Abstract

LaVO4:Cu,Eu nanorod array films have been prepared on Cu substrates by the hydrothermal epitaxy method. Most of the LaVO4 crystallizes into the tetragonal (t-) LaVO4 phase, with a small amount of monoclinic (m-) LaVO4. Cu2+ ions enter the LaVO4 matrix together with Eu3+ ions. An epitaxial layer composed of tightly packed LaVO4:Cu,Eu nanoparticles grows on Cu substrate and the nanorod array is then assembled by LaVO4:Cu,Eu square nanorods growing on the epitaxial layer. The side length of nanorods is tunable from 20∼300 nm by adjusting the reactants concentration. The LaVO4:Cu,Eu nanorods of the array are single crystals and grow along the (101) plane. A lattice rotation occurs at the growth of the LaVO4:Cu,Eu nanorods due to the lattice mismatch between LaVO4 (112) and Cu (110). Based on the experimental results, a formation mechanism including the surface dissolution of the Cu substrate, the epitaxial layer and the self-assembly of the nanorods is proposed for the LaVO4:Cu,Eu nanorod array film. Finally, the LaVO4:Cu,Eu nanorod array films exhibit red emissions, relatively high quantum efficiencies and long lifetimes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High performance Cu2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique

Yung-Sheng Chen, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Li-Yin Chen, Ann-Kuo Chu, Chie-Tong Kuo, and Hsiang-Chen Wang
Opt. Mater. Express 4(7) 1473-1486 (2014)

K doping effect on structural and optical properties of ZnO nanorods grown on semipolar (112-2) GaN films using a hydrothermal growth method

Soohwan Jang, Pyunghee Son, Jimin Kim, Sung-Nam Lee, and Kwang Hyeon Baik
Opt. Mater. Express 5(7) 1621-1627 (2015)

