Abstract

Because relative humidity is an important indicator to evaluate the environment quality of production and daily life, humidity sensors have been widely used in various fields. In this work, we proposed a high-sensitivity evanescent field humidity sensor based on micro-capillary and graphene oxide (GO) film. The capillary wall was coated by GO sheets for 1, 3 and 5 cycles, and the interaction between GO and the evanescent field on the capillary wall was experimentally and theoretically investigated. We tested the performance of the sensor with a relative humidity range of 30%RH-70%RH at 25°C. The experimental results show that the sensitivity of the sensor to humidity increases with the compactness of the GO coating. In addition, considering the extinction caused by the GO sheet, the transmission loss and the number of reflections in the capillary wall, the optimal length of the capillary was investigated in order to obtain a good spectral response. Since the cycle of GO coating was controllable, we found that the sensor has a tunable humidity sensitivity. This evanescent field humidity sensor can be applied in all-fiber optic networks for environmental sensing and health monitoring.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Humidity-insensitive temperature sensor based on a quartz capillary anti-resonant reflection optical waveguide

Shuangqiang Liu, Yingke Ji, Lugui Cui, Weimin Sun, Jun Yang, and Hanyang Li
Opt. Express 25(16) 18929-18939 (2017)

Optical fiber humidity sensor based on the direct response of the polyimide film

Ce Bian, Manli Hu, Ruohui Wang, Tingting Gang, Rongxin Tong, Lisong Zhang, Teng Guo, Xiaobo Liu, and Xueguang Qiao
Appl. Opt. 57(2) 356-361 (2018)

Agarose coated spherical micro resonator for humidity measurements

Arun Kumar Mallik, Dejun Liu, Vishnu Kavungal, Qiang Wu, Gerald Farrell, and Yuliya Semenova
Opt. Express 24(19) 21216-21227 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. M. Kulwicki, “Humidity sensors,” J. Am. Ceram. Soc. 74(4), 697–708 (1991).
    [Crossref]
  2. M. C. Mabel and E. Fernandez, “Analysis of wind power generation and prediction using ANN: A case study,” Renewable Energy 33(5), 986–992 (2008).
    [Crossref]
  3. C. Hertleer, A. Van Laere, H. Rogier, and L. Van Langenhove, “Influence of relative humidity on textile antenna performance,” Text. Res. J. 80(2), 177–183 (2010).
    [Crossref]
  4. L. Ruiz-Garcia, L. Lunadei, P. Barreiro, and I. Robla, “A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends,” Sensors 9(6), 4728–4750 (2009).
    [Crossref]
  5. Q. Wang, Y. Z. Pan, S. S. Huang, S. T. Ren, P. Li, and J. J. Li, “Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor,” Nanotechnology 22(2), 025501 (2011).
    [Crossref]
  6. A. Rivadeneyra, J. Fernández-Salmeron, M. Agudo, J. A. López-Villanueva, L. F. Capitan-Vallvey, and A. J. Palma, “Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing,” Sens. Actuators, B 195, 123–131 (2014).
    [Crossref]
  7. J. Nie and X. Meng, “Dew point and relative humidity measurement using a quartz resonant sensor,” Microsyst. Technol. 20(7), 1311–1315 (2014).
    [Crossref]
  8. S. Kolpakov, N. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors 14(3), 3986–4013 (2014).
    [Crossref]
  9. H. Farahani, R. Wagiran, and M. Hamidon, “Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review,” Sensors 14(5), 7881–7939 (2014).
    [Crossref]
  10. T. A. Blank, L. P. Eksperiandova, and K. N. Belikov, “Recent trends of ceramic humidity sensors development: A review,” Sens. Actuators, B 228, 416–442 (2016).
    [Crossref]
  11. T. L. Yeo, T. Sun, and K. T. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators, A 144(2), 280–295 (2008).
    [Crossref]
  12. I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7(1), 89–95 (2007).
    [Crossref]
  13. G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
    [Crossref]
  14. Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
    [Crossref]
  15. M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nor, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators, A 210, 190–196 (2014).
    [Crossref]
  16. B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
    [Crossref]
  17. J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
    [Crossref]
  18. J. Ascorbe, J. Corres, F. Arregui, and I. Matias, “Recent developments in fiber optics humidity sensors,” Sensors 17(4), 893 (2017).
    [Crossref]
  19. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
    [Crossref]
  20. W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators, B 174, 563–569 (2012).
    [Crossref]
  21. J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1553–1559 (2012).
    [Crossref]
  22. X. Wang, G. Farrell, E. Lewis, K. Tian, L. Yuan, and P. Wang, “A humidity sensor based on a singlemode-side polished multimode–singlemode optical fibre structure coated with gelatin,” J. Lightwave Technol. 35(18), 4087–4094 (2017).
    [Crossref]
  23. L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
    [Crossref]
  24. J. W. Han, B. Kim, J. Li, and M. Meyyappan, “Carbon nanotube based humidity sensor on cellulose paper,” J. Phys. Chem. C 116(41), 22094–22097 (2012).
    [Crossref]
  25. W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
    [Crossref]
  26. W. D. Lin, H. M. Chang, and R. J. Wu, “Applied novel sensing material graphene/polypyrrole for humidity sensor,” Sens. Actuators, B 181, 326–331 (2013).
    [Crossref]
  27. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
    [Crossref]
  28. S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene for device applications,” Nano Lett. 7(11), 3394–3398 (2007).
    [Crossref]
  29. W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
    [Crossref]
  30. A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of graphite oxide revisited,” J. Phys. Chem. B 102(23), 4477–4482 (1998).
    [Crossref]

