Abstract

Flexible materials for applications in terahertz (THz) range imaging systems are investigated in this study. THz time-domain spectroscopy and THz imaging at 0.6 THz frequency are used to analyze optical properties of zone plates (TZP) with integrated cross-shaped filters, which are fabricated using direct laser writing on thin graphite, HB pencil-shaded graphite on paper, as well as reference metal-based and pure paper zone plates. Spectral features and focusing power comparable to the best metal-based TZP is achieved with graphite-based TZP. The pure paper and paper with pencil-shaded graphite TZPs showed increase in focusing power by a factor of ∼1.5, supporting numerical 3D finite-difference time-domain simulations. The findings show that graphite-based TZPs can serve as a flexible, compact, and inexpensive optics elements for emerging THz imaging systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of the THz response of a simple periodic graphite-based structure

M.P.M. Colleoni and B. Vidal
Opt. Express 22(24) 30156-30160 (2014)

Field imaging near to the surface of terahertz reflective optics using a vector network analyzer

Maryam Hajji, Jonathan Hammler, Dagou Zeze, Claudio Balocco, and Andrew J. Gallant
Appl. Opt. 56(31) 8746-8750 (2017)

Flexible dual-band band-stop metamaterials filter for the terahertz region

Wang Junlin, Zhang Binzhen, Wang Xin, and Duan Junping
Opt. Mater. Express 7(5) 1656-1665 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
    [Crossref]
  2. G. Liang, T. Liu, and Q. J. Wang, “Recent Developments of Terahertz Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1200118 (2017).
    [Crossref]
  3. I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
    [Crossref]
  4. K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
    [Crossref]
  5. F. Capasso, “The future and promise of flat optics: a personal perspective,” Nanophotonics 7(6), 953–957 (2018).
    [Crossref]
  6. M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos, “Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 425 THz,” Opt. Express 22(16), 19235–19241 (2014).
    [Crossref]
  7. I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
    [Crossref]
  8. U. Puc, A. Abina, A. Jeglič, A. Zidanšek, I. Kašalynas, R. Venckevičius, and G. Valušis, “Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range,” Sensors 18(12), 4098 (2018).
    [Crossref]
  9. U. Puc, A. Abina, M. Rutar, A. Zidanšek, A. Jeglič, and G. Valušis, “Terahertz spectroscopic identification of explosive and drug simulants concealed by various hiding techniques,” Appl. Opt. 54(14), 4495–4502 (2015).
    [Crossref]
  10. M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48(4), 712–718 (2000).
    [Crossref]
  11. L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett. 49(1), 49–50 (2013).
    [Crossref]
  12. L. Minkevičius, K. Madeikis, B. Voisiat, I. Kašalynas, R. Venckevičius, G. Račiukaitis, V. Tamošiūnas, and G. Valušis, “Focusing Performance of Terahertz Zone Plates with Integrated Cross-shape Apertures,” J. Infrared, Millimeter, Terahertz Waves 35(9), 699–702 (2014).
    [Crossref]
  13. A. Ferraro, D. C. Zografopoulos, R. Caputo, and R. Baccherelli, “Broad- and Narrow-Line Terahertz Filtering in Frequency-Selective Surfaces Patterned on Thin Low-Loss Polymer Substrates,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8501308 (2017).
    [Crossref]
  14. T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
    [Crossref]
  15. K. Fuchi, A. R. Diaz, E. J. Rothwell, R. O. Ouedraogo, and J. Tang, “An origami tunable metamaterial,” J. Appl. Phys. 111(8), 084905 (2012).
    [Crossref]
  16. H. Fang, S.-C. A. Chu, Y. Xia, and K.-W. Wang, “Programmable Self-Locking Origami Mechanical Metamaterials,” Adv. Mater. 30(15), 1706311 (2018).
    [Crossref]
  17. C. Coulais, A. Sabbadini, F. Vink, and M. van Hecke, “Multi-step self-guided pathways for shape-changing metamaterials,” Nature 561(7724), 512–515 (2018).
    [Crossref]
  18. D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 023104 (2019).
    [Crossref]
  19. A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
    [Crossref]
  20. M. Karaliunas, K. E. Nasser, A. Urbanowicz, I. Kasalynas, D. Brazinskiene, S. Asadauskas, and G. Valusis, “Non-destructive inspection of food and technical oils by terahertz spectroscopy,” Sci. Rep. 8(1), 18025 (2018).
    [Crossref]
  21. S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Beccherelli, “High-Resolution Binary Zone Plate in Double-Sided Configuration for Terahertz Radiation Focusing,” IEEE Photonics Technol. Lett. 31(2), 117–120 (2019).
    [Crossref]
  22. B. Voisiat, A. Bičiūnas, I. Kašalynas, and G. Rǎciukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A 104(3), 953–958 (2011).
    [Crossref]
  23. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
    [Crossref]
  24. A. Siemion, A. Siemion, M. Makowski, J. Suszek, J. Bomba, A. Czerwinski, F. Garet, J. L. Coutaz, and M. Sypek, “Diffractive paper lens fot terahertz optics,” Opt. Lett. 37(20), 4320–4322 (2012).
    [Crossref]
  25. A. Siemion, “Terahertz Diffractive Optics—Smart Control over Radiation,” J. Infrared, Millimeter, Terahertz Waves 40(5), 477–499 (2019).
    [Crossref]
  26. S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Baccherelli, “Terahertz focusing properties of polymeric zone plates characterized by a modified knife-edge technique,” J. Opt. Soc. Am. B 36(5), D88–D96 (2019).
    [Crossref]
  27. D. L. Chung, “Review Graphite,” J. Mater. Sci. 37(8), 1475–1489 (2002).
    [Crossref]