Luminescence of Eu3+ in the thin film heterojunction GaAs/SnO2

Cristina de Freitas Bueno, Luis Vicente de A. Scalvi, Maximo Siu Li, and Margarida J. Saeki
Opt. Mater. Express 5(1) 59-72 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. V. Plakhova, M. V. Shestakov, and A. N. Baranov, “Effect of textured seeds on the morphology and optical properties of solution and vapor grown ZnO nanorod arrays,” Inorg. Mater. 48(5), 469–475 (2012).
    [Crossref]
  2. S. M. Karadeniz, B. B. Cirak, T. Kilinc, C. Cirak, M. Inal, Z. Turgut, A. E. Ekinci, and M. Ertugrul, “A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods,” Mater. Sci. 22(4), 476–480 (2016).
    [Crossref]
  3. B. W. Luo, Y. Deng, Y. Wang, M. Tan, and L. L. Cao, “Independent growth of CdTe nanorod arrays on different substrates with enhanced photoelectrical property,” J. Nanopart. Res. 14(6), 946 (2012).
    [Crossref]
  4. T. G. You, J. F. Yan, Z. Y. Zhang, J. Li, J. X. Tian, J. N. Yun, and W. Zhao, “Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process,” Mater. Lett. 66(1), 246–249 (2012).
    [Crossref]
  5. W. L. Fan, X. Y. Song, Y. X. Bu, S. X. Sun, and X. Zhao, “Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 110(46), 23247–23254 (2006).
    [Crossref]
  6. L. L. Wang, Q. Xu, L. L. Liu, Q. S. Song, H. Lv, G. Zhu, and D. Zhang, “Single-hole hollow tetragonal LaVO4:Eu3+ microspheres prepared by Ostwald ripening and their luminescence property,” J. Lumin. 192, 1020–1025 (2017).
    [Crossref]
  7. C. J. Jia, L. D. Sun, L. P. You, X. C. Jiang, F. L. Yu, C. P. Chun, and H. Yan, “Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 109(8), 3284–3290 (2005).
    [Crossref]
  8. C. J. Jia, L. D. Sun, F. Luo, X. C. Jiang, L. H. Wei, and C.-H. Yan, “Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals,” Appl. Phys. Lett. 84(26), 5305–5307 (2004).
    [Crossref]
  9. H. S. Yuan, K. Wang, C. Wang, B. Zhou, K. Yang, J. Liu, and B. Zou, “Pressure-induced phase transformations of zircon-type LaVO4 nanorods,” J. Phys. Chem. C 119(15), 8364–8372 (2015).
    [Crossref]
  10. T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
    [Crossref]
  11. L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
    [Crossref]
  12. D. D. Wu, Y. Q. Ma, X. Zhang, S. B. Qian, G. H. Zheng, M. Z. Wu, G. Li, and Z. Q. Sun, “Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations,” J. Rare Earths 30(4), 325–329 (2012).
    [Crossref]
  13. A. Bao, Z. Q. Song, O. Haschaolu, H. D. Bai, and O. Tegus, “Morphology-controllable synthesis and photoluminescence properties of t-LaVO4:Ln3+ nanostructures on glass substrates,” J. Mater. Sci. 52(5), 2661–2672 (2017).
    [Crossref]
  14. H. G. Chen, C. W. Wang, and Z. F. Tu, “Facile hydrothermal epitaxial growth of vertical ZnO post arrays on sapphire substrates,” Mater. Lett. 107, 276–279 (2013).
    [Crossref]
  15. J. F. Liu, L. L. Wang, X. M. Sun, and X. Q. Zhu, “Cerium vanadate nanorod arrays from ionic chelator-mediated self-assembly,” Angew. Chem., Int. Ed. 49(20), 3492–3495 (2010).
    [Crossref]
  16. Q. P. Jiang, Y. H. Li, G. F. Du, Y. J. Liu, and H. Y. Zhao, “A novel structure of SnO2 nanorod arrays synthesized via a hydrothermal method,” Mater. Lett. 105, 95–97 (2013).
    [Crossref]
  17. J. L. Zhang, J. X. Shi, J. B. Tan, X. J. Wang, and M. L. Gong, “Morphology-controllable synthesis of tetragonal LaVO4 nanostructures,” CrystEngComm 12(4), 1079–1085 (2010).
    [Crossref]
  18. X. R. Cheng, D. J. Guo, S. Q. Feng, K. Yang, Y. Q. Wang, Y. F. Ren, and Y. Song, “Structure and stability of monazite- and zircon-type LaVO4 under hydrostatic pressure,” Opt. Mater. 49, 32–38 (2015).
    [Crossref]
  19. P. S. Aadesh, K. Nisha, D. Avishek, K. Satheesh, and R. M. Bodh, “Improvement in the structural, optical, electronic and photoelectrochemical properties of hydrogen treated bismuth vanadate thin films,” Int. J. Hydrogen Energy 40(12), 4311–4319 (2015).
    [Crossref]
  20. C. Liu, S. H. Chang, and T. W. Noh, “Initial growth behavior and resulting microstructural properties of heteroepitaxial ZnO thin films on sapphire (0001) substrates,” Appl. Phys. Lett. 90(1), 011906 (2007).
    [Crossref]
  21. B. Q. Shao, Q. Zhao, N. Guo, Y. C. Jia, W. Z. Lv, M. M. Jiao, W. Lü, and H. P. You, “Novel synthesis and luminescence properties of t-LaVO4:Eu3+ micro cube,” CrystEngComm 16(2), 152–158 (2014).
    [Crossref]
  22. P. Li, X. Zhao, C. J. Jia, H. G. Sun, Y. L. Li, L. M. Sun, X. F. Cheng, L. Liu, and W. L. Fan, “Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights,” Cryst. Growth Des. 12(10), 5042–5050 (2012).
    [Crossref]
  23. M. Zahedifar, Z. Chamanzadeh, and S. M. H. Mashkani, “Synthesis of LaVO4:Dy3+ luminescent nanostructure and optimization of its performance as down-converter in dye-sensitized solar cells,” J. Lumin. 135, 66–73 (2013).
    [Crossref]
  24. R. Okram, G. Phaomei, and N. R. Singh, “Water driven enhanced photoluminescence of Ln (=Dy3+, Sm3+) doped LaVO4 nanoparticles and effect of Ba2+ co-doping,” Mater. Sci. Eng., B 178(7), 409–416 (2013).
    [Crossref]
  25. S. Mahapatra and A. Ramanan, “Hydrothermal synthesis and structural study of lanthanide orthovanadates, LnVO4 (Ln = Sm, Gd, Dy and Ho),” J. Alloys Compd. 395(1-2), 149–153 (2005).
    [Crossref]
  26. X. Q. Su and B. Yan, “Matrix-induced synthesis and photoluminescence of M3Ln(VO4)3:RE (M = Ca, Sr, Ba; Ln = Y, Gd; RE = Eu3+, Dy3+, Er3+) phosphors by hybrid precursors,” J. Alloys Compd. 421(1-2), 273–278 (2006).
    [Crossref]
  27. H. F. Jiu, H. G. Jiao, L. X. Zhang, W. B. Jia, C. S. Huang, and J. X. Chang, “Improved luminescence behavior of YVO4:Eu3+ hollow microspheres by Ca2+ doping,” Superlattices Microstruct. 83, 627–634 (2015).
    [Crossref]
  28. J. W. Stouwdam, M. Raudsepp, and F. C. J. M. V. Veggel, “Colloidal nanoparticles of Ln3+-doped LaVO4: energy transfer to visible- and near-infrared-emitting lanthanide ions,” Langmuir 21(15), 7003–7008 (2005).
    [Crossref]
  29. B. Yan and J. H. Wu, “Solid state-hydrothermal synthesis and photoluminescence of LaVO4: Eu3+ nanophosphors,” Mater. Lett. 63(11), 946–948 (2009).
    [Crossref]

2017 (2)

L. L. Wang, Q. Xu, L. L. Liu, Q. S. Song, H. Lv, G. Zhu, and D. Zhang, “Single-hole hollow tetragonal LaVO4:Eu3+ microspheres prepared by Ostwald ripening and their luminescence property,” J. Lumin. 192, 1020–1025 (2017).
[Crossref]

A. Bao, Z. Q. Song, O. Haschaolu, H. D. Bai, and O. Tegus, “Morphology-controllable synthesis and photoluminescence properties of t-LaVO4:Ln3+ nanostructures on glass substrates,” J. Mater. Sci. 52(5), 2661–2672 (2017).
[Crossref]

2016 (2)

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

S. M. Karadeniz, B. B. Cirak, T. Kilinc, C. Cirak, M. Inal, Z. Turgut, A. E. Ekinci, and M. Ertugrul, “A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods,” Mater. Sci. 22(4), 476–480 (2016).
[Crossref]

2015 (4)

H. S. Yuan, K. Wang, C. Wang, B. Zhou, K. Yang, J. Liu, and B. Zou, “Pressure-induced phase transformations of zircon-type LaVO4 nanorods,” J. Phys. Chem. C 119(15), 8364–8372 (2015).
[Crossref]

X. R. Cheng, D. J. Guo, S. Q. Feng, K. Yang, Y. Q. Wang, Y. F. Ren, and Y. Song, “Structure and stability of monazite- and zircon-type LaVO4 under hydrostatic pressure,” Opt. Mater. 49, 32–38 (2015).
[Crossref]

P. S. Aadesh, K. Nisha, D. Avishek, K. Satheesh, and R. M. Bodh, “Improvement in the structural, optical, electronic and photoelectrochemical properties of hydrogen treated bismuth vanadate thin films,” Int. J. Hydrogen Energy 40(12), 4311–4319 (2015).
[Crossref]

