Abstract

We report spectroscopic characterization of Pr3+:Lu2O3 in the MIR region from 1 to 10 µm. Lu2O3 possesses good thermo-physical properties, has relatively low phonon energies, and can be grown in good quality. Moreover, Pr3+ ions possess several low-energy levels that in principle, can give rise to mid-infrared emission. For these reasons, we investigated this material as a potential mid-infrared emitter. From absorption measurements, we identified absorption from the first five multiplets. Moreover, low temperature measurements allowed us to extract the Stark sublevel positions of all these five multiplets and we revised the classical Dieke diagram for Pr3+ in this compound. We also observed near- and mid-infrared emission bands under diode laser pumping. The pump power dependence of the corresponding emission intensities proved the main energy transfer mechanisms that populate the lower lying levels to be cross-relaxation processes and permitted us to discern among the various possibilities and assign the different emission bands to specific transitions. In particular, we observed for the first time MIR emission at 4.4 and 7 µm in this compound, that is, in the latter case, an emission energy equal to less than three phonons in this crystal host.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dy3+:Lu2O3 as a novel crystalline oxide for mid-infrared laser applications

Alexander M. Heuer, Patrick von Brunn, Günter Huber, and Christian Kränkel
Opt. Mater. Express 8(11) 3447-3455 (2018)

Enhanced ~3 μm mid-infrared emissions of Ho3+ via Yb3+ sensitization and Pr3+ deactivation in Lu3Al5O12 crystal

Yuhao Wang, Zhen Li, Hao Yin, Siqi Zhu, Peixiong Zhang, Yi Zheng, Jin Yu, and Zhenqiang Chen
Opt. Mater. Express 8(7) 1882-1889 (2018)

Co-effects of Yb3+ sensitization and Pr3+ deactivation to enhance 2.7 μm mid-infrared emission of Er3+ in CaLaGa3O7 crystal

Yunyun Liu, Zhenyu You, Houping Xia, Yan Wang, Zhaojie Zhu, Jianfu Li, and Chaoyang Tu
Opt. Mater. Express 7(7) 2411-2423 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “Praseodymium solid state lasers at 5.2 and 7.2 microns-longest rare earth wavelengths to date,” in LEOS ‘95. IEEE Lasers and Electro-Optics Society 1995 8th Annual Meeting, Conference Proceedings.
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  3. A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, I. A. Shestakova, N. V. Lichkova, V. N. Zagorodnev, and A. V. Shestakov, “Optical spectroscopy of the RbPb2Cl5:Dy3+ laser crystal and oscillation at 5.5 µm at room temperature,” J. Opt. Soc. Am. B 24(10), 2690–2695 (2007).
    [Crossref]
  4. M. R. Majewski, R. I. Woodward, J.-Y. Carree, S. Poulain, M. Poulain, and S. D. Jackson, “Emission beyond 4 µm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber,” Opt. Lett. 43(8), 1926–1929 (2018).
    [Crossref]
  5. B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
    [Crossref]
  6. J.-L. Doualan and R. Moncorge, “Laser crystals with low phonon frequencies,” Ann. Chim. (Cachan, Fr.) 28(6), 5–20 (2003).
    [Crossref]
  7. A. Ferrier, M. Velazquez, J.-L. Doualan, and R. Moncorge, “Spectroscopic investigation and mid-infrared luminescence properties of the Pr3+-doped low phonon single crystals CsCdBr3, KPb2Cl5 and Tl3PbBr,” J. Lumin. 129(12), 1905–1907 (2009).
    [Crossref]
  8. M. Fibrich, J. Šulc, R. Král, V. Jarý, M. Němec, H. Jelínková, A. Bystřický, P. Zemenová, and M. Nikl, “Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb2Cl5 crystals for mid-infrared (IR) lasers emitting above 4.5 µm wavelength,” Laser Phys. 29(7), 075801 (2019).
    [Crossref]
  9. B. Denker and E. Shklovsky (eds.) “Handbook of Solid-State Lasers: Materials, Systems and Applications,” Woodhead Publishing Series in Electronic and Optical Materials (2013) ISBN: 9780857092724.
  10. P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B: Lasers Opt. 120(4), 601–607 (2015).
    [Crossref]
  11. C. Krankel, “Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3-µm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015).
    [Crossref]
  12. A. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
    [Crossref]
  13. D. Kulesza, P. Bolek, A. J. J. Bos, and E. Zych, “Lu2O3-based storage phosphors. An (in)harmonious family,” Coord. Chem. Rev. 325, 29–40 (2016).
    [Crossref]
  14. A. M. Heuer, P. von Brunn, G. Huber, and C. Kränkel, “Dy3+:Lu2O3 as a novel crystalline oxide for mid-infrared laser applications,” Opt. Mater. Express 8(11), 3447–3455 (2018).
    [Crossref]
  15. L. Pauling and M. Shappell, “The Crystal Structure of Bixbyite and the C-Modification of the Sesquioxides,” Z. Kristallogr. - Cryst. Mater. 75(1), 128–142 (1930).
    [Crossref]
  16. M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
    [Crossref]
  17. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high purity Yb3+-doped Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
    [Crossref]
  18. A. Kaminskii, “Laser Crystals: Their Physics and Properties,” (Springer Berlin Heidelberg, 2013).
  19. G. H. Dieke and H. M. Crosswhite, “The Spectra of the Doubly and Triply Ionized Rare Earths,” Appl. Opt. 2(7), 675 (1963).
    [Crossref]
  20. J. L. Pascual, Z. Barandiaran, and L. Seijo, “Ab initio theoretical study of luminescence properties of Pr3+-doped Lu2O3,” Theor. Chem. Acc. 129(3-5), 545–554 (2011).
    [Crossref]
  21. V. Peters, “Growth and Spectroscopy of Ytterbium-doped Sesquioxides (Berichte aus der Physik),” Shaker Verlag GmbH, Germany (29 October 2001) ISBN-10: 3826594797
  22. R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
    [Crossref]
  23. V. Peters, “Spektroskopie und Lasereigenschaften erbium- und praseodymdotierter hochschmelzender Oxide,” Diploma Thesis, Hamburg University (1998).
  24. D. Bloor and J. R. Dean, “Spectroscopy of rare earth oxide systems: I. Far infrared spectra of the rare earth sesquioxides, cerium dioxide, and nonstoichiometric praseodymium and terbium oxides,” J. Phys. C: Solid State Phys. 5(11), 1237–1252 (1972).
    [Crossref]
  25. N. T. McDewitt and A. D. Davison, “Infrared Lattice Spectra of Cubic Rare Earth Oxides in the Region 700 to 50 cm−1,” J. Opt. Soc. Am. 56(5), 636–638 (1966).
    [Crossref]