2019 (4)

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 023104 (2019).
[Crossref]

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Beccherelli, “High-Resolution Binary Zone Plate in Double-Sided Configuration for Terahertz Radiation Focusing,” IEEE Photonics Technol. Lett. 31(2), 117–120 (2019).
[Crossref]

A. Siemion, “Terahertz Diffractive Optics—Smart Control over Radiation,” J. Infrared, Millimeter, Terahertz Waves 40(5), 477–499 (2019).
[Crossref]

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Baccherelli, “Terahertz focusing properties of polymeric zone plates characterized by a modified knife-edge technique,” J. Opt. Soc. Am. B 36(5), D88–D96 (2019).
[Crossref]

2018 (6)

M. Karaliunas, K. E. Nasser, A. Urbanowicz, I. Kasalynas, D. Brazinskiene, S. Asadauskas, and G. Valusis, “Non-destructive inspection of food and technical oils by terahertz spectroscopy,” Sci. Rep. 8(1), 18025 (2018).
[Crossref]

U. Puc, A. Abina, A. Jeglič, A. Zidanšek, I. Kašalynas, R. Venckevičius, and G. Valušis, “Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range,” Sensors 18(12), 4098 (2018).
[Crossref]

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

F. Capasso, “The future and promise of flat optics: a personal perspective,” Nanophotonics 7(6), 953–957 (2018).
[Crossref]

H. Fang, S.-C. A. Chu, Y. Xia, and K.-W. Wang, “Programmable Self-Locking Origami Mechanical Metamaterials,” Adv. Mater. 30(15), 1706311 (2018).
[Crossref]

C. Coulais, A. Sabbadini, F. Vink, and M. van Hecke, “Multi-step self-guided pathways for shape-changing metamaterials,” Nature 561(7724), 512–515 (2018).
[Crossref]

2017 (3)

A. Ferraro, D. C. Zografopoulos, R. Caputo, and R. Baccherelli, “Broad- and Narrow-Line Terahertz Filtering in Frequency-Selective Surfaces Patterned on Thin Low-Loss Polymer Substrates,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8501308 (2017).
[Crossref]

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

G. Liang, T. Liu, and Q. J. Wang, “Recent Developments of Terahertz Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1200118 (2017).
[Crossref]

2016 (2)

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

2015 (1)

2014 (2)

M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos, “Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 425 THz,” Opt. Express 22(16), 19235–19241 (2014).
[Crossref]

L. Minkevičius, K. Madeikis, B. Voisiat, I. Kašalynas, R. Venckevičius, G. Račiukaitis, V. Tamošiūnas, and G. Valušis, “Focusing Performance of Terahertz Zone Plates with Integrated Cross-shape Apertures,” J. Infrared, Millimeter, Terahertz Waves 35(9), 699–702 (2014).
[Crossref]

2013 (2)

L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett. 49(1), 49–50 (2013).
[Crossref]

I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

2012 (2)

2011 (2)

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
[Crossref]

B. Voisiat, A. Bičiūnas, I. Kašalynas, and G. Rǎciukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A 104(3), 953–958 (2011).
[Crossref]

2008 (1)

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

2002 (1)

D. L. Chung, “Review Graphite,” J. Mater. Sci. 37(8), 1475–1489 (2002).
[Crossref]

2000 (1)

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48(4), 712–718 (2000).
[Crossref]

Abina, A.