2017 (2)

2016 (4)

J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref]

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref]

T. A. Blank, L. P. Eksperiandova, and K. N. Belikov, “Recent trends of ceramic humidity sensors development: A review,” Sens. Actuators, B 228, 416–442 (2016).
[Crossref]

2015 (2)

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

2014 (5)

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nor, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators, A 210, 190–196 (2014).
[Crossref]

A. Rivadeneyra, J. Fernández-Salmeron, M. Agudo, J. A. López-Villanueva, L. F. Capitan-Vallvey, and A. J. Palma, “Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing,” Sens. Actuators, B 195, 123–131 (2014).
[Crossref]

J. Nie and X. Meng, “Dew point and relative humidity measurement using a quartz resonant sensor,” Microsyst. Technol. 20(7), 1311–1315 (2014).
[Crossref]

S. Kolpakov, N. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors 14(3), 3986–4013 (2014).
[Crossref]

H. Farahani, R. Wagiran, and M. Hamidon, “Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review,” Sensors 14(5), 7881–7939 (2014).
[Crossref]

2013 (2)

W. D. Lin, H. M. Chang, and R. J. Wu, “Applied novel sensing material graphene/polypyrrole for humidity sensor,” Sens. Actuators, B 181, 326–331 (2013).
[Crossref]

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

2012 (3)

J. W. Han, B. Kim, J. Li, and M. Meyyappan, “Carbon nanotube based humidity sensor on cellulose paper,” J. Phys. Chem. C 116(41), 22094–22097 (2012).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators, B 174, 563–569 (2012).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1553–1559 (2012).
[Crossref]

2011 (2)

B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
[Crossref]

Q. Wang, Y. Z. Pan, S. S. Huang, S. T. Ren, P. Li, and J. J. Li, “Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor,” Nanotechnology 22(2), 025501 (2011).
[Crossref]

2010 (1)

C. Hertleer, A. Van Laere, H. Rogier, and L. Van Langenhove, “Influence of relative humidity on textile antenna performance,” Text. Res. J. 80(2), 177–183 (2010).
[Crossref]

2009 (1)

L. Ruiz-Garcia, L. Lunadei, P. Barreiro, and I. Robla, “A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends,” Sensors 9(6), 4728–4750 (2009).
[Crossref]

2008 (4)

M. C. Mabel and E. Fernandez, “Analysis of wind power generation and prediction using ANN: A case study,” Renewable Energy 33(5), 986–992 (2008).
[Crossref]

T. L. Yeo, T. Sun, and K. T. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators, A 144(2), 280–295 (2008).
[Crossref]

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref]

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

2007 (2)

S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene for device applications,” Nano Lett. 7(11), 3394–3398 (2007).
[Crossref]

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7(1), 89–95 (2007).
[Crossref]

1998 (1)

A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of graphite oxide revisited,” J. Phys. Chem. B 102(23), 4477–4482 (1998).
[Crossref]

1991 (1)

B. M. Kulwicki, “Humidity sensors,” J. Am. Ceram. Soc. 74(4), 697–708 (1991).
[Crossref]

Agudo, M.

