Abstract

The use of 3D-printing for designing a simple wavelength tunable device based on fiber Bragg gratings is demonstrated. Using fused deposition modeling (FDM), the fiber Bragg grating is embedded into a beam of polyethylene terephthalate glycol (PETG). Through bending, resulting in compression or tension of the optical fiber, the Bragg wavelength could be continuously tuned over a range of 60 nm, with maintained reflectivity and 3-dB linewidth.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D printed fiber optic faceplates by custom controlled fused deposition modeling

Ye Wang, John Gawedzinski, Michal E. Pawlowski, and Tomasz S. Tkaczyk
Opt. Express 26(12) 15362-15376 (2018)

Stable and widely tunable all-fiber Pr3+-doped cw laser system using fiber Bragg gratings

T. G. Nielsen, W. Hodel, H. P. Weber, A. Iocco, D. M. Costantini, H. G. Limberger, and R. P. Salathé
Opt. Lett. 24(9) 614-616 (1999)

Fast fiber-optic tunable filter based on axial compression on a fiber Bragg grating

Wen Zu and Xijia Gu
Appl. Opt. 45(25) 6457-6462 (2006)

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, Fiber Bragg Gratings 2nd edition, ISBN 9780123725790 (Academic Press, 2010).
  2. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, ISBN 0890063443 (Artech House, 1999).
  3. E. Udd, “Fiber Grating Sensors,” in Fiber Optic Sensors, W. B. Spillman, ISBN 9780470126844 (Wiley, 2011), pp. 399–451.
  4. D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
    [Crossref]
  5. J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuators, A 103(3), 330–340 (2003).
    [Crossref]
  6. G. A. Ball and W. W. Morey, “Compression-tuned single-frequency Bragg grating fiber laser,” Opt. Lett. 19(23), 1979–1981 (1994).
    [Crossref]
  7. M. Gupta, H. Jiao, and A. O’Keefe, “Cavity-enhanced spectroscopy in optical fibers,” Opt. Lett. 27(21), 1878–1880 (2002).
    [Crossref]
  8. G. Karlsson, N. Myrén, W. Margulis, S. Tacheo, and F. Laurell, “Widely tunable fibre–coupled single-frequency Er:Yb glass laser,” Appl. Opt. 42(21), 4327–4330 (2003).
    [Crossref]
  9. M. A. Davis and A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13(7), 1289–1295 (1995).
    [Crossref]
  10. H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(8), 824–826 (2001).
    [Crossref]
  11. S. Y. Set, B. Dabarsyah, C. S. Goh, K. Katoh, Y. Takushima, K. Kikuchi, Y. Okabe, and N. Takeda, “A widely tunable fiber Bragg grating with a wavelength tunability over 40 nm,” presented at the OFC’01, Anaheim, CA, MC4, 1–3 (2001).
  12. C. S. Goh, M. R. Mokhtar, S. A. Butler, and S. Y. Set, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photonics Technol. Lett. 15(4), 557–559 (2003).
    [Crossref]
  13. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
    [Crossref]
  14. I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies, 2nd edition, ISBN 9789811008115 (Springer, 2015).
  15. K. V. Wong and A. Hernandez, “A review of additive manufacturing”, ISRN Mech. Eng. (2012).
  16. P. C. Liacouras, G. T. Grant, K. Choudhry, G. F. Strouse, and Z. Ahmed, “Fiber Bragg gratings embedded in 3D-printed scaffolds,” NCSLI Measure 10(2), 50–52 (2015).
    [Crossref]
  17. V. L. Iezzi, J. S. Boisvert, S. Loranger, and R. Kashyap, “3D printed long period gratings for optical fibers,” Opt. Lett. 41(8), 1865–1868 (2016).
    [Crossref]
  18. J. M. Gere, Mechanics of Materials 6th edition, ISBN 0534417930 (Thomosn Leaning2004).
  19. A. Kantaros and D. Karalekas, “Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process,” Mater. Des. 50, 44–50 (2013).
    [Crossref]
  20. C. Kousiatza and D. Karalekas, “In-situ monitoring of strain and temperature distributions during fused deposition modeling process,” Mater. Des. 97, 400–406 (2016).
    [Crossref]

2016 (2)

V. L. Iezzi, J. S. Boisvert, S. Loranger, and R. Kashyap, “3D printed long period gratings for optical fibers,” Opt. Lett. 41(8), 1865–1868 (2016).
[Crossref]