U. Puc, A. Abina, A. Jeglič, A. Zidanšek, I. Kašalynas, R. Venckevičius, and G. Valušis, “Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range,” Sensors 18(12), 4098 (2018).
[Crossref]

U. Puc, A. Abina, M. Rutar, A. Zidanšek, A. Jeglič, and G. Valušis, “Terahertz spectroscopic identification of explosive and drug simulants concealed by various hiding techniques,” Appl. Opt. 54(14), 4495–4502 (2015).
[Crossref]

Alexanian, A.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48(4), 712–718 (2000).
[Crossref]

Appleby, R.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Asadauskas, S.

M. Karaliunas, K. E. Nasser, A. Urbanowicz, I. Kasalynas, D. Brazinskiene, S. Asadauskas, and G. Valusis, “Non-destructive inspection of food and technical oils by terahertz spectroscopy,” Sci. Rep. 8(1), 18025 (2018).
[Crossref]

Axel Zeitler, J.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Baccherelli, R.

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Baccherelli, “Terahertz focusing properties of polymeric zone plates characterized by a modified knife-edge technique,” J. Opt. Soc. Am. B 36(5), D88–D96 (2019).
[Crossref]

A. Ferraro, D. C. Zografopoulos, R. Caputo, and R. Baccherelli, “Broad- and Narrow-Line Terahertz Filtering in Frequency-Selective Surfaces Patterned on Thin Low-Loss Polymer Substrates,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8501308 (2017).
[Crossref]

Bauer, M.

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos, “Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 425 THz,” Opt. Express 22(16), 19235–19241 (2014).
[Crossref]

Beccherelli, R.

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Beccherelli, “High-Resolution Binary Zone Plate in Double-Sided Configuration for Terahertz Radiation Focusing,” IEEE Photonics Technol. Lett. 31(2), 117–120 (2019).
[Crossref]

Biciunas, A.

B. Voisiat, A. Bičiūnas, I. Kašalynas, and G. Rǎciukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A 104(3), 953–958 (2011).
[Crossref]

Bomba, J.

Booske, J.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Boppel, S.

Brazinskiene, D.

M. Karaliunas, K. E. Nasser, A. Urbanowicz, I. Kasalynas, D. Brazinskiene, S. Asadauskas, and G. Valusis, “Non-destructive inspection of food and technical oils by terahertz spectroscopy,” Sci. Rep. 8(1), 18025 (2018).
[Crossref]

Capasso, F.

F. Capasso, “The future and promise of flat optics: a personal perspective,” Nanophotonics 7(6), 953–957 (2018).
[Crossref]

Caputo, R.

A. Ferraro, D. C. Zografopoulos, R. Caputo, and R. Baccherelli, “Broad- and Narrow-Line Terahertz Filtering in Frequency-Selective Surfaces Patterned on Thin Low-Loss Polymer Substrates,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8501308 (2017).
[Crossref]

Castro-Camus, E.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Chu, S.-C. A.

H. Fang, S.-C. A. Chu, Y. Xia, and K.-W. Wang, “Programmable Self-Locking Origami Mechanical Metamaterials,” Adv. Mater. 30(15), 1706311 (2018).
[Crossref]

Chung, D. L.

D. L. Chung, “Review Graphite,” J. Mater. Sci. 37(8), 1475–1489 (2002).
[Crossref]

Cibiraite, D.

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

Clarke, R.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Cocker, T. L.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Cooper, K. B.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Coulais, C.

C. Coulais, A. Sabbadini, F. Vink, and M. van Hecke, “Multi-step self-guided pathways for shape-changing metamaterials,” Nature 561(7724), 512–515 (2018).
[Crossref]

Coutaz, J. L.

Cummer, S. A.

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

Cumming, D. R. S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Cundiff, S. T.

Cunningham, J. E.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Czerwinski, A.

Davies, A. G.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Dhillon, S. S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Diaz, A. R.

K. Fuchi, A. R. Diaz, E. J. Rothwell, R. O. Ouedraogo, and J. Tang, “An origami tunable metamaterial,” J. Appl. Phys. 111(8), 084905 (2012).
[Crossref]

Ellison, B.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Escorcia-Carranza, I.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Fang, H.