2019 (1)

M. Fibrich, J. Šulc, R. Král, V. Jarý, M. Němec, H. Jelínková, A. Bystřický, P. Zemenová, and M. Nikl, “Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb2Cl5 crystals for mid-infrared (IR) lasers emitting above 4.5 µm wavelength,” Laser Phys. 29(7), 075801 (2019).
[Crossref]

2018 (2)

2016 (3)

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

A. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref]

D. Kulesza, P. Bolek, A. J. J. Bos, and E. Zych, “Lu2O3-based storage phosphors. An (in)harmonious family,” Coord. Chem. Rev. 325, 29–40 (2016).
[Crossref]

2015 (2)

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B: Lasers Opt. 120(4), 601–607 (2015).
[Crossref]

C. Krankel, “Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3-µm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015).
[Crossref]

2014 (1)

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

2012 (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2011 (1)

J. L. Pascual, Z. Barandiaran, and L. Seijo, “Ab initio theoretical study of luminescence properties of Pr3+-doped Lu2O3,” Theor. Chem. Acc. 129(3-5), 545–554 (2011).
[Crossref]

2009 (1)

A. Ferrier, M. Velazquez, J.-L. Doualan, and R. Moncorge, “Spectroscopic investigation and mid-infrared luminescence properties of the Pr3+-doped low phonon single crystals CsCdBr3, KPb2Cl5 and Tl3PbBr,” J. Lumin. 129(12), 1905–1907 (2009).
[Crossref]

2008 (1)

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high purity Yb3+-doped Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

2007 (1)

2003 (1)

J.-L. Doualan and R. Moncorge, “Laser crystals with low phonon frequencies,” Ann. Chim. (Cachan, Fr.) 28(6), 5–20 (2003).
[Crossref]

1982 (1)

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
[Crossref]

1972 (1)

D. Bloor and J. R. Dean, “Spectroscopy of rare earth oxide systems: I. Far infrared spectra of the rare earth sesquioxides, cerium dioxide, and nonstoichiometric praseodymium and terbium oxides,” J. Phys. C: Solid State Phys. 5(11), 1237–1252 (1972).
[Crossref]

1966 (1)

1963 (1)

1930 (1)

L. Pauling and M. Shappell, “The Crystal Structure of Bixbyite and the C-Modification of the Sesquioxides,” Z. Kristallogr. - Cryst. Mater. 75(1), 128–142 (1930).
[Crossref]

Barandiaran, Z.