C. Kousiatza and D. Karalekas, “In-situ monitoring of strain and temperature distributions during fused deposition modeling process,” Mater. Des. 97, 400–406 (2016).
[Crossref]

2015 (1)

P. C. Liacouras, G. T. Grant, K. Choudhry, G. F. Strouse, and Z. Ahmed, “Fiber Bragg gratings embedded in 3D-printed scaffolds,” NCSLI Measure 10(2), 50–52 (2015).
[Crossref]

2013 (1)

A. Kantaros and D. Karalekas, “Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process,” Mater. Des. 50, 44–50 (2013).
[Crossref]

2003 (4)

J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuators, A 103(3), 330–340 (2003).
[Crossref]

G. Karlsson, N. Myrén, W. Margulis, S. Tacheo, and F. Laurell, “Widely tunable fibre–coupled single-frequency Er:Yb glass laser,” Appl. Opt. 42(21), 4327–4330 (2003).
[Crossref]

C. S. Goh, M. R. Mokhtar, S. A. Butler, and S. Y. Set, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photonics Technol. Lett. 15(4), 557–559 (2003).
[Crossref]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

2002 (1)

2001 (1)

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(8), 824–826 (2001).
[Crossref]

1998 (1)

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

1995 (1)

M. A. Davis and A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13(7), 1289–1295 (1995).
[Crossref]

1994 (1)

Ahmed, Z.

P. C. Liacouras, G. T. Grant, K. Choudhry, G. F. Strouse, and Z. Ahmed, “Fiber Bragg gratings embedded in 3D-printed scaffolds,” NCSLI Measure 10(2), 50–52 (2015).
[Crossref]

Asundi, A.

J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuators, A 103(3), 330–340 (2003).
[Crossref]

Ball, G. A.

Boimovich, E.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

Boisvert, J. S.

Butler, S. A.

C. S. Goh, M. R. Mokhtar, S. A. Butler, and S. Y. Set, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photonics Technol. Lett. 15(4), 557–559 (2003).
[Crossref]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Choudhry, K.

P. C. Liacouras, G. T. Grant, K. Choudhry, G. F. Strouse, and Z. Ahmed, “Fiber Bragg gratings embedded in 3D-printed scaffolds,” NCSLI Measure 10(2), 50–52 (2015).
[Crossref]

Chu, P. L.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(8), 824–826 (2001).
[Crossref]

Dabarsyah, B.

S. Y. Set, B. Dabarsyah, C. S. Goh, K. Katoh, Y. Takushima, K. Kikuchi, Y. Okabe, and N. Takeda, “A widely tunable fiber Bragg grating with a wavelength tunability over 40 nm,” presented at the OFC’01, Anaheim, CA, MC4, 1–3 (2001).

Davis, M. A.

M. A. Davis and A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13(7), 1289–1295 (1995).
[Crossref]

Gere, J. M.

J. M. Gere, Mechanics of Materials 6th edition, ISBN 0534417930 (Thomosn Leaning2004).

Gibson, I.

I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies, 2nd edition, ISBN 9789811008115 (Springer, 2015).

Goh, C. S.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

C. S. Goh, M. R. Mokhtar, S. A. Butler, and S. Y. Set, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photonics Technol. Lett. 15(4), 557–559 (2003).
[Crossref]

S. Y. Set, B. Dabarsyah, C. S. Goh, K. Katoh, Y. Takushima, K. Kikuchi, Y. Okabe, and N. Takeda, “A widely tunable fiber Bragg grating with a wavelength tunability over 40 nm,” presented at the OFC’01, Anaheim, CA, MC4, 1–3 (2001).

Grant, G. T.

P. C. Liacouras, G. T. Grant, K. Choudhry, G. F. Strouse, and Z. Ahmed, “Fiber Bragg gratings embedded in 3D-printed scaffolds,” NCSLI Measure 10(2), 50–52 (2015).
[Crossref]

Gupta, M.

Hernandez, A.

K. V. Wong and A. Hernandez, “A review of additive manufacturing”, ISRN Mech. Eng. (2012).

Ibsen, M.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Iezzi, V. L.

Jiao, H.

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, ISBN 0890063443 (Artech House, 1999).

Kantaros, A.

A. Kantaros and D. Karalekas, “Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process,” Mater. Des. 50, 44–50 (2013).
[Crossref]

Karalekas, D.

C. Kousiatza and D. Karalekas, “In-situ monitoring of strain and temperature distributions during fused deposition modeling process,” Mater. Des. 97, 400–406 (2016).
[Crossref]

A. Kantaros and D. Karalekas, “Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process,” Mater. Des. 50, 44–50 (2013).
[Crossref]

Karlsson, G.

