[Crossref]

Zhao, X.

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators A Phys. 90(3), 212–214 (2001).
[Crossref]

Zhou, Y.

Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, and K. Hirao, “A tough silicon nitride ceramic with high thermal conductivity,” Adv. Mater. 23(39), 4563–4567 (2011).
[Crossref]

Zhu, Q.

E. Yildirim, G. Wu, X. Yong, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, and S. Yang, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” J. Mater. Chem. C 6(19), 5122–5131 (2018).
[Crossref]

Zia, M. F.

M. Abdel-Rahman, N. Al-Khalli, M. F. Zia, M. Alduraibi, B. Ilahi, E. Awad, and N. Debbar, “Fabrication and design of vanadium oxide microbolometer,” AIP Conf. Proc. 1809, 020001 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (1)

I. Lee, G. W. Kim, M. Yang, and T. S. Kim, “Simultaneously enhancing the cohesion and electrical conductivity of PEDOT: PSS conductive polymer films using DMSO additives,” ACS Appl. Mater. Interfaces 8(1), 302–310 (2016).
[Crossref]

Acta Mater. (1)

Y. Zhang, Y. Su, C. Qian, M. Zhao, and L. Chen, “Microbridge testing of silicon nitride thin films deposited on silicon wafers,” Acta Mater. 48(11), 2843–2857 (2000).
[Crossref]

Adv. Electron. Mater. (1)

A. Håkansson, M. Shahi, J. W. Brill, S. Fabiano, and X. Crispin, “Conducting-polymer bolometers for low-cost IR-detection systems,” Adv. Electron. Mater. 5(6), 1800975 (2019).
[Crossref]

Adv. Mater. (4)

S. C. J. Meskers, J. K. J. van Duren, R. A. J. Janssen, F. Louwet, and L. B. Groenendaal, “Infrared detectors with Poly(3,4-ethylenedioxy thiophene)/Poly(styrene sulfonic acid) (PEDOT/PSS) as the active material,” Adv. Mater. 15(78), 613–616 (2003).
[Crossref]

A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, “Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films,” Adv. Mater. 19(9), 1196–1200 (2007).
[Crossref]

Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, and K. Hirao, “A tough silicon nitride ceramic with high thermal conductivity,” Adv. Mater. 23(39), 4563–4567 (2011).
[Crossref]

S. Zhang and F. Cicoira, “Water-Enabled Healing of Conducting Polymer Films,” Adv. Mater. 29(40), 1703098 (2017).
[Crossref]

AIP Adv. (1)

H. S. Dow, W. S. Kim, and J. W. Lee, “Thermal and electrical properties of silicon nitride substrates,” AIP Adv. 7(9), 095022 (2017).
[Crossref]

AIP Conf. Proc. (1)

M. Abdel-Rahman, N. Al-Khalli, M. F. Zia, M. Alduraibi, B. Ilahi, E. Awad, and N. Debbar, “Fabrication and design of vanadium oxide microbolometer,” AIP Conf. Proc. 1809, 020001 (2017).
[Crossref]

APL Mater. (1)

S. Zhang, P. Kumar, A. S. Nouas, L. Fontaine, H. Tang, and F. Cicoiraa, “Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors,” APL Mater. 3(1), 014911 (2015).
[Crossref]

Appl. Phys. Lett. (3)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

N. Kim, “Thermal transport properties of thin films of small molecule organic semiconductors,” Appl. Phys. Lett. 87(24), 241908 (2005).
[Crossref]

Chem. - Eur. J. (1)

J. L. Apperloo, L. Groenendaal, H. Verheyen, M. Jayakannan, R. A. J. Janssen, A. Dikhissi, D. Beljonne, R. Lazzaroni, and J.-L. Brédas, “Optical and redox properties of a series of 3, 4-ethylenedioxythiophene oligomers,” Chem. - Eur. J. 8(10), 2384–2396 (2002).
[Crossref]

Chin. Phys. Lett. (1)

F. X. Jiang, J. K. Xu, B. Y. Lu, Y. Xie, R. J. Huang, and L. F. Li, “Thermoelectric performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate),” Chin. Phys. Lett. 25(6), 2202–2205 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. W. M. Lee, B. S. Wil, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

IEICE Trans. Electron. (1)

H. J. Son, W. Kwon, Y. S. Lee, and H. C. Lee, “Poly(3, 4-Ethylenedioxythiophene): poly(Styrenesulfonate) (PEDOT: PSS) films for the microbolometer applications,” IEICE Trans. Electron. E92-C(5), 702–707 (2009).
[Crossref]