A. Rivadeneyra, J. Fernández-Salmeron, M. Agudo, J. A. López-Villanueva, L. F. Capitan-Vallvey, and A. J. Palma, “Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing,” Sens. Actuators, B 195, 123–131 (2014).
[Crossref]

Ahmad, F.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nor, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators, A 210, 190–196 (2014).
[Crossref]

Ahmad, H.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nor, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators, A 210, 190–196 (2014).
[Crossref]

An, J.

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref]

An, S. J.

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

Arregui, F.

J. Ascorbe, J. Corres, F. Arregui, and I. Matias, “Recent developments in fiber optics humidity sensors,” Sensors 17(4), 893 (2017).
[Crossref]

Arregui, F. J.

J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7(1), 89–95 (2007).
[Crossref]

Ascorbe, J.

J. Ascorbe, J. Corres, F. Arregui, and I. Matias, “Recent developments in fiber optics humidity sensors,” Sensors 17(4), 893 (2017).
[Crossref]

J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]

Bang, O.

Barreiro, P.

L. Ruiz-Garcia, L. Lunadei, P. Barreiro, and I. Robla, “A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends,” Sensors 9(6), 4728–4750 (2009).
[Crossref]

Batumalay, M.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nor, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators, A 210, 190–196 (2014).
[Crossref]

Belikov, K. N.

T. A. Blank, L. P. Eksperiandova, and K. N. Belikov, “Recent trends of ceramic humidity sensors development: A review,” Sens. Actuators, B 228, 416–442 (2016).
[Crossref]

Berruti, G.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Blank, T. A.

T. A. Blank, L. P. Eksperiandova, and K. N. Belikov, “Recent trends of ceramic humidity sensors development: A review,” Sens. Actuators, B 228, 416–442 (2016).
[Crossref]

Bo, L.

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Bravo, J.

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7(1), 89–95 (2007).
[Crossref]

Breglio, G.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Buontempo, S.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Cai, W.

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

Capitan-Vallvey, L. F.

A. Rivadeneyra, J. Fernández-Salmeron, M. Agudo, J. A. López-Villanueva, L. F. Capitan-Vallvey, and A. J. Palma, “Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing,” Sens. Actuators, B 195, 123–131 (2014).
[Crossref]

Chan, C. C.

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators, B 174, 563–569 (2012).
[Crossref]

Chang, H. M.

W. D. Lin, H. M. Chang, and R. J. Wu, “Applied novel sensing material graphene/polypyrrole for humidity sensor,” Sens. Actuators, B 181, 326–331 (2013).
[Crossref]

Chen, C.

Chen, J.

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

Chen, L. H.

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators, B 174, 563–569 (2012).
[Crossref]

Chen, Z.

Consales, M.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Corres, J.

J. Ascorbe, J. Corres, F. Arregui, and I. Matias, “Recent developments in fiber optics humidity sensors,” Sensors 17(4), 893 (2017).
[Crossref]

Corres, J. M.

J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7(1), 89–95 (2007).
[Crossref]

Cusano, A.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Eksperiandova, L. P.

T. A. Blank, L. P. Eksperiandova, and K. N. Belikov, “Recent trends of ceramic humidity sensors development: A review,” Sens. Actuators, B 228, 416–442 (2016).
[Crossref]

Farahani, H.

H. Farahani, R. Wagiran, and M. Hamidon, “Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review,” Sensors 14(5), 7881–7939 (2014).
[Crossref]

Farrell, G.

X. Wang, G. Farrell, E. Lewis, K. Tian, L. Yuan, and P. Wang, “A humidity sensor based on a singlemode-side polished multimode–singlemode optical fibre structure coated with gelatin,” J. Lightwave Technol. 35(18), 4087–4094 (2017).
[Crossref]

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1553–1559 (2012).
[Crossref]

Fernandez, E.

M. C. Mabel and E. Fernandez, “Analysis of wind power generation and prediction using ANN: A case study,” Renewable Energy 33(5), 986–992 (2008).
[Crossref]

Fernández-Salmeron, J.