J. L. Pascual, Z. Barandiaran, and L. Seijo, “Ab initio theoretical study of luminescence properties of Pr3+-doped Lu2O3,” Theor. Chem. Acc. 129(3-5), 545–554 (2011).
[Crossref]

Barnes, N. P.

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

Beil, K.

A. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref]

Bloor, D.

D. Bloor and J. R. Dean, “Spectroscopy of rare earth oxide systems: I. Far infrared spectra of the rare earth sesquioxides, cerium dioxide, and nonstoichiometric praseodymium and terbium oxides,” J. Phys. C: Solid State Phys. 5(11), 1237–1252 (1972).
[Crossref]

Bolek, P.

D. Kulesza, P. Bolek, A. J. J. Bos, and E. Zych, “Lu2O3-based storage phosphors. An (in)harmonious family,” Coord. Chem. Rev. 325, 29–40 (2016).
[Crossref]

Bos, A. J. J.

D. Kulesza, P. Bolek, A. J. J. Bos, and E. Zych, “Lu2O3-based storage phosphors. An (in)harmonious family,” Coord. Chem. Rev. 325, 29–40 (2016).
[Crossref]

Boulon, G.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Bowman, S. R.

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “Praseodymium solid state lasers at 5.2 and 7.2 microns-longest rare earth wavelengths to date,” in LEOS ‘95. IEEE Lasers and Electro-Optics Society 1995 8th Annual Meeting, Conference Proceedings.

Butvina, L. N.

Bystrický, A.

M. Fibrich, J. Šulc, R. Král, V. Jarý, M. Němec, H. Jelínková, A. Bystřický, P. Zemenová, and M. Nikl, “Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb2Cl5 crystals for mid-infrared (IR) lasers emitting above 4.5 µm wavelength,” Laser Phys. 29(7), 075801 (2019).
[Crossref]

Carree, J.-Y.

Chang, N. C.

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
[Crossref]

Crosswhite, H. M.

Davison, A. D.

Dean, J. R.

D. Bloor and J. R. Dean, “Spectroscopy of rare earth oxide systems: I. Far infrared spectra of the rare earth sesquioxides, cerium dioxide, and nonstoichiometric praseodymium and terbium oxides,” J. Phys. C: Solid State Phys. 5(11), 1237–1252 (1972).
[Crossref]

Deppe, B.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B: Lasers Opt. 120(4), 601–607 (2015).
[Crossref]

Dianov, E. M.

Dieke, G. H.

Doualan, J.-L.

A. Ferrier, M. Velazquez, J.-L. Doualan, and R. Moncorge, “Spectroscopic investigation and mid-infrared luminescence properties of the Pr3+-doped low phonon single crystals CsCdBr3, KPb2Cl5 and Tl3PbBr,” J. Lumin. 129(12), 1905–1907 (2009).
[Crossref]

J.-L. Doualan and R. Moncorge, “Laser crystals with low phonon frequencies,” Ann. Chim. (Cachan, Fr.) 28(6), 5–20 (2003).
[Crossref]

Feldman, B. J.

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “Praseodymium solid state lasers at 5.2 and 7.2 microns-longest rare earth wavelengths to date,” in LEOS ‘95. IEEE Lasers and Electro-Optics Society 1995 8th Annual Meeting, Conference Proceedings.

Ferrier, A.

A. Ferrier, M. Velazquez, J.-L. Doualan, and R. Moncorge, “Spectroscopic investigation and mid-infrared luminescence properties of the Pr3+-doped low phonon single crystals CsCdBr3, KPb2Cl5 and Tl3PbBr,” J. Lumin. 129(12), 1905–1907 (2009).
[Crossref]

Fibrich, M.

M. Fibrich, J. Šulc, R. Král, V. Jarý, M. Němec, H. Jelínková, A. Bystřický, P. Zemenová, and M. Nikl, “Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb2Cl5 crystals for mid-infrared (IR) lasers emitting above 4.5 µm wavelength,” Laser Phys. 29(7), 075801 (2019).
[Crossref]

Ganem, J.