Kashyap, R.

Katoh, K.

S. Y. Set, B. Dabarsyah, C. S. Goh, K. Katoh, Y. Takushima, K. Kikuchi, Y. Okabe, and N. Takeda, “A widely tunable fiber Bragg grating with a wavelength tunability over 40 nm,” presented at the OFC’01, Anaheim, CA, MC4, 1–3 (2001).

Kersey, A. D.

M. A. Davis and A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13(7), 1289–1295 (1995).
[Crossref]

Kikuchi, K.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

S. Y. Set, B. Dabarsyah, C. S. Goh, K. Katoh, Y. Takushima, K. Kikuchi, Y. Okabe, and N. Takeda, “A widely tunable fiber Bragg grating with a wavelength tunability over 40 nm,” presented at the OFC’01, Anaheim, CA, MC4, 1–3 (2001).

Kousiatza, C.

C. Kousiatza and D. Karalekas, “In-situ monitoring of strain and temperature distributions during fused deposition modeling process,” Mater. Des. 97, 400–406 (2016).
[Crossref]

Laurell, F.

Leng, J.

J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuators, A 103(3), 330–340 (2003).
[Crossref]

Liacouras, P. C.

P. C. Liacouras, G. T. Grant, K. Choudhry, G. F. Strouse, and Z. Ahmed, “Fiber Bragg gratings embedded in 3D-printed scaffolds,” NCSLI Measure 10(2), 50–52 (2015).
[Crossref]

Liu, H. Y.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(8), 824–826 (2001).
[Crossref]

Loranger, S.

Margulis, W.

Mokhtar, M. R.

C. S. Goh, M. R. Mokhtar, S. A. Butler, and S. Y. Set, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photonics Technol. Lett. 15(4), 557–559 (2003).
[Crossref]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Morey, W. W.

Myrén, N.

O’Keefe, A.

Okabe, Y.

S. Y. Set, B. Dabarsyah, C. S. Goh, K. Katoh, Y. Takushima, K. Kikuchi, Y. Okabe, and N. Takeda, “A widely tunable fiber Bragg grating with a wavelength tunability over 40 nm,” presented at the OFC’01, Anaheim, CA, MC4, 1–3 (2001).

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, ISBN 0890063443 (Artech House, 1999).

Peng, G. D.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(8), 824–826 (2001).
[Crossref]

Richardson, D. J.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Rosen, D.

I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies, 2nd edition, ISBN 9789811008115 (Springer, 2015).

Sadot, D.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

Set, S. Y.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

C. S. Goh, M. R. Mokhtar, S. A. Butler, and S. Y. Set, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photonics Technol. Lett. 15(4), 557–559 (2003).
[Crossref]

S. Y. Set, B. Dabarsyah, C. S. Goh, K. Katoh, Y. Takushima, K. Kikuchi, Y. Okabe, and N. Takeda, “A widely tunable fiber Bragg grating with a wavelength tunability over 40 nm,” presented at the OFC’01, Anaheim, CA, MC4, 1–3 (2001).

Strouse, G. F.

P. C. Liacouras, G. T. Grant, K. Choudhry, G. F. Strouse, and Z. Ahmed, “Fiber Bragg gratings embedded in 3D-printed scaffolds,” NCSLI Measure 10(2), 50–52 (2015).
[Crossref]

Stucker, B.

I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies, 2nd edition, ISBN 9789811008115 (Springer, 2015).

Tacheo, S.

Takeda, N.

S. Y. Set, B. Dabarsyah, C. S. Goh, K. Katoh, Y. Takushima, K. Kikuchi, Y. Okabe, and N. Takeda, “A widely tunable fiber Bragg grating with a wavelength tunability over 40 nm,” presented at the OFC’01, Anaheim, CA, MC4, 1–3 (2001).

Takushima, Y.

S. Y. Set, B. Dabarsyah, C. S. Goh, K. Katoh, Y. Takushima, K. Kikuchi, Y. Okabe, and N. Takeda, “A widely tunable fiber Bragg grating with a wavelength tunability over 40 nm,” presented at the OFC’01, Anaheim, CA, MC4, 1–3 (2001).

Udd, E.

E. Udd, “Fiber Grating Sensors,” in Fiber Optic Sensors, W. B. Spillman, ISBN 9780470126844 (Wiley, 2011), pp. 399–451.

Wong, K. V.