H. F. Jiu, H. G. Jiao, L. X. Zhang, W. B. Jia, C. S. Huang, and J. X. Chang, “Improved luminescence behavior of YVO4:Eu3+ hollow microspheres by Ca2+ doping,” Superlattices Microstruct. 83, 627–634 (2015).
[Crossref]

2014 (1)

B. Q. Shao, Q. Zhao, N. Guo, Y. C. Jia, W. Z. Lv, M. M. Jiao, W. Lü, and H. P. You, “Novel synthesis and luminescence properties of t-LaVO4:Eu3+ micro cube,” CrystEngComm 16(2), 152–158 (2014).
[Crossref]

2013 (4)

M. Zahedifar, Z. Chamanzadeh, and S. M. H. Mashkani, “Synthesis of LaVO4:Dy3+ luminescent nanostructure and optimization of its performance as down-converter in dye-sensitized solar cells,” J. Lumin. 135, 66–73 (2013).
[Crossref]

R. Okram, G. Phaomei, and N. R. Singh, “Water driven enhanced photoluminescence of Ln (=Dy3+, Sm3+) doped LaVO4 nanoparticles and effect of Ba2+ co-doping,” Mater. Sci. Eng., B 178(7), 409–416 (2013).
[Crossref]

Q. P. Jiang, Y. H. Li, G. F. Du, Y. J. Liu, and H. Y. Zhao, “A novel structure of SnO2 nanorod arrays synthesized via a hydrothermal method,” Mater. Lett. 105, 95–97 (2013).
[Crossref]

H. G. Chen, C. W. Wang, and Z. F. Tu, “Facile hydrothermal epitaxial growth of vertical ZnO post arrays on sapphire substrates,” Mater. Lett. 107, 276–279 (2013).
[Crossref]

2012 (5)

D. D. Wu, Y. Q. Ma, X. Zhang, S. B. Qian, G. H. Zheng, M. Z. Wu, G. Li, and Z. Q. Sun, “Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations,” J. Rare Earths 30(4), 325–329 (2012).
[Crossref]

B. W. Luo, Y. Deng, Y. Wang, M. Tan, and L. L. Cao, “Independent growth of CdTe nanorod arrays on different substrates with enhanced photoelectrical property,” J. Nanopart. Res. 14(6), 946 (2012).
[Crossref]

T. G. You, J. F. Yan, Z. Y. Zhang, J. Li, J. X. Tian, J. N. Yun, and W. Zhao, “Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process,” Mater. Lett. 66(1), 246–249 (2012).
[Crossref]

P. Li, X. Zhao, C. J. Jia, H. G. Sun, Y. L. Li, L. M. Sun, X. F. Cheng, L. Liu, and W. L. Fan, “Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights,” Cryst. Growth Des. 12(10), 5042–5050 (2012).
[Crossref]

T. V. Plakhova, M. V. Shestakov, and A. N. Baranov, “Effect of textured seeds on the morphology and optical properties of solution and vapor grown ZnO nanorod arrays,” Inorg. Mater. 48(5), 469–475 (2012).
[Crossref]

2011 (1)

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

2010 (2)

J. F. Liu, L. L. Wang, X. M. Sun, and X. Q. Zhu, “Cerium vanadate nanorod arrays from ionic chelator-mediated self-assembly,” Angew. Chem., Int. Ed. 49(20), 3492–3495 (2010).
[Crossref]

J. L. Zhang, J. X. Shi, J. B. Tan, X. J. Wang, and M. L. Gong, “Morphology-controllable synthesis of tetragonal LaVO4 nanostructures,” CrystEngComm 12(4), 1079–1085 (2010).
[Crossref]

2009 (1)

B. Yan and J. H. Wu, “Solid state-hydrothermal synthesis and photoluminescence of LaVO4: Eu3+ nanophosphors,” Mater. Lett. 63(11), 946–948 (2009).
[Crossref]

2007 (1)

C. Liu, S. H. Chang, and T. W. Noh, “Initial growth behavior and resulting microstructural properties of heteroepitaxial ZnO thin films on sapphire (0001) substrates,” Appl. Phys. Lett. 90(1), 011906 (2007).
[Crossref]

2006 (2)

W. L. Fan, X. Y. Song, Y. X. Bu, S. X. Sun, and X. Zhao, “Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 110(46), 23247–23254 (2006).
[Crossref]

X. Q. Su and B. Yan, “Matrix-induced synthesis and photoluminescence of M3Ln(VO4)3:RE (M = Ca, Sr, Ba; Ln = Y, Gd; RE = Eu3+, Dy3+, Er3+) phosphors by hybrid precursors,” J. Alloys Compd. 421(1-2), 273–278 (2006).
[Crossref]

2005 (3)

J. W. Stouwdam, M. Raudsepp, and F. C. J. M. V. Veggel, “Colloidal nanoparticles of Ln3+-doped LaVO4: energy transfer to visible- and near-infrared-emitting lanthanide ions,” Langmuir 21(15), 7003–7008 (2005).
[Crossref]

S. Mahapatra and A. Ramanan, “Hydrothermal synthesis and structural study of lanthanide orthovanadates, LnVO4 (Ln = Sm, Gd, Dy and Ho),” J. Alloys Compd. 395(1-2), 149–153 (2005).
[Crossref]

C. J. Jia, L. D. Sun, L. P. You, X. C. Jiang, F. L. Yu, C. P. Chun, and H. Yan, “Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 109(8), 3284–3290 (2005).
[Crossref]

2004 (1)

C. J. Jia, L. D. Sun, F. Luo, X. C. Jiang, L. H. Wei, and C.-H. Yan, “Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals,” Appl. Phys. Lett. 84(26), 5305–5307 (2004).
[Crossref]

Aadesh, P. S.