A. Rivadeneyra, J. Fernández-Salmeron, M. Agudo, J. A. López-Villanueva, L. F. Capitan-Vallvey, and A. J. Palma, “Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing,” Sens. Actuators, B 195, 123–131 (2014).
[Crossref]

Forster, M.

A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of graphite oxide revisited,” J. Phys. Chem. B 102(23), 4477–4482 (1998).
[Crossref]

Gilje, S.

S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene for device applications,” Nano Lett. 7(11), 3394–3398 (2007).
[Crossref]

Giordano, M.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Gordon, N.

S. Kolpakov, N. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors 14(3), 3986–4013 (2014).
[Crossref]

Grattan, K. T.

T. L. Yeo, T. Sun, and K. T. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators, A 144(2), 280–295 (2008).
[Crossref]

Gu, B.

Guan, H.

Hamidon, M.

H. Farahani, R. Wagiran, and M. Hamidon, “Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review,” Sensors 14(5), 7881–7939 (2014).
[Crossref]

Han, J. W.

J. W. Han, B. Kim, J. Li, and M. Meyyappan, “Carbon nanotube based humidity sensor on cellulose paper,” J. Phys. Chem. C 116(41), 22094–22097 (2012).
[Crossref]

Han, S.

S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene for device applications,” Nano Lett. 7(11), 3394–3398 (2007).
[Crossref]

Harith, Z.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nor, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators, A 210, 190–196 (2014).
[Crossref]

Harun, S. W.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nor, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators, A 210, 190–196 (2014).
[Crossref]

Hasan, T.

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

He, H.

A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of graphite oxide revisited,” J. Phys. Chem. B 102(23), 4477–4482 (1998).
[Crossref]

He, M.

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

He, S.

He, X.

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

Hertleer, C.

C. Hertleer, A. Van Laere, H. Rogier, and L. Van Langenhove, “Influence of relative humidity on textile antenna performance,” Text. Res. J. 80(2), 177–183 (2010).
[Crossref]

Huang, S. S.

Q. Wang, Y. Z. Pan, S. S. Huang, S. T. Ren, P. Li, and J. J. Li, “Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor,” Nanotechnology 22(2), 025501 (2011).
[Crossref]

Ishii, Y.

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

Kaner, R. B.

S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene for device applications,” Nano Lett. 7(11), 3394–3398 (2007).
[Crossref]

Khasanah, M.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nor, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators, A 210, 190–196 (2014).
[Crossref]

Kim, B.

J. W. Han, B. Kim, J. Li, and M. Meyyappan, “Carbon nanotube based humidity sensor on cellulose paper,” J. Phys. Chem. C 116(41), 22094–22097 (2012).
[Crossref]

Klinowski, J.

A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of graphite oxide revisited,” J. Phys. Chem. B 102(23), 4477–4482 (1998).
[Crossref]

Kolpakov, S.

S. Kolpakov, N. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors 14(3), 3986–4013 (2014).
[Crossref]

Kulwicki, B. M.

B. M. Kulwicki, “Humidity sensors,” J. Am. Ceram. Soc. 74(4), 697–708 (1991).
[Crossref]

Lee, K. X.

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators, B 174, 563–569 (2012).
[Crossref]

Leong, K. C.

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators, B 174, 563–569 (2012).
[Crossref]

Lerf, A.

A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of graphite oxide revisited,” J. Phys. Chem. B 102(23), 4477–4482 (1998).
[Crossref]

Lewis, E.

Li, J.

J. W. Han, B. Kim, J. Li, and M. Meyyappan, “Carbon nanotube based humidity sensor on cellulose paper,” J. Phys. Chem. C 116(41), 22094–22097 (2012).
[Crossref]

Li, J. J.

Q. Wang, Y. Z. Pan, S. S. Huang, S. T. Ren, P. Li, and J. J. Li, “Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor,” Nanotechnology 22(2), 025501 (2011).
[Crossref]

Li, P.

Q. Wang, Y. Z. Pan, S. S. Huang, S. T. Ren, P. Li, and J. J. Li, “Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor,” Nanotechnology 22(2), 025501 (2011).
[Crossref]

Li, T.

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators, B 174, 563–569 (2012).
[Crossref]

Lin, W. D.