K. V. Wong and A. Hernandez, “A review of additive manufacturing”, ISRN Mech. Eng. (2012).

Appl. Opt. (1)

Electron. Lett. (1)

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

IEEE Commun. Mag. (1)

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(8), 824–826 (2001).
[Crossref]

C. S. Goh, M. R. Mokhtar, S. A. Butler, and S. Y. Set, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photonics Technol. Lett. 15(4), 557–559 (2003).
[Crossref]

J. Lightwave Technol. (1)

M. A. Davis and A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13(7), 1289–1295 (1995).
[Crossref]

Mater. Des. (2)

A. Kantaros and D. Karalekas, “Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process,” Mater. Des. 50, 44–50 (2013).
[Crossref]

C. Kousiatza and D. Karalekas, “In-situ monitoring of strain and temperature distributions during fused deposition modeling process,” Mater. Des. 97, 400–406 (2016).
[Crossref]

NCSLI Measure (1)

P. C. Liacouras, G. T. Grant, K. Choudhry, G. F. Strouse, and Z. Ahmed, “Fiber Bragg gratings embedded in 3D-printed scaffolds,” NCSLI Measure 10(2), 50–52 (2015).
[Crossref]

Opt. Lett. (3)

Sens. Actuators, A (1)

J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuators, A 103(3), 330–340 (2003).
[Crossref]

Other (7)

R. Kashyap, Fiber Bragg Gratings 2nd edition, ISBN 9780123725790 (Academic Press, 2010).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, ISBN 0890063443 (Artech House, 1999).

E. Udd, “Fiber Grating Sensors,” in Fiber Optic Sensors, W. B. Spillman, ISBN 9780470126844 (Wiley, 2011), pp. 399–451.

J. M. Gere, Mechanics of Materials 6th edition, ISBN 0534417930 (Thomosn Leaning2004).

S. Y. Set, B. Dabarsyah, C. S. Goh, K. Katoh, Y. Takushima, K. Kikuchi, Y. Okabe, and N. Takeda, “A widely tunable fiber Bragg grating with a wavelength tunability over 40 nm,” presented at the OFC’01, Anaheim, CA, MC4, 1–3 (2001).

I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies, 2nd edition, ISBN 9789811008115 (Springer, 2015).

K. V. Wong and A. Hernandez, “A review of additive manufacturing”, ISRN Mech. Eng. (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic layout (a) of the embedded FBG, and (b) the three-point beam bending setup, indicating the neutral plane (dashed line), the length (L), the embedding depth (y) and radius (r) of curvature of the 3D printed bar.
Fig. 2.
Fig. 2. Schematic layout of the setup for spectral measurements.
Fig. 3.
Fig. 3. (a) The three-point bending set-up. (b) CAD model of the three-point bending fixture. (c) CAD model of the pocket that holds the beam during bending.
Fig. 4.
Fig. 4. Reflection spectra of a 3 mm long FBG prior to (black line), and after (red line) embedding in a PETG beam.
Fig. 5.
Fig. 5. Wavelength tuning (Δλ∼35 nm) of 3 mm long FBG with ∼15 mm stripping length in 3D printed PETG beam without post-annealing, with y = 2.2 mm (relative to neutral plane). λ0 corresponds to zero deflection (δ=0).
Fig. 6.
Fig. 6. Wavelength tuning (Δλ ∼ 60 nm) of 3 mm long FBG with ∼15 mm stripping length in 3D printed PETG beam with post-annealing, with y = 2.2 mm (relative to neutral plane). Here λ0 corresponds to zero deflection (δ=0).
Fig. 7.
Fig. 7. Changes in (a) FWHM and (b) FBG reflectivity over a tuning range of 60 nm (3 mm grating length, y = 3.6 mm).
Fig. 8.
Fig. 8. Bragg wavelength vs beam deflection, showing measured values (symbol) and simulated values (lines) for gratings embedded at different depths (y). Measurement errors are ± 0.05 nm for Bragg wavelength and ± 0.05 mm for deflection.
Fig. 9.
Fig. 9. Wavelength tuning of 10 mm long FBG with (a) 15 mm, and (b) 50 mm section of the coating removed.

Tables (1)

Tables Icon

Table 1. Slope coefficients of wavelength vs beam center deflection plot.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

εx=yr,
ΔλB=(1ρe)εxλB,
δ(L/L22)22r=L28r,
Δλ9.36λByL2δ.

Metrics