H. Fang, S.-C. A. Chu, Y. Xia, and K.-W. Wang, “Programmable Self-Locking Origami Mechanical Metamaterials,” Adv. Mater. 30(15), 1706311 (2018).
[Crossref]

Fastampa, R.

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Beccherelli, “High-Resolution Binary Zone Plate in Double-Sided Configuration for Terahertz Radiation Focusing,” IEEE Photonics Technol. Lett. 31(2), 117–120 (2019).
[Crossref]

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Baccherelli, “Terahertz focusing properties of polymeric zone plates characterized by a modified knife-edge technique,” J. Opt. Soc. Am. B 36(5), D88–D96 (2019).
[Crossref]

Ferraro, A.

A. Ferraro, D. C. Zografopoulos, R. Caputo, and R. Baccherelli, “Broad- and Narrow-Line Terahertz Filtering in Frequency-Selective Surfaces Patterned on Thin Low-Loss Polymer Substrates,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8501308 (2017).
[Crossref]

Fice, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Fuchi, K.

K. Fuchi, A. R. Diaz, E. J. Rothwell, R. O. Ouedraogo, and J. Tang, “An origami tunable metamaterial,” J. Appl. Phys. 111(8), 084905 (2012).
[Crossref]

Garet, F.

Geižutis, A.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Gensch, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Goldsmith, P.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Grant, J.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Grossman, E. N.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48(4), 712–718 (2000).
[Crossref]

Hand, T. H.

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

Hoffmann, M. C.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Huber, R.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Huggard, P. G.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Ikamas, K.

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

Jeglic, A.

U. Puc, A. Abina, A. Jeglič, A. Zidanšek, I. Kašalynas, R. Venckevičius, and G. Valušis, “Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range,” Sensors 18(12), 4098 (2018).
[Crossref]

U. Puc, A. Abina, M. Rutar, A. Zidanšek, A. Jeglič, and G. Valušis, “Terahertz spectroscopic identification of explosive and drug simulants concealed by various hiding techniques,” Appl. Opt. 54(14), 4495–4502 (2015).
[Crossref]

Johnston, M. B.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Jokubauskis, D.

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 023104 (2019).
[Crossref]

Karaliunas, M.

M. Karaliunas, K. E. Nasser, A. Urbanowicz, I. Kasalynas, D. Brazinskiene, S. Asadauskas, and G. Valusis, “Non-destructive inspection of food and technical oils by terahertz spectroscopy,” Sci. Rep. 8(1), 18025 (2018).
[Crossref]

Kasalynas, I.

M. Karaliunas, K. E. Nasser, A. Urbanowicz, I. Kasalynas, D. Brazinskiene, S. Asadauskas, and G. Valusis, “Non-destructive inspection of food and technical oils by terahertz spectroscopy,” Sci. Rep. 8(1), 18025 (2018).
[Crossref]

Kašalynas, I.

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 023104 (2019).
[Crossref]

U. Puc, A. Abina, A. Jeglič, A. Zidanšek, I. Kašalynas, R. Venckevičius, and G. Valušis, “Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range,” Sensors 18(12), 4098 (2018).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

L. Minkevičius, K. Madeikis, B. Voisiat, I. Kašalynas, R. Venckevičius, G. Račiukaitis, V. Tamošiūnas, and G. Valušis, “Focusing Performance of Terahertz Zone Plates with Integrated Cross-shape Apertures,” J. Infrared, Millimeter, Terahertz Waves 35(9), 699–702 (2014).
[Crossref]

M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos, “Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 425 THz,” Opt. Express 22(16), 19235–19241 (2014).
[Crossref]

L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett. 49(1), 49–50 (2013).
[Crossref]

I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

B. Voisiat, A. Bičiūnas, I. Kašalynas, and G. Rǎciukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A 104(3), 953–958 (2011).
[Crossref]

Koch, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
[Crossref]

Konishi, K.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Korter, T. M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Krotkus, A.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Krozer, V.

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos, “Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 425 THz,” Opt. Express 22(16), 19235–19241 (2014).
[Crossref]

Kuwata-Gonokami, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Liang, G.

G. Liang, T. Liu, and Q. J. Wang, “Recent Developments of Terahertz Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1200118 (2017).
[Crossref]

Linfield, E. H.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Lisauskas, A.

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos, “Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 425 THz,” Opt. Express 22(16), 19235–19241 (2014).
[Crossref]

Liu, T.