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “Praseodymium solid state lasers at 5.2 and 7.2 microns-longest rare earth wavelengths to date,” in LEOS ‘95. IEEE Lasers and Electro-Optics Society 1995 8th Annual Meeting, Conference Proceedings.

Goto, T.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Gruber, J. B.

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
[Crossref]

Guzik, M.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Heuer, A.

A. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref]

Heuer, A. M.

Huber, G.

A. M. Heuer, P. von Brunn, G. Huber, and C. Kränkel, “Dy3+:Lu2O3 as a novel crystalline oxide for mid-infrared laser applications,” Opt. Mater. Express 8(11), 3447–3455 (2018).
[Crossref]

A. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high purity Yb3+-doped Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

Ito, A.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Jackson, S. D.

Jarý, V.

M. Fibrich, J. Šulc, R. Král, V. Jarý, M. Němec, H. Jelínková, A. Bystřický, P. Zemenová, and M. Nikl, “Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb2Cl5 crystals for mid-infrared (IR) lasers emitting above 4.5 µm wavelength,” Laser Phys. 29(7), 075801 (2019).
[Crossref]

Jelínková, H.

M. Fibrich, J. Šulc, R. Král, V. Jarý, M. Němec, H. Jelínková, A. Bystřický, P. Zemenová, and M. Nikl, “Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb2Cl5 crystals for mid-infrared (IR) lasers emitting above 4.5 µm wavelength,” Laser Phys. 29(7), 075801 (2019).
[Crossref]

Kaminskii, A.

A. Kaminskii, “Laser Crystals: Their Physics and Properties,” (Springer Berlin Heidelberg, 2013).

Král, R.

M. Fibrich, J. Šulc, R. Král, V. Jarý, M. Němec, H. Jelínková, A. Bystřický, P. Zemenová, and M. Nikl, “Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb2Cl5 crystals for mid-infrared (IR) lasers emitting above 4.5 µm wavelength,” Laser Phys. 29(7), 075801 (2019).
[Crossref]

Krankel, C.

C. Krankel, “Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3-µm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015).
[Crossref]

Kränkel, C.

A. M. Heuer, P. von Brunn, G. Huber, and C. Kränkel, “Dy3+:Lu2O3 as a novel crystalline oxide for mid-infrared laser applications,” Opt. Mater. Express 8(11), 3447–3455 (2018).
[Crossref]

A. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref]

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B: Lasers Opt. 120(4), 601–607 (2015).
[Crossref]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high purity Yb3+-doped Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

Kulesza, D.

D. Kulesza, P. Bolek, A. J. J. Bos, and E. Zych, “Lu2O3-based storage phosphors. An (in)harmonious family,” Coord. Chem. Rev. 325, 29–40 (2016).
[Crossref]

Leavitt, R. P.

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
[Crossref]

Lee, H. R.

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

Lichkova, N. V.

Liebald, C.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B: Lasers Opt. 120(4), 601–607 (2015).
[Crossref]

Lis, T.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Loiko, P. A.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B: Lasers Opt. 120(4), 601–607 (2015).
[Crossref]

Majewski, M. R.

Mateos, X.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B: Lasers Opt. 120(4), 601–607 (2015).
[Crossref]

McDewitt, N. T.

Moncorge, R.

A. Ferrier, M. Velazquez, J.-L. Doualan, and R. Moncorge, “Spectroscopic investigation and mid-infrared luminescence properties of the Pr3+-doped low phonon single crystals CsCdBr3, KPb2Cl5 and Tl3PbBr,” J. Lumin. 129(12), 1905–1907 (2009).
[Crossref]

J.-L. Doualan and R. Moncorge, “Laser crystals with low phonon frequencies,” Ann. Chim. (Cachan, Fr.) 28(6), 5–20 (2003).
[Crossref]

Morrison, C. A.

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
[Crossref]

Nemec, M.

M. Fibrich, J. Šulc, R. Král, V. Jarý, M. Němec, H. Jelínková, A. Bystřický, P. Zemenová, and M. Nikl, “Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb2Cl5 crystals for mid-infrared (IR) lasers emitting above 4.5 µm wavelength,” Laser Phys. 29(7), 075801 (2019).
[Crossref]

Nikl, M.