W. D. Lin, H. M. Chang, and R. J. Wu, “Applied novel sensing material graphene/polypyrrole for humidity sensor,” Sens. Actuators, B 181, 326–331 (2013).
[Crossref]

López-Villanueva, J. A.

A. Rivadeneyra, J. Fernández-Salmeron, M. Agudo, J. A. López-Villanueva, L. F. Capitan-Vallvey, and A. J. Palma, “Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing,” Sens. Actuators, B 195, 123–131 (2014).
[Crossref]

Lu, H.

Lunadei, L.

L. Ruiz-Garcia, L. Lunadei, P. Barreiro, and I. Robla, “A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends,” Sensors 9(6), 4728–4750 (2009).
[Crossref]

Luo, J. K.

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

Luo, Y.

Mabel, M. C.

M. C. Mabel and E. Fernandez, “Analysis of wind power generation and prediction using ANN: A case study,” Renewable Energy 33(5), 986–992 (2008).
[Crossref]

Markos, C.

Mathew, J.

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1553–1559 (2012).
[Crossref]

Matias, I.

J. Ascorbe, J. Corres, F. Arregui, and I. Matias, “Recent developments in fiber optics humidity sensors,” Sensors 17(4), 893 (2017).
[Crossref]

Matias, I. R.

J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7(1), 89–95 (2007).
[Crossref]

Meng, N.

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

Meng, X.

J. Nie and X. Meng, “Dew point and relative humidity measurement using a quartz resonant sensor,” Microsyst. Technol. 20(7), 1311–1315 (2014).
[Crossref]

Meyyappan, M.

J. W. Han, B. Kim, J. Li, and M. Meyyappan, “Carbon nanotube based humidity sensor on cellulose paper,” J. Phys. Chem. C 116(41), 22094–22097 (2012).
[Crossref]

Mou, C.

S. Kolpakov, N. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors 14(3), 3986–4013 (2014).
[Crossref]

Nie, J.

J. Nie and X. Meng, “Dew point and relative humidity measurement using a quartz resonant sensor,” Microsyst. Technol. 20(7), 1311–1315 (2014).
[Crossref]

Nielsen, K.

Nor, R. M.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nor, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators, A 210, 190–196 (2014).
[Crossref]

Palma, A. J.

A. Rivadeneyra, J. Fernández-Salmeron, M. Agudo, J. A. López-Villanueva, L. F. Capitan-Vallvey, and A. J. Palma, “Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing,” Sens. Actuators, B 195, 123–131 (2014).
[Crossref]

Pan, Y. Z.

Q. Wang, Y. Z. Pan, S. S. Huang, S. T. Ren, P. Li, and J. J. Li, “Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor,” Nanotechnology 22(2), 025501 (2011).
[Crossref]

Park, S.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref]

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

Peng, S.

Petagna, P.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Piner, R. D.

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

Qian, J.

Rafaie, H. A.

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nor, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators, A 210, 190–196 (2014).
[Crossref]

Ren, S. T.

Q. Wang, Y. Z. Pan, S. S. Huang, S. T. Ren, P. Li, and J. J. Li, “Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor,” Nanotechnology 22(2), 025501 (2011).
[Crossref]

Rivadeneyra, A.

A. Rivadeneyra, J. Fernández-Salmeron, M. Agudo, J. A. López-Villanueva, L. F. Capitan-Vallvey, and A. J. Palma, “Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing,” Sens. Actuators, B 195, 123–131 (2014).
[Crossref]

Robla, I.

L. Ruiz-Garcia, L. Lunadei, P. Barreiro, and I. Robla, “A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends,” Sensors 9(6), 4728–4750 (2009).
[Crossref]

Rogier, H.

C. Hertleer, A. Van Laere, H. Rogier, and L. Van Langenhove, “Influence of relative humidity on textile antenna performance,” Text. Res. J. 80(2), 177–183 (2010).
[Crossref]

Ruiz-Garcia, L.

L. Ruiz-Garcia, L. Lunadei, P. Barreiro, and I. Robla, “A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends,” Sensors 9(6), 4728–4750 (2009).
[Crossref]

Ruoff, R. S.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref]

Sansone, L.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Semenova, Y.

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1553–1559 (2012).
[Crossref]

Shaibat, M. A.