G. Liang, T. Liu, and Q. J. Wang, “Recent Developments of Terahertz Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1200118 (2017).
[Crossref]

Lucyszyn, S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

MacDonald, M. E.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48(4), 712–718 (2000).
[Crossref]

Madeikis, K.

L. Minkevičius, K. Madeikis, B. Voisiat, I. Kašalynas, R. Venckevičius, G. Račiukaitis, V. Tamošiūnas, and G. Valušis, “Focusing Performance of Terahertz Zone Plates with Integrated Cross-shape Apertures,” J. Infrared, Millimeter, Terahertz Waves 35(9), 699–702 (2014).
[Crossref]

Makowski, M.

Markelz, A. G.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Mekys, A.

L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett. 49(1), 49–50 (2013).
[Crossref]

Minkevicius, L.

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 023104 (2019).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

L. Minkevičius, K. Madeikis, B. Voisiat, I. Kašalynas, R. Venckevičius, G. Račiukaitis, V. Tamošiūnas, and G. Valušis, “Focusing Performance of Terahertz Zone Plates with Integrated Cross-shape Apertures,” J. Infrared, Millimeter, Terahertz Waves 35(9), 699–702 (2014).
[Crossref]

M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos, “Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 425 THz,” Opt. Express 22(16), 19235–19241 (2014).
[Crossref]

L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett. 49(1), 49–50 (2013).
[Crossref]

Missori, M.

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Beccherelli, “High-Resolution Binary Zone Plate in Double-Sided Configuration for Terahertz Radiation Focusing,” IEEE Photonics Technol. Lett. 31(2), 117–120 (2019).
[Crossref]

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Baccherelli, “Terahertz focusing properties of polymeric zone plates characterized by a modified knife-edge technique,” J. Opt. Soc. Am. B 36(5), D88–D96 (2019).
[Crossref]

Mundt, M.

Naftaly, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Nasser, K. E.

M. Karaliunas, K. E. Nasser, A. Urbanowicz, I. Kasalynas, D. Brazinskiene, S. Asadauskas, and G. Valusis, “Non-destructive inspection of food and technical oils by terahertz spectroscopy,” Sci. Rep. 8(1), 18025 (2018).
[Crossref]

Ouedraogo, R. O.

K. Fuchi, A. R. Diaz, E. J. Rothwell, R. O. Ouedraogo, and J. Tang, “An origami tunable metamaterial,” J. Appl. Phys. 111(8), 084905 (2012).
[Crossref]

Pacebutas, V.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Paoloni, C.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Pardo, D.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Popovic, Z.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48(4), 712–718 (2000).
[Crossref]

Puc, U.

U. Puc, A. Abina, A. Jeglič, A. Zidanšek, I. Kašalynas, R. Venckevičius, and G. Valušis, “Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range,” Sensors 18(12), 4098 (2018).
[Crossref]

U. Puc, A. Abina, M. Rutar, A. Zidanšek, A. Jeglič, and G. Valušis, “Terahertz spectroscopic identification of explosive and drug simulants concealed by various hiding techniques,” Appl. Opt. 54(14), 4495–4502 (2015).
[Crossref]

Raciukaitis, G.

L. Minkevičius, K. Madeikis, B. Voisiat, I. Kašalynas, R. Venckevičius, G. Račiukaitis, V. Tamošiūnas, and G. Valušis, “Focusing Performance of Terahertz Zone Plates with Integrated Cross-shape Apertures,” J. Infrared, Millimeter, Terahertz Waves 35(9), 699–702 (2014).
[Crossref]

L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett. 49(1), 49–50 (2013).
[Crossref]

B. Voisiat, A. Bičiūnas, I. Kašalynas, and G. Rǎciukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A 104(3), 953–958 (2011).
[Crossref]

Rea, S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Renaud, C.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Ridler, N.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Roskos, H. G.

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos, “Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 425 THz,” Opt. Express 22(16), 19235–19241 (2014).
[Crossref]

Rothwell, E. J.

K. Fuchi, A. R. Diaz, E. J. Rothwell, R. O. Ouedraogo, and J. Tang, “An origami tunable metamaterial,” J. Appl. Phys. 111(8), 084905 (2012).
[Crossref]

Rutar, M.

Sabbadini, A.

C. Coulais, A. Sabbadini, F. Vink, and M. van Hecke, “Multi-step self-guided pathways for shape-changing metamaterials,” Nature 561(7724), 512–515 (2018).
[Crossref]

Scheller, M.

Scherger, B.