M. Fibrich, J. Šulc, R. Král, V. Jarý, M. Němec, H. Jelínková, A. Bystřický, P. Zemenová, and M. Nikl, “Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb2Cl5 crystals for mid-infrared (IR) lasers emitting above 4.5 µm wavelength,” Laser Phys. 29(7), 075801 (2019).
[Crossref]

Okhrimchuk, A. G.

Pascual, J. L.

J. L. Pascual, Z. Barandiaran, and L. Seijo, “Ab initio theoretical study of luminescence properties of Pr3+-doped Lu2O3,” Theor. Chem. Acc. 129(3-5), 545–554 (2011).
[Crossref]

Pauling, L.

L. Pauling and M. Shappell, “The Crystal Structure of Bixbyite and the C-Modification of the Sesquioxides,” Z. Kristallogr. - Cryst. Mater. 75(1), 128–142 (1930).
[Crossref]

Pejchal, J.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Peltz, M.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B: Lasers Opt. 120(4), 601–607 (2015).
[Crossref]

Petermann, K.

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high purity Yb3+-doped Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

Peters, R.

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high purity Yb3+-doped Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

Peters, V.

V. Peters, “Growth and Spectroscopy of Ytterbium-doped Sesquioxides (Berichte aus der Physik),” Shaker Verlag GmbH, Germany (29 October 2001) ISBN-10: 3826594797

V. Peters, “Spektroskopie und Lasereigenschaften erbium- und praseodymdotierter hochschmelzender Oxide,” Diploma Thesis, Hamburg University (1998).

Poulain, M.

Poulain, S.

Saraceno, C. J.

A. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref]

Schödel, R.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B: Lasers Opt. 120(4), 601–607 (2015).
[Crossref]

Seijo, L.

J. L. Pascual, Z. Barandiaran, and L. Seijo, “Ab initio theoretical study of luminescence properties of Pr3+-doped Lu2O3,” Theor. Chem. Acc. 129(3-5), 545–554 (2011).
[Crossref]

Shappell, M.

L. Pauling and M. Shappell, “The Crystal Structure of Bixbyite and the C-Modification of the Sesquioxides,” Z. Kristallogr. - Cryst. Mater. 75(1), 128–142 (1930).
[Crossref]

Shaw, L. B.

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “Praseodymium solid state lasers at 5.2 and 7.2 microns-longest rare earth wavelengths to date,” in LEOS ‘95. IEEE Lasers and Electro-Optics Society 1995 8th Annual Meeting, Conference Proceedings.

Shestakov, A. V.

Shestakova, I. A.

Siczek, M.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Šulc, J.

M. Fibrich, J. Šulc, R. Král, V. Jarý, M. Němec, H. Jelínková, A. Bystřický, P. Zemenová, and M. Nikl, “Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb2Cl5 crystals for mid-infrared (IR) lasers emitting above 4.5 µm wavelength,” Laser Phys. 29(7), 075801 (2019).
[Crossref]

Velazquez, M.

A. Ferrier, M. Velazquez, J.-L. Doualan, and R. Moncorge, “Spectroscopic investigation and mid-infrared luminescence properties of the Pr3+-doped low phonon single crystals CsCdBr3, KPb2Cl5 and Tl3PbBr,” J. Lumin. 129(12), 1905–1907 (2009).
[Crossref]

von Brunn, P.

Walsh, B. M.

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

Woodward, R. I.

Yoshikawa, A.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Yumashev, K. V.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B: Lasers Opt. 120(4), 601–607 (2015).
[Crossref]

Zagorodnev, V. N.

Zemenová, P.

M. Fibrich, J. Šulc, R. Král, V. Jarý, M. Němec, H. Jelínková, A. Bystřický, P. Zemenová, and M. Nikl, “Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb2Cl5 crystals for mid-infrared (IR) lasers emitting above 4.5 µm wavelength,” Laser Phys. 29(7), 075801 (2019).
[Crossref]

Zych, E.