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

Shi, T.

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

Stadermann, F. J.

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

Stefani, A.

Stoller, M.

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

Stoller, M. D.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref]

Sun, T.

T. L. Yeo, T. Sun, and K. T. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators, A 144(2), 280–295 (2008).
[Crossref]

Tang, J.

Tian, K.

Van Laere, A.

C. Hertleer, A. Van Laere, H. Rogier, and L. Van Langenhove, “Influence of relative humidity on textile antenna performance,” Text. Res. J. 80(2), 177–183 (2010).
[Crossref]

Van Langenhove, L.

C. Hertleer, A. Van Laere, H. Rogier, and L. Van Langenhove, “Influence of relative humidity on textile antenna performance,” Text. Res. J. 80(2), 177–183 (2010).
[Crossref]

Velamakanni, A.

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

Wagiran, R.

H. Farahani, R. Wagiran, and M. Hamidon, “Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review,” Sensors 14(5), 7881–7939 (2014).
[Crossref]

Wang, K. L.

S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene for device applications,” Nano Lett. 7(11), 3394–3398 (2007).
[Crossref]

Wang, M.

S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene for device applications,” Nano Lett. 7(11), 3394–3398 (2007).
[Crossref]

Wang, P.

X. Wang, G. Farrell, E. Lewis, K. Tian, L. Yuan, and P. Wang, “A humidity sensor based on a singlemode-side polished multimode–singlemode optical fibre structure coated with gelatin,” J. Lightwave Technol. 35(18), 4087–4094 (2017).
[Crossref]

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Wang, Q.

Q. Wang, Y. Z. Pan, S. S. Huang, S. T. Ren, P. Li, and J. J. Li, “Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor,” Nanotechnology 22(2), 025501 (2011).
[Crossref]

Wang, W.

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

Wang, X.

Wong, W. C.

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators, B 174, 563–569 (2012).
[Crossref]

Woyessa, G.

Wu, R. J.

W. D. Lin, H. M. Chang, and R. J. Wu, “Applied novel sensing material graphene/polypyrrole for humidity sensor,” Sens. Actuators, B 181, 326–331 (2013).
[Crossref]

Xia, K.

Xiao, Y.

Xu, Y.

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

Xu, Z.

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

Xuan, W.

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

Yang, D.

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

Yeo, T. L.

T. L. Yeo, T. Sun, and K. T. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators, A 144(2), 280–295 (2008).
[Crossref]

Yin, M.

Yu, J.

Yuan, L.

Zhang, A. P.

Zhang, J.

Zhou, K.

S. Kolpakov, N. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors 14(3), 3986–4013 (2014).
[Crossref]

Zhu, Y.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1553–1559 (2012).
[Crossref]

IEEE Sens. J. (1)

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7(1), 89–95 (2007).
[Crossref]

J. Am. Ceram. Soc. (1)

B. M. Kulwicki, “Humidity sensors,” J. Am. Ceram. Soc. 74(4), 697–708 (1991).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Chem. B (1)

A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of graphite oxide revisited,” J. Phys. Chem. B 102(23), 4477–4482 (1998).
[Crossref]

J. Phys. Chem. C (1)

J. W. Han, B. Kim, J. Li, and M. Meyyappan, “Carbon nanotube based humidity sensor on cellulose paper,” J. Phys. Chem. C 116(41), 22094–22097 (2012).
[Crossref]

Microsyst. Technol. (1)

J. Nie and X. Meng, “Dew point and relative humidity measurement using a quartz resonant sensor,” Microsyst. Technol. 20(7), 1311–1315 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (1)

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Nano Lett. (2)

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref]

S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene for device applications,” Nano Lett. 7(11), 3394–3398 (2007).
[Crossref]

Nanotechnology (1)

Q. Wang, Y. Z. Pan, S. S. Huang, S. T. Ren, P. Li, and J. J. Li, “Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor,” Nanotechnology 22(2), 025501 (2011).
[Crossref]

Opt. Express (3)

Renewable Energy (1)

M. C. Mabel and E. Fernandez, “Analysis of wind power generation and prediction using ANN: A case study,” Renewable Energy 33(5), 986–992 (2008).
[Crossref]

Sci. Rep. (1)

W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, and J. K. Luo, “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Sci. Rep. 4(1), 7206 (2015).
[Crossref]