P. S. Aadesh, K. Nisha, D. Avishek, K. Satheesh, and R. M. Bodh, “Improvement in the structural, optical, electronic and photoelectrochemical properties of hydrogen treated bismuth vanadate thin films,” Int. J. Hydrogen Energy 40(12), 4311–4319 (2015).
[Crossref]

Akiyama, H.

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

Avishek, D.

P. S. Aadesh, K. Nisha, D. Avishek, K. Satheesh, and R. M. Bodh, “Improvement in the structural, optical, electronic and photoelectrochemical properties of hydrogen treated bismuth vanadate thin films,” Int. J. Hydrogen Energy 40(12), 4311–4319 (2015).
[Crossref]

Bai, H. D.

A. Bao, Z. Q. Song, O. Haschaolu, H. D. Bai, and O. Tegus, “Morphology-controllable synthesis and photoluminescence properties of t-LaVO4:Ln3+ nanostructures on glass substrates,” J. Mater. Sci. 52(5), 2661–2672 (2017).
[Crossref]

Bao, A.

A. Bao, Z. Q. Song, O. Haschaolu, H. D. Bai, and O. Tegus, “Morphology-controllable synthesis and photoluminescence properties of t-LaVO4:Ln3+ nanostructures on glass substrates,” J. Mater. Sci. 52(5), 2661–2672 (2017).
[Crossref]

Baranov, A. N.

T. V. Plakhova, M. V. Shestakov, and A. N. Baranov, “Effect of textured seeds on the morphology and optical properties of solution and vapor grown ZnO nanorod arrays,” Inorg. Mater. 48(5), 469–475 (2012).
[Crossref]

Blyth, R. I. R.

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

Bodh, R. M.

P. S. Aadesh, K. Nisha, D. Avishek, K. Satheesh, and R. M. Bodh, “Improvement in the structural, optical, electronic and photoelectrochemical properties of hydrogen treated bismuth vanadate thin films,” Int. J. Hydrogen Energy 40(12), 4311–4319 (2015).
[Crossref]

Bu, Y. X.

W. L. Fan, X. Y. Song, Y. X. Bu, S. X. Sun, and X. Zhao, “Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 110(46), 23247–23254 (2006).
[Crossref]

Cao, L. L.

B. W. Luo, Y. Deng, Y. Wang, M. Tan, and L. L. Cao, “Independent growth of CdTe nanorod arrays on different substrates with enhanced photoelectrical property,” J. Nanopart. Res. 14(6), 946 (2012).
[Crossref]

Chamanzadeh, Z.

M. Zahedifar, Z. Chamanzadeh, and S. M. H. Mashkani, “Synthesis of LaVO4:Dy3+ luminescent nanostructure and optimization of its performance as down-converter in dye-sensitized solar cells,” J. Lumin. 135, 66–73 (2013).
[Crossref]

Chang, J. X.

H. F. Jiu, H. G. Jiao, L. X. Zhang, W. B. Jia, C. S. Huang, and J. X. Chang, “Improved luminescence behavior of YVO4:Eu3+ hollow microspheres by Ca2+ doping,” Superlattices Microstruct. 83, 627–634 (2015).
[Crossref]

Chang, S. H.

C. Liu, S. H. Chang, and T. W. Noh, “Initial growth behavior and resulting microstructural properties of heteroepitaxial ZnO thin films on sapphire (0001) substrates,” Appl. Phys. Lett. 90(1), 011906 (2007).
[Crossref]

Chen, H. G.

H. G. Chen, C. W. Wang, and Z. F. Tu, “Facile hydrothermal epitaxial growth of vertical ZnO post arrays on sapphire substrates,” Mater. Lett. 107, 276–279 (2013).
[Crossref]

Chen, L.

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

Cheng, X. F.

P. Li, X. Zhao, C. J. Jia, H. G. Sun, Y. L. Li, L. M. Sun, X. F. Cheng, L. Liu, and W. L. Fan, “Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights,” Cryst. Growth Des. 12(10), 5042–5050 (2012).
[Crossref]

Cheng, X. R.

X. R. Cheng, D. J. Guo, S. Q. Feng, K. Yang, Y. Q. Wang, Y. F. Ren, and Y. Song, “Structure and stability of monazite- and zircon-type LaVO4 under hydrostatic pressure,” Opt. Mater. 49, 32–38 (2015).
[Crossref]

Chun, C. P.

C. J. Jia, L. D. Sun, L. P. You, X. C. Jiang, F. L. Yu, C. P. Chun, and H. Yan, “Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 109(8), 3284–3290 (2005).
[Crossref]

Cirak, B. B.

S. M. Karadeniz, B. B. Cirak, T. Kilinc, C. Cirak, M. Inal, Z. Turgut, A. E. Ekinci, and M. Ertugrul, “A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods,” Mater. Sci. 22(4), 476–480 (2016).
[Crossref]

Cirak, C.

S. M. Karadeniz, B. B. Cirak, T. Kilinc, C. Cirak, M. Inal, Z. Turgut, A. E. Ekinci, and M. Ertugrul, “A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods,” Mater. Sci. 22(4), 476–480 (2016).
[Crossref]

Dai, J. M.

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

Deng, Y.

B. W. Luo, Y. Deng, Y. Wang, M. Tan, and L. L. Cao, “Independent growth of CdTe nanorod arrays on different substrates with enhanced photoelectrical property,” J. Nanopart. Res. 14(6), 946 (2012).
[Crossref]

Du, G. F.