D. Kulesza, P. Bolek, A. J. J. Bos, and E. Zych, “Lu2O3-based storage phosphors. An (in)harmonious family,” Coord. Chem. Rev. 325, 29–40 (2016).
[Crossref]

Ann. Chim. (Cachan, Fr.) (1)

J.-L. Doualan and R. Moncorge, “Laser crystals with low phonon frequencies,” Ann. Chim. (Cachan, Fr.) 28(6), 5–20 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B: Lasers Opt. 120(4), 601–607 (2015).
[Crossref]

Coord. Chem. Rev. (1)

D. Kulesza, P. Bolek, A. J. J. Bos, and E. Zych, “Lu2O3-based storage phosphors. An (in)harmonious family,” Coord. Chem. Rev. 325, 29–40 (2016).
[Crossref]

Cryst. Growth Des. (1)

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Krankel, “Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3-µm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015).
[Crossref]

J. Chem. Phys. (1)

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
[Crossref]

J. Cryst. Growth (1)

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high purity Yb3+-doped Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

J. Lumin. (2)

A. Ferrier, M. Velazquez, J.-L. Doualan, and R. Moncorge, “Spectroscopic investigation and mid-infrared luminescence properties of the Pr3+-doped low phonon single crystals CsCdBr3, KPb2Cl5 and Tl3PbBr,” J. Lumin. 129(12), 1905–1907 (2009).
[Crossref]

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. C: Solid State Phys. (1)

D. Bloor and J. R. Dean, “Spectroscopy of rare earth oxide systems: I. Far infrared spectra of the rare earth sesquioxides, cerium dioxide, and nonstoichiometric praseodymium and terbium oxides,” J. Phys. C: Solid State Phys. 5(11), 1237–1252 (1972).
[Crossref]

Laser Phys. (1)

M. Fibrich, J. Šulc, R. Král, V. Jarý, M. Němec, H. Jelínková, A. Bystřický, P. Zemenová, and M. Nikl, “Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb2Cl5 crystals for mid-infrared (IR) lasers emitting above 4.5 µm wavelength,” Laser Phys. 29(7), 075801 (2019).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Sci. Rep. (1)

A. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref]

Theor. Chem. Acc. (1)

J. L. Pascual, Z. Barandiaran, and L. Seijo, “Ab initio theoretical study of luminescence properties of Pr3+-doped Lu2O3,” Theor. Chem. Acc. 129(3-5), 545–554 (2011).
[Crossref]

Z. Kristallogr. - Cryst. Mater. (1)

L. Pauling and M. Shappell, “The Crystal Structure of Bixbyite and the C-Modification of the Sesquioxides,” Z. Kristallogr. - Cryst. Mater. 75(1), 128–142 (1930).
[Crossref]

Other (5)

A. Kaminskii, “Laser Crystals: Their Physics and Properties,” (Springer Berlin Heidelberg, 2013).

V. Peters, “Growth and Spectroscopy of Ytterbium-doped Sesquioxides (Berichte aus der Physik),” Shaker Verlag GmbH, Germany (29 October 2001) ISBN-10: 3826594797

V. Peters, “Spektroskopie und Lasereigenschaften erbium- und praseodymdotierter hochschmelzender Oxide,” Diploma Thesis, Hamburg University (1998).

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “Praseodymium solid state lasers at 5.2 and 7.2 microns-longest rare earth wavelengths to date,” in LEOS ‘95. IEEE Lasers and Electro-Optics Society 1995 8th Annual Meeting, Conference Proceedings.

B. Denker and E. Shklovsky (eds.) “Handbook of Solid-State Lasers: Materials, Systems and Applications,” Woodhead Publishing Series in Electronic and Optical Materials (2013) ISBN: 9780857092724.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. a) Picture of the sample, b) EDX running average
Fig. 2.
Fig. 2. Absorption spectrum of Pr:Lu2O3 in the near and mid infrared range
Fig. 3.
Fig. 3. 10 K and room temperature absorption spectra of Pr:Lu2O3 in the near and mid infrared range
Fig. 4.
Fig. 4. a-e) zoom of the 10 K and room temperature absorption spectra of Pr:Lu2O3 in the near and mid infrared range
Fig. 5.
Fig. 5. Proposed energy level positions of Pr:Lu2O3 with some of the possible bilinear energy transfer processes that can populate low energy multiplets. Red lines show the assignment of the mid-infrared transitions observed in the next section.
Fig. 6.
Fig. 6. a-d) Visible, NIR and MIR emissions of Pr:Lu2O3 under 450 nm excitation together with a possible transition assignment. The red line in (c) shows the ground state absorption into the 3H5 multiplet.

Tables (3)

Tables Icon

Table 1. Crystal properties of sesquioxides compared to YAGa

Tables Icon

Table 2. Energy levels of Pr3+:Lu2O3

Tables Icon

Table 3. Slope fit of emission transitions