Science (1)

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, and J. An, “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321(5897), 1815–1817 (2008).
[Crossref]

Sens. Actuators, A (2)

T. L. Yeo, T. Sun, and K. T. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators, A 144(2), 280–295 (2008).
[Crossref]

M. Batumalay, Z. Harith, H. A. Rafaie, F. Ahmad, M. Khasanah, S. W. Harun, R. M. Nor, and H. Ahmad, “Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity,” Sens. Actuators, A 210, 190–196 (2014).
[Crossref]

Sens. Actuators, B (6)

J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators, B 174, 563–569 (2012).
[Crossref]

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

W. D. Lin, H. M. Chang, and R. J. Wu, “Applied novel sensing material graphene/polypyrrole for humidity sensor,” Sens. Actuators, B 181, 326–331 (2013).
[Crossref]

A. Rivadeneyra, J. Fernández-Salmeron, M. Agudo, J. A. López-Villanueva, L. F. Capitan-Vallvey, and A. J. Palma, “Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing,” Sens. Actuators, B 195, 123–131 (2014).
[Crossref]

T. A. Blank, L. P. Eksperiandova, and K. N. Belikov, “Recent trends of ceramic humidity sensors development: A review,” Sens. Actuators, B 228, 416–442 (2016).
[Crossref]

Sensors (4)

L. Ruiz-Garcia, L. Lunadei, P. Barreiro, and I. Robla, “A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends,” Sensors 9(6), 4728–4750 (2009).
[Crossref]

S. Kolpakov, N. Gordon, C. Mou, and K. Zhou, “Toward a new generation of photonic humidity sensors,” Sensors 14(3), 3986–4013 (2014).
[Crossref]

H. Farahani, R. Wagiran, and M. Hamidon, “Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review,” Sensors 14(5), 7881–7939 (2014).
[Crossref]

J. Ascorbe, J. Corres, F. Arregui, and I. Matias, “Recent developments in fiber optics humidity sensors,” Sensors 17(4), 893 (2017).
[Crossref]

Text. Res. J. (1)

C. Hertleer, A. Van Laere, H. Rogier, and L. Van Langenhove, “Influence of relative humidity on textile antenna performance,” Text. Res. J. 80(2), 177–183 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic of beam propagation in the capillary wall; (b) Electromagnetic field distribution in cross sections of capillary in different distance; (c) Photograph of sensor with capillary of 1.5mm length; (d) Experimental setup for relative humidity measurement.
Fig. 2.
Fig. 2. Scanning electron micrograph of the capillary wall of sensor: (a) an uncoated capillary surface; (b)–(d) Capillary surface coated by GO with 1, 3, 5 cycles coating; (e) Decoration characterization of GO film on the surface of capillary wall.
Fig. 3.
Fig. 3. Illustration of the proposed sensor for relative humidity sensing based on GO and evanescent tunneling.
Fig. 4.
Fig. 4. (a), (b) and (c): Spectral response of sensors with 0.8mm capillary to different relative humidity after 1, 3 and 5 cycles of GO coating;
Fig. 5.
Fig. 5. (a), (c) and (e): Spectral response of sensor to different relative humidity after 1, 3 and 5 cycles of GO coating; (b), (d) and (f): Relative humidity sensitivities of dips in the spectra.
Fig. 6.
Fig. 6. (a), (c) and (e): Spectral response of sensor to different relative humidity after 1, 3 and 5 cycles of GO coating; (b), (d) and (f): Relative humidity sensitivities of dips or peaks in the spectra.
Fig. 7.
Fig. 7. Relative humidity response of sensors with 1.5mm and equations of the fitting curves from decreasing humidity from 70% to 30% RH. (a), (c) and (e): Spectral response of sensor to different relative humidity after 1, 3 and 5 cycles of GO coating; (b), (d) and (f): Relative humidity sensitivities of dips in the spectra.
Fig. 8.
Fig. 8. Relative humidity response of sensors with 2.2mm equations of the fitting curves from decreasing humidity from 70% to 30% RH. (a), (c) and (e): Spectral response of sensor to different relative humidity after 1, 3 and 5 cycles of GO coating; (b), (d) and (f): Relative humidity sensitivities of dips or peaks in the spectra.