Schmuttenmaer, C. A.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Seeds, A.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Seliuta, D.

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 023104 (2019).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett. 49(1), 49–50 (2013).
[Crossref]

Sešek, A.

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

Shams, H.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Sibik, J.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Siemion, A.

Simoens, F.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Stanionyte, S.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Stöhr, A.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Suszek, J.

Švigelj, A.

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

Sypek, M.

Tamošiunas, V.

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

L. Minkevičius, K. Madeikis, B. Voisiat, I. Kašalynas, R. Venckevičius, G. Račiukaitis, V. Tamošiūnas, and G. Valušis, “Focusing Performance of Terahertz Zone Plates with Integrated Cross-shape Apertures,” J. Infrared, Millimeter, Terahertz Waves 35(9), 699–702 (2014).
[Crossref]

L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett. 49(1), 49–50 (2013).
[Crossref]

Tang, J.

K. Fuchi, A. R. Diaz, E. J. Rothwell, R. O. Ouedraogo, and J. Tang, “An origami tunable metamaterial,” J. Appl. Phys. 111(8), 084905 (2012).
[Crossref]

Taylor, Z. D.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Tofani, S.

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Beccherelli, “High-Resolution Binary Zone Plate in Double-Sided Configuration for Terahertz Radiation Focusing,” IEEE Photonics Technol. Lett. 31(2), 117–120 (2019).
[Crossref]

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Baccherelli, “Terahertz focusing properties of polymeric zone plates characterized by a modified knife-edge technique,” J. Opt. Soc. Am. B 36(5), D88–D96 (2019).
[Crossref]

Trontelj, J.

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

Urbanowicz, A.

M. Karaliunas, K. E. Nasser, A. Urbanowicz, I. Kasalynas, D. Brazinskiene, S. Asadauskas, and G. Valusis, “Non-destructive inspection of food and technical oils by terahertz spectroscopy,” Sci. Rep. 8(1), 18025 (2018).
[Crossref]

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Valusis, G.

M. Karaliunas, K. E. Nasser, A. Urbanowicz, I. Kasalynas, D. Brazinskiene, S. Asadauskas, and G. Valusis, “Non-destructive inspection of food and technical oils by terahertz spectroscopy,” Sci. Rep. 8(1), 18025 (2018).
[Crossref]

Valušis, G.

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 023104 (2019).
[Crossref]

U. Puc, A. Abina, A. Jeglič, A. Zidanšek, I. Kašalynas, R. Venckevičius, and G. Valušis, “Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range,” Sensors 18(12), 4098 (2018).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

U. Puc, A. Abina, M. Rutar, A. Zidanšek, A. Jeglič, and G. Valušis, “Terahertz spectroscopic identification of explosive and drug simulants concealed by various hiding techniques,” Appl. Opt. 54(14), 4495–4502 (2015).
[Crossref]

M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos, “Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 425 THz,” Opt. Express 22(16), 19235–19241 (2014).
[Crossref]

L. Minkevičius, K. Madeikis, B. Voisiat, I. Kašalynas, R. Venckevičius, G. Račiukaitis, V. Tamošiūnas, and G. Valušis, “Focusing Performance of Terahertz Zone Plates with Integrated Cross-shape Apertures,” J. Infrared, Millimeter, Terahertz Waves 35(9), 699–702 (2014).
[Crossref]

L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett. 49(1), 49–50 (2013).
[Crossref]

I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

van Hecke, M.

C. Coulais, A. Sabbadini, F. Vink, and M. van Hecke, “Multi-step self-guided pathways for shape-changing metamaterials,” Nature 561(7724), 512–515 (2018).
[Crossref]

Venckevicius, R.

U. Puc, A. Abina, A. Jeglič, A. Zidanšek, I. Kašalynas, R. Venckevičius, and G. Valušis, “Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range,” Sensors 18(12), 4098 (2018).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

L. Minkevičius, K. Madeikis, B. Voisiat, I. Kašalynas, R. Venckevičius, G. Račiukaitis, V. Tamošiūnas, and G. Valušis, “Focusing Performance of Terahertz Zone Plates with Integrated Cross-shape Apertures,” J. Infrared, Millimeter, Terahertz Waves 35(9), 699–702 (2014).
[Crossref]

M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos, “Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 425 THz,” Opt. Express 22(16), 19235–19241 (2014).
[Crossref]

L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett. 49(1), 49–50 (2013).
[Crossref]

I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

Vieweg, N.