Q. P. Jiang, Y. H. Li, G. F. Du, Y. J. Liu, and H. Y. Zhao, “A novel structure of SnO2 nanorod arrays synthesized via a hydrothermal method,” Mater. Lett. 105, 95–97 (2013).
[Crossref]

Ekinci, A. E.

S. M. Karadeniz, B. B. Cirak, T. Kilinc, C. Cirak, M. Inal, Z. Turgut, A. E. Ekinci, and M. Ertugrul, “A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods,” Mater. Sci. 22(4), 476–480 (2016).
[Crossref]

Ertugrul, M.

S. M. Karadeniz, B. B. Cirak, T. Kilinc, C. Cirak, M. Inal, Z. Turgut, A. E. Ekinci, and M. Ertugrul, “A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods,” Mater. Sci. 22(4), 476–480 (2016).
[Crossref]

Fan, W. L.

P. Li, X. Zhao, C. J. Jia, H. G. Sun, Y. L. Li, L. M. Sun, X. F. Cheng, L. Liu, and W. L. Fan, “Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights,” Cryst. Growth Des. 12(10), 5042–5050 (2012).
[Crossref]

W. L. Fan, X. Y. Song, Y. X. Bu, S. X. Sun, and X. Zhao, “Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 110(46), 23247–23254 (2006).
[Crossref]

Feng, S. Q.

X. R. Cheng, D. J. Guo, S. Q. Feng, K. Yang, Y. Q. Wang, Y. F. Ren, and Y. Song, “Structure and stability of monazite- and zircon-type LaVO4 under hydrostatic pressure,” Opt. Mater. 49, 32–38 (2015).
[Crossref]

Gong, M. L.

J. L. Zhang, J. X. Shi, J. B. Tan, X. J. Wang, and M. L. Gong, “Morphology-controllable synthesis of tetragonal LaVO4 nanostructures,” CrystEngComm 12(4), 1079–1085 (2010).
[Crossref]

Guo, D. J.

X. R. Cheng, D. J. Guo, S. Q. Feng, K. Yang, Y. Q. Wang, Y. F. Ren, and Y. Song, “Structure and stability of monazite- and zircon-type LaVO4 under hydrostatic pressure,” Opt. Mater. 49, 32–38 (2015).
[Crossref]

Guo, N.

B. Q. Shao, Q. Zhao, N. Guo, Y. C. Jia, W. Z. Lv, M. M. Jiao, W. Lü, and H. P. You, “Novel synthesis and luminescence properties of t-LaVO4:Eu3+ micro cube,” CrystEngComm 16(2), 152–158 (2014).
[Crossref]

Haschaolu, O.

A. Bao, Z. Q. Song, O. Haschaolu, H. D. Bai, and O. Tegus, “Morphology-controllable synthesis and photoluminescence properties of t-LaVO4:Ln3+ nanostructures on glass substrates,” J. Mater. Sci. 52(5), 2661–2672 (2017).
[Crossref]

Hawthorn, D. G.

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

Hayamizu, Y.

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

Higuchi, T.

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

Hikita, Y.

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

Hotta, Y.

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

Hu, L.

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

Huang, C. S.

H. F. Jiu, H. G. Jiao, L. X. Zhang, W. B. Jia, C. S. Huang, and J. X. Chang, “Improved luminescence behavior of YVO4:Eu3+ hollow microspheres by Ca2+ doping,” Superlattices Microstruct. 83, 627–634 (2015).
[Crossref]

Hwang, H. Y.

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

Inal, M.

S. M. Karadeniz, B. B. Cirak, T. Kilinc, C. Cirak, M. Inal, Z. Turgut, A. E. Ekinci, and M. Ertugrul, “A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods,” Mater. Sci. 22(4), 476–480 (2016).
[Crossref]

Jia, C. J.

P. Li, X. Zhao, C. J. Jia, H. G. Sun, Y. L. Li, L. M. Sun, X. F. Cheng, L. Liu, and W. L. Fan, “Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights,” Cryst. Growth Des. 12(10), 5042–5050 (2012).
[Crossref]

C. J. Jia, L. D. Sun, L. P. You, X. C. Jiang, F. L. Yu, C. P. Chun, and H. Yan, “Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 109(8), 3284–3290 (2005).
[Crossref]

C. J. Jia, L. D. Sun, F. Luo, X. C. Jiang, L. H. Wei, and C.-H. Yan, “Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals,” Appl. Phys. Lett. 84(26), 5305–5307 (2004).
[Crossref]

Jia, W. B.

H. F. Jiu, H. G. Jiao, L. X. Zhang, W. B. Jia, C. S. Huang, and J. X. Chang, “Improved luminescence behavior of YVO4:Eu3+ hollow microspheres by Ca2+ doping,” Superlattices Microstruct. 83, 627–634 (2015).
[Crossref]

Jia, Y. C.

B. Q. Shao, Q. Zhao, N. Guo, Y. C. Jia, W. Z. Lv, M. M. Jiao, W. Lü, and H. P. You, “Novel synthesis and luminescence properties of t-LaVO4:Eu3+ micro cube,” CrystEngComm 16(2), 152–158 (2014).
[Crossref]

Jiang, Q. P.

Q. P. Jiang, Y. H. Li, G. F. Du, Y. J. Liu, and H. Y. Zhao, “A novel structure of SnO2 nanorod arrays synthesized via a hydrothermal method,” Mater. Lett. 105, 95–97 (2013).
[Crossref]

Jiang, X. C.

C. J. Jia, L. D. Sun, L. P. You, X. C. Jiang, F. L. Yu, C. P. Chun, and H. Yan, “Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 109(8), 3284–3290 (2005).
[Crossref]

C. J. Jia, L. D. Sun, F. Luo, X. C. Jiang, L. H. Wei, and C.-H. Yan, “Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals,” Appl. Phys. Lett. 84(26), 5305–5307 (2004).
[Crossref]

Jiao, H. G.