J. Appl. Phys. (4)

S. C. J. Meskers, J. K. J. van Duren, and R. A. J. Janssen, “Stimulation of electrical conductivity in a pi-conjugated polymeric conductor with infrared light,” J. Appl. Phys. 92(12), 7041–7050 (2002).
[Crossref]

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76(1), 1–24 (1994).
[Crossref]

Y. Jin, S. Nola, K. P. Pipe, and M. Shtein, “Improving thermoelectric efficiency in organic-metal nanocomposites via extra-low thermal boundary conductance,” J. Appl. Phys. 114(19), 194303 (2013).
[Crossref]

Y. Jin, C. Shao, J. Kieffer, K. P. Pipe, and M. Shtein, “Origins of thermal boundary conductance of interfaces involving organic semiconductors,” J. Appl. Phys. 112(9), 093503 (2012).
[Crossref]

J. Korean Phys. Soc. (1)

N. C. Anh, H. J. Shin, K. T. Kim, Y. H. Han, and S. Moon, “Characterization of uncooled bolometer with vanadium tungsten oxide infrared-active layer,” J. Korean Phys. Soc. 45, S921–S923 (2002).

J. Mater. Chem. C (1)

E. Yildirim, G. Wu, X. Yong, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, and S. Yang, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” J. Mater. Chem. C 6(19), 5122–5131 (2018).
[Crossref]

J. Microelectromech. Syst. (1)

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

J. Opt. (1)

M. Tanzid, N. J. Hogan, H. Robatjazi, A. Veeraraghavan, and N. J. Halas, “Absorption-enhanced imaging through scattering media using carbon black nano-particles: from visible to near infrared wavelengths,” J. Opt. 20(5), 054001 (2018).
[Crossref]

Macromolecules (1)

J. Liu, X. J. Wang, D. Li, N. E. Nelson, R. A. Segalman, and D. G. Cahill, “Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity,” Macromolecules 48(3), 585–591 (2015).
[Crossref]

Nat. Mater. (1)

G. H. Kim, L. Shao, and K. P. Pipe, “Engineered doping of organic semiconductors for enhanced thermoelectric efficiency,” Nat. Mater. 12(8), 719–723 (2013).
[Crossref]

Nat. Photonics (1)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Org. Electron. (1)

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Phys. Rev. B (1)

A. M. Nardes, M. Kemerink, and R. A. J. Janssen, “Anisotropic hopping conduction in spin-coated PEDOT: PSS thin films,” Phys. Rev. B 76(8), 085208 (2007).
[Crossref]

Phys. Status Solidi C (1)

R. Ambrosio, M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, “An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys,” Phys. Status Solidi C 7(3–4), 1180–1183 (2010).
[Crossref]

Sci. Rep. (1)

X. Wang, K. D. Parrish, J. A. Malen, and P. K. L. Chan, “Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles,” Sci. Rep. 5(1), 16095 (2015).
[Crossref]

Sens. Actuators A Phys. (1)

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators A Phys. 90(3), 212–214 (2001).
[Crossref]

Sens. Actuators, A (1)

S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators, A 66(1-3), 193–199 (1998).
[Crossref]

Wseas Trans. Circuit and Systems (1)

G. Hyseni, Y. Seni, N. Caka, and K. Hyseni, “Infrared thermal detectors parameters: semiconductor bolometers versus pyroelectrics,” Wseas Trans. Circuit and Systems 9(4), 238–247 (2010).

Other (1)

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic representing the main components of the bolometer.
Fig. 2.
Fig. 2. (a) Measured current-voltage curves of PEDOT: PSS film at temperatures ranging from 90 K to 410 K. (b) The derived resistance of the PEDOT: PSS film at different temperatures ranging from 90 K to 480 K and their exponential fitting. Squares and circles represent two sequential measurements, which shows good repeatability. (c) The derived TCR values of PEDOT: PSS film at different temperatures.
Fig. 3.
Fig. 3. Transmission spectra of the substrates with and without PEDOT: PSS thin film. (a) Glass substrate is chosen for the range from 200 nm to 2500 nm. (b) Ge substrate is chosen for the range from 2500 nm to 25000 nm.
Fig. 4.
Fig. 4. Response of the PEDOT: PSS film with patterned electrodes. Voltage over the device 1 V. Current: ∼1.27×10−6A. Integration time of measurement: 80 ms. Illumination source: a black body at 600 K. Active area: Beam diameter 5 mm. The responsivity is calculated to be 5×10−3A/W. The noise level of the element is 3×10−10A.
Fig. 5.
Fig. 5. Schematics design of the suspended PEDOT: PSS sensing element

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ( T ) = σ 0 exp [ ( T 0 T ) α ]
T C R = 1 R d R d T