Vink, F.

C. Coulais, A. Sabbadini, F. Vink, and M. van Hecke, “Multi-step self-guided pathways for shape-changing metamaterials,” Nature 561(7724), 512–515 (2018).
[Crossref]

Vitiello, M. S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Voisiat, B.

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

L. Minkevičius, K. Madeikis, B. Voisiat, I. Kašalynas, R. Venckevičius, G. Račiukaitis, V. Tamošiūnas, and G. Valušis, “Focusing Performance of Terahertz Zone Plates with Integrated Cross-shape Apertures,” J. Infrared, Millimeter, Terahertz Waves 35(9), 699–702 (2014).
[Crossref]

L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett. 49(1), 49–50 (2013).
[Crossref]

B. Voisiat, A. Bičiūnas, I. Kašalynas, and G. Rǎciukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A 104(3), 953–958 (2011).
[Crossref]

Wahaia, F.

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

Wallace, V. P.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Wang, K.-W.

H. Fang, S.-C. A. Chu, Y. Xia, and K.-W. Wang, “Programmable Self-Locking Origami Mechanical Metamaterials,” Adv. Mater. 30(15), 1706311 (2018).
[Crossref]

Wang, Q. J.

G. Liang, T. Liu, and Q. J. Wang, “Recent Developments of Terahertz Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1200118 (2017).
[Crossref]

Weightman, P.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Williams, G. P.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Xia, Y.

H. Fang, S.-C. A. Chu, Y. Xia, and K.-W. Wang, “Programmable Self-Locking Origami Mechanical Metamaterials,” Adv. Mater. 30(15), 1706311 (2018).
[Crossref]

York, R. A.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48(4), 712–718 (2000).
[Crossref]

Zidanšek, A.

U. Puc, A. Abina, A. Jeglič, A. Zidanšek, I. Kašalynas, R. Venckevičius, and G. Valušis, “Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range,” Sensors 18(12), 4098 (2018).
[Crossref]

U. Puc, A. Abina, M. Rutar, A. Zidanšek, A. Jeglič, and G. Valušis, “Terahertz spectroscopic identification of explosive and drug simulants concealed by various hiding techniques,” Appl. Opt. 54(14), 4495–4502 (2015).
[Crossref]

Zografopoulos, D. C.

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Baccherelli, “Terahertz focusing properties of polymeric zone plates characterized by a modified knife-edge technique,” J. Opt. Soc. Am. B 36(5), D88–D96 (2019).
[Crossref]

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Beccherelli, “High-Resolution Binary Zone Plate in Double-Sided Configuration for Terahertz Radiation Focusing,” IEEE Photonics Technol. Lett. 31(2), 117–120 (2019).
[Crossref]

A. Ferraro, D. C. Zografopoulos, R. Caputo, and R. Baccherelli, “Broad- and Narrow-Line Terahertz Filtering in Frequency-Selective Surfaces Patterned on Thin Low-Loss Polymer Substrates,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8501308 (2017).
[Crossref]

Adv. Mater. (1)

H. Fang, S.-C. A. Chu, Y. Xia, and K.-W. Wang, “Programmable Self-Locking Origami Mechanical Metamaterials,” Adv. Mater. 30(15), 1706311 (2018).
[Crossref]

AIP Adv. (1)

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionyte, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 µm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

B. Voisiat, A. Bičiūnas, I. Kašalynas, and G. Rǎciukaitis, “Band-pass filters for THz spectral range fabricated by laser ablation,” Appl. Phys. A 104(3), 953–958 (2011).
[Crossref]

Electron. Lett. (1)

L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett. 49(1), 49–50 (2013).
[Crossref]

IEEE Electron Device Lett. (1)

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

G. Liang, T. Liu, and Q. J. Wang, “Recent Developments of Terahertz Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1200118 (2017).
[Crossref]

A. Ferraro, D. C. Zografopoulos, R. Caputo, and R. Baccherelli, “Broad- and Narrow-Line Terahertz Filtering in Frequency-Selective Surfaces Patterned on Thin Low-Loss Polymer Substrates,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8501308 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Beccherelli, “High-Resolution Binary Zone Plate in Double-Sided Configuration for Terahertz Radiation Focusing,” IEEE Photonics Technol. Lett. 31(2), 117–120 (2019).
[Crossref]

IEEE Sens. J. (1)

I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48(4), 712–718 (2000).
[Crossref]