H. F. Jiu, H. G. Jiao, L. X. Zhang, W. B. Jia, C. S. Huang, and J. X. Chang, “Improved luminescence behavior of YVO4:Eu3+ hollow microspheres by Ca2+ doping,” Superlattices Microstruct. 83, 627–634 (2015).
[Crossref]

Jiao, M. M.

B. Q. Shao, Q. Zhao, N. Guo, Y. C. Jia, W. Z. Lv, M. M. Jiao, W. Lü, and H. P. You, “Novel synthesis and luminescence properties of t-LaVO4:Eu3+ micro cube,” CrystEngComm 16(2), 152–158 (2014).
[Crossref]

Jin, L. H.

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

Jiu, H. F.

H. F. Jiu, H. G. Jiao, L. X. Zhang, W. B. Jia, C. S. Huang, and J. X. Chang, “Improved luminescence behavior of YVO4:Eu3+ hollow microspheres by Ca2+ doping,” Superlattices Microstruct. 83, 627–634 (2015).
[Crossref]

Karadeniz, S. M.

S. M. Karadeniz, B. B. Cirak, T. Kilinc, C. Cirak, M. Inal, Z. Turgut, A. E. Ekinci, and M. Ertugrul, “A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods,” Mater. Sci. 22(4), 476–480 (2016).
[Crossref]

Kilinc, T.

S. M. Karadeniz, B. B. Cirak, T. Kilinc, C. Cirak, M. Inal, Z. Turgut, A. E. Ekinci, and M. Ertugrul, “A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods,” Mater. Sci. 22(4), 476–480 (2016).
[Crossref]

Li, G.

D. D. Wu, Y. Q. Ma, X. Zhang, S. B. Qian, G. H. Zheng, M. Z. Wu, G. Li, and Z. Q. Sun, “Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations,” J. Rare Earths 30(4), 325–329 (2012).
[Crossref]

Li, J.

T. G. You, J. F. Yan, Z. Y. Zhang, J. Li, J. X. Tian, J. N. Yun, and W. Zhao, “Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process,” Mater. Lett. 66(1), 246–249 (2012).
[Crossref]

Li, P.

P. Li, X. Zhao, C. J. Jia, H. G. Sun, Y. L. Li, L. M. Sun, X. F. Cheng, L. Liu, and W. L. Fan, “Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights,” Cryst. Growth Des. 12(10), 5042–5050 (2012).
[Crossref]

Li, Y. H.

Q. P. Jiang, Y. H. Li, G. F. Du, Y. J. Liu, and H. Y. Zhao, “A novel structure of SnO2 nanorod arrays synthesized via a hydrothermal method,” Mater. Lett. 105, 95–97 (2013).
[Crossref]

Li, Y. L.

P. Li, X. Zhao, C. J. Jia, H. G. Sun, Y. L. Li, L. M. Sun, X. F. Cheng, L. Liu, and W. L. Fan, “Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights,” Cryst. Growth Des. 12(10), 5042–5050 (2012).
[Crossref]

Lin, G. T.

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

Liu, C.

C. Liu, S. H. Chang, and T. W. Noh, “Initial growth behavior and resulting microstructural properties of heteroepitaxial ZnO thin films on sapphire (0001) substrates,” Appl. Phys. Lett. 90(1), 011906 (2007).
[Crossref]

Liu, J.

H. S. Yuan, K. Wang, C. Wang, B. Zhou, K. Yang, J. Liu, and B. Zou, “Pressure-induced phase transformations of zircon-type LaVO4 nanorods,” J. Phys. Chem. C 119(15), 8364–8372 (2015).
[Crossref]

Liu, J. F.

J. F. Liu, L. L. Wang, X. M. Sun, and X. Q. Zhu, “Cerium vanadate nanorod arrays from ionic chelator-mediated self-assembly,” Angew. Chem., Int. Ed. 49(20), 3492–3495 (2010).
[Crossref]

Liu, L.

P. Li, X. Zhao, C. J. Jia, H. G. Sun, Y. L. Li, L. M. Sun, X. F. Cheng, L. Liu, and W. L. Fan, “Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights,” Cryst. Growth Des. 12(10), 5042–5050 (2012).
[Crossref]

Liu, L. L.

L. L. Wang, Q. Xu, L. L. Liu, Q. S. Song, H. Lv, G. Zhu, and D. Zhang, “Single-hole hollow tetragonal LaVO4:Eu3+ microspheres prepared by Ostwald ripening and their luminescence property,” J. Lumin. 192, 1020–1025 (2017).
[Crossref]

Liu, Y. J.

Q. P. Jiang, Y. H. Li, G. F. Du, Y. J. Liu, and H. Y. Zhao, “A novel structure of SnO2 nanorod arrays synthesized via a hydrothermal method,” Mater. Lett. 105, 95–97 (2013).
[Crossref]

Lü, W.

B. Q. Shao, Q. Zhao, N. Guo, Y. C. Jia, W. Z. Lv, M. M. Jiao, W. Lü, and H. P. You, “Novel synthesis and luminescence properties of t-LaVO4:Eu3+ micro cube,” CrystEngComm 16(2), 152–158 (2014).
[Crossref]

Luo, B. W.

B. W. Luo, Y. Deng, Y. Wang, M. Tan, and L. L. Cao, “Independent growth of CdTe nanorod arrays on different substrates with enhanced photoelectrical property,” J. Nanopart. Res. 14(6), 946 (2012).
[Crossref]

Luo, F.

C. J. Jia, L. D. Sun, F. Luo, X. C. Jiang, L. H. Wei, and C.-H. Yan, “Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals,” Appl. Phys. Lett. 84(26), 5305–5307 (2004).
[Crossref]

Luo, X.

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

Lv, H.

L. L. Wang, Q. Xu, L. L. Liu, Q. S. Song, H. Lv, G. Zhu, and D. Zhang, “Single-hole hollow tetragonal LaVO4:Eu3+ microspheres prepared by Ostwald ripening and their luminescence property,” J. Lumin. 192, 1020–1025 (2017).
[Crossref]

Lv, W. Z.

B. Q. Shao, Q. Zhao, N. Guo, Y. C. Jia, W. Z. Lv, M. M. Jiao, W. Lü, and H. P. You, “Novel synthesis and luminescence properties of t-LaVO4:Eu3+ micro cube,” CrystEngComm 16(2), 152–158 (2014).
[Crossref]

Ma, Y. Q.

D. D. Wu, Y. Q. Ma, X. Zhang, S. B. Qian, G. H. Zheng, M. Z. Wu, G. Li, and Z. Q. Sun, “Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations,” J. Rare Earths 30(4), 325–329 (2012).
[Crossref]

Mahapatra, S.

S. Mahapatra and A. Ramanan, “Hydrothermal synthesis and structural study of lanthanide orthovanadates, LnVO4 (Ln = Sm, Gd, Dy and Ho),” J. Alloys Compd. 395(1-2), 149–153 (2005).
[Crossref]

Maruyama, S.

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

Mashkani, S. M. H.

M. Zahedifar, Z. Chamanzadeh, and S. M. H. Mashkani, “Synthesis of LaVO4:Dy3+ luminescent nanostructure and optimization of its performance as down-converter in dye-sensitized solar cells,” J. Lumin. 135, 66–73 (2013).
[Crossref]

Nisha, K.

P. S. Aadesh, K. Nisha, D. Avishek, K. Satheesh, and R. M. Bodh, “Improvement in the structural, optical, electronic and photoelectrochemical properties of hydrogen treated bismuth vanadate thin films,” Int. J. Hydrogen Energy 40(12), 4311–4319 (2015).
[Crossref]

Noh, T. W.

C. Liu, S. H. Chang, and T. W. Noh, “Initial growth behavior and resulting microstructural properties of heteroepitaxial ZnO thin films on sapphire (0001) substrates,” Appl. Phys. Lett. 90(1), 011906 (2007).
[Crossref]

Okram, R.

R. Okram, G. Phaomei, and N. R. Singh, “Water driven enhanced photoluminescence of Ln (=Dy3+, Sm3+) doped LaVO4 nanoparticles and effect of Ba2+ co-doping,” Mater. Sci. Eng., B 178(7), 409–416 (2013).
[Crossref]

Phaomei, G.

R. Okram, G. Phaomei, and N. R. Singh, “Water driven enhanced photoluminescence of Ln (=Dy3+, Sm3+) doped LaVO4 nanoparticles and effect of Ba2+ co-doping,” Mater. Sci. Eng., B 178(7), 409–416 (2013).
[Crossref]

Plakhova, T. V.

T. V. Plakhova, M. V. Shestakov, and A. N. Baranov, “Effect of textured seeds on the morphology and optical properties of solution and vapor grown ZnO nanorod arrays,” Inorg. Mater. 48(5), 469–475 (2012).
[Crossref]

Qian, S. B.

D. D. Wu, Y. Q. Ma, X. Zhang, S. B. Qian, G. H. Zheng, M. Z. Wu, G. Li, and Z. Q. Sun, “Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations,” J. Rare Earths 30(4), 325–329 (2012).
[Crossref]

Ramanan, A.

S. Mahapatra and A. Ramanan, “Hydrothermal synthesis and structural study of lanthanide orthovanadates, LnVO4 (Ln = Sm, Gd, Dy and Ho),” J. Alloys Compd. 395(1-2), 149–153 (2005).
[Crossref]

Raudsepp, M.

J. W. Stouwdam, M. Raudsepp, and F. C. J. M. V. Veggel, “Colloidal nanoparticles of Ln3+-doped LaVO4: energy transfer to visible- and near-infrared-emitting lanthanide ions,” Langmuir 21(15), 7003–7008 (2005).
[Crossref]

Regier, T. Z.

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

Ren, Y. F.

X. R. Cheng, D. J. Guo, S. Q. Feng, K. Yang, Y. Q. Wang, Y. F. Ren, and Y. Song, “Structure and stability of monazite- and zircon-type LaVO4 under hydrostatic pressure,” Opt. Mater. 49, 32–38 (2015).
[Crossref]

Satheesh, K.

P. S. Aadesh, K. Nisha, D. Avishek, K. Satheesh, and R. M. Bodh, “Improvement in the structural, optical, electronic and photoelectrochemical properties of hydrogen treated bismuth vanadate thin films,” Int. J. Hydrogen Energy 40(12), 4311–4319 (2015).
[Crossref]

Sawatzky, G. A.

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

Shao, B. Q.

B. Q. Shao, Q. Zhao, N. Guo, Y. C. Jia, W. Z. Lv, M. M. Jiao, W. Lü, and H. P. You, “Novel synthesis and luminescence properties of t-LaVO4:Eu3+ micro cube,” CrystEngComm 16(2), 152–158 (2014).
[Crossref]

Shestakov, M. V.

T. V. Plakhova, M. V. Shestakov, and A. N. Baranov, “Effect of textured seeds on the morphology and optical properties of solution and vapor grown ZnO nanorod arrays,” Inorg. Mater. 48(5), 469–475 (2012).
[Crossref]

Shi, J. X.

J. L. Zhang, J. X. Shi, J. B. Tan, X. J. Wang, and M. L. Gong, “Morphology-controllable synthesis of tetragonal LaVO4 nanostructures,” CrystEngComm 12(4), 1079–1085 (2010).
[Crossref]

Singh, N. R.

R. Okram, G. Phaomei, and N. R. Singh, “Water driven enhanced photoluminescence of Ln (=Dy3+, Sm3+) doped LaVO4 nanoparticles and effect of Ba2+ co-doping,” Mater. Sci. Eng., B 178(7), 409–416 (2013).
[Crossref]

Song, Q. S.

L. L. Wang, Q. Xu, L. L. Liu, Q. S. Song, H. Lv, G. Zhu, and D. Zhang, “Single-hole hollow tetragonal LaVO4:Eu3+ microspheres prepared by Ostwald ripening and their luminescence property,” J. Lumin. 192, 1020–1025 (2017).
[Crossref]

Song, W. H.

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

Song, X. Y.

W. L. Fan, X. Y. Song, Y. X. Bu, S. X. Sun, and X. Zhao, “Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 110(46), 23247–23254 (2006).
[Crossref]

Song, Y.

X. R. Cheng, D. J. Guo, S. Q. Feng, K. Yang, Y. Q. Wang, Y. F. Ren, and Y. Song, “Structure and stability of monazite- and zircon-type LaVO4 under hydrostatic pressure,” Opt. Mater. 49, 32–38 (2015).
[Crossref]

Song, Z. Q.

A. Bao, Z. Q. Song, O. Haschaolu, H. D. Bai, and O. Tegus, “Morphology-controllable synthesis and photoluminescence properties of t-LaVO4:Ln3+ nanostructures on glass substrates,” J. Mater. Sci. 52(5), 2661–2672 (2017).
[Crossref]

Stouwdam, J. W.

J. W. Stouwdam, M. Raudsepp, and F. C. J. M. V. Veggel, “Colloidal nanoparticles of Ln3+-doped LaVO4: energy transfer to visible- and near-infrared-emitting lanthanide ions,” Langmuir 21(15), 7003–7008 (2005).
[Crossref]

Su, X. Q.

X. Q. Su and B. Yan, “Matrix-induced synthesis and photoluminescence of M3Ln(VO4)3:RE (M = Ca, Sr, Ba; Ln = Y, Gd; RE = Eu3+, Dy3+, Er3+) phosphors by hybrid precursors,” J. Alloys Compd. 421(1-2), 273–278 (2006).
[Crossref]

Sun, H. G.

P. Li, X. Zhao, C. J. Jia, H. G. Sun, Y. L. Li, L. M. Sun, X. F. Cheng, L. Liu, and W. L. Fan, “Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights,” Cryst. Growth Des. 12(10), 5042–5050 (2012).
[Crossref]

Sun, L. D.

C. J. Jia, L. D. Sun, L. P. You, X. C. Jiang, F. L. Yu, C. P. Chun, and H. Yan, “Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 109(8), 3284–3290 (2005).
[Crossref]

C. J. Jia, L. D. Sun, F. Luo, X. C. Jiang, L. H. Wei, and C.-H. Yan, “Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals,” Appl. Phys. Lett. 84(26), 5305–5307 (2004).
[Crossref]

Sun, L. M.

P. Li, X. Zhao, C. J. Jia, H. G. Sun, Y. L. Li, L. M. Sun, X. F. Cheng, L. Liu, and W. L. Fan, “Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights,” Cryst. Growth Des. 12(10), 5042–5050 (2012).
[Crossref]

Sun, S. X.

W. L. Fan, X. Y. Song, Y. X. Bu, S. X. Sun, and X. Zhao, “Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 110(46), 23247–23254 (2006).
[Crossref]

Sun, X. M.

J. F. Liu, L. L. Wang, X. M. Sun, and X. Q. Zhu, “Cerium vanadate nanorod arrays from ionic chelator-mediated self-assembly,” Angew. Chem., Int. Ed. 49(20), 3492–3495 (2010).
[Crossref]

Sun, Y. P.

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

Sun, Z. Q.

D. D. Wu, Y. Q. Ma, X. Zhang, S. B. Qian, G. H. Zheng, M. Z. Wu, G. Li, and Z. Q. Sun, “Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations,” J. Rare Earths 30(4), 325–329 (2012).
[Crossref]

Tan, J. B.

J. L. Zhang, J. X. Shi, J. B. Tan, X. J. Wang, and M. L. Gong, “Morphology-controllable synthesis of tetragonal LaVO4 nanostructures,” CrystEngComm 12(4), 1079–1085 (2010).
[Crossref]

Tan, M.

B. W. Luo, Y. Deng, Y. Wang, M. Tan, and L. L. Cao, “Independent growth of CdTe nanorod arrays on different substrates with enhanced photoelectrical property,” J. Nanopart. Res. 14(6), 946 (2012).
[Crossref]

Tang, X. W.

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

Tegus, O.

A. Bao, Z. Q. Song, O. Haschaolu, H. D. Bai, and O. Tegus, “Morphology-controllable synthesis and photoluminescence properties of t-LaVO4:Ln3+ nanostructures on glass substrates,” J. Mater. Sci. 52(5), 2661–2672 (2017).
[Crossref]

Tian, J. X.

T. G. You, J. F. Yan, Z. Y. Zhang, J. Li, J. X. Tian, J. N. Yun, and W. Zhao, “Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process,” Mater. Lett. 66(1), 246–249 (2012).
[Crossref]

Tu, Z. F.

H. G. Chen, C. W. Wang, and Z. F. Tu, “Facile hydrothermal epitaxial growth of vertical ZnO post arrays on sapphire substrates,” Mater. Lett. 107, 276–279 (2013).
[Crossref]

Turgut, Z.

S. M. Karadeniz, B. B. Cirak, T. Kilinc, C. Cirak, M. Inal, Z. Turgut, A. E. Ekinci, and M. Ertugrul, “