J. Appl. Phys. (2)

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

K. Fuchi, A. R. Diaz, E. J. Rothwell, R. O. Ouedraogo, and J. Tang, “An origami tunable metamaterial,” J. Appl. Phys. 111(8), 084905 (2012).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (2)

L. Minkevičius, K. Madeikis, B. Voisiat, I. Kašalynas, R. Venckevičius, G. Račiukaitis, V. Tamošiūnas, and G. Valušis, “Focusing Performance of Terahertz Zone Plates with Integrated Cross-shape Apertures,” J. Infrared, Millimeter, Terahertz Waves 35(9), 699–702 (2014).
[Crossref]

A. Siemion, “Terahertz Diffractive Optics—Smart Control over Radiation,” J. Infrared, Millimeter, Terahertz Waves 40(5), 477–499 (2019).
[Crossref]

J. Mater. Sci. (1)

D. L. Chung, “Review Graphite,” J. Mater. Sci. 37(8), 1475–1489 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Nanophotonics (1)

F. Capasso, “The future and promise of flat optics: a personal perspective,” Nanophotonics 7(6), 953–957 (2018).
[Crossref]

Nature (1)

C. Coulais, A. Sabbadini, F. Vink, and M. van Hecke, “Multi-step self-guided pathways for shape-changing metamaterials,” Nature 561(7724), 512–515 (2018).
[Crossref]

Opt. Eng. (1)

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 023104 (2019).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Sci. Rep. (1)

M. Karaliunas, K. E. Nasser, A. Urbanowicz, I. Kasalynas, D. Brazinskiene, S. Asadauskas, and G. Valusis, “Non-destructive inspection of food and technical oils by terahertz spectroscopy,” Sci. Rep. 8(1), 18025 (2018).
[Crossref]

Sensors (2)

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues,” Sensors 16(4), 432 (2016).
[Crossref]

U. Puc, A. Abina, A. Jeglič, A. Zidanšek, I. Kašalynas, R. Venckevičius, and G. Valušis, “Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range,” Sensors 18(12), 4098 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Photos of the quarter of TZP made from different materials: a) metal; b) graphite foil; c) graphite on paper and d) paper. Inset depicts the shape of one cross-shaped aperture element. Photos were taken using “Hyrox KH-7700” digital microscope. e) Design of the graphite foil terahertz zone plate for 0.6 THz and geometry of cross-shaped filters (M = 40 µm, K = 260 µm, L = 290 µm). f) Raman spectroscopy of 10 µm graphite film and 75 µm polymer film. Most pronounced spectral signatures in plastic: -C = O (1721cm−1), C = C (1608, 3075 cm−1) and CH3 (2959 cm−1). The N-H amine vibration line around 3300-3400 cm−1, it is not prominent, likely due to overlapping with characteristic bands of absorbed water in the same region.
Fig. 2.
Fig. 2. a) THz-TDS set-up for evaluation of spectral properties of investigated zone plates [20], b) THz-CW set-up for evaluation of TZP focusing performance and THz beam profile measurements in the focal (xy) plane and along the z-axis, (zy) plane.
Fig. 3.
Fig. 3. THz-TDS transmittance spectra and insets depict THz-CW two-dimensional THz beam profiles focused with a) metal TZP; b) graphite foil TZP; c) graphite on paper TZP; d) pure paper TZP. The beam cross sections at the maximum intensity are presented in a linear scale as a solid black line for each case. Maximum signal amplitude of the TZPs is normalized to the maximum amplitude of the unfocused beam.
Fig. 4.
Fig. 4. a) Experimental results (symbols + lines) of the beam profile (left scale) and theoretical calculations (straight lines) of the normalized squared electric field (right scale) distribution along z-axes. Inset depicts FWHM variation along the z-axis for the beam focused with all investigated TZPs. (b-d) The beam profile along z-axes (zx-plane) focused with: b) graphite foil TZP, c) graphite on paper TZP, d) pure paper TZP.
Fig. 5.
Fig. 5. Simulated distribution of electric field amplitude behind the a) metal TZP, b) graphite foil TZP, c) graphite on paper and paper TZPs – both focal points overlap; the increase in intensity of graphite on paper TZP is 15% higher than that of the paper alone.

Tables (3)

Tables Icon

Table 1. Dimensions of cross-shaped filters

Tables Icon

Table 2. Transmittance of different zone plates measured using THz-TDS and THz-CW systems

Tables Icon

Table 3. Gaussian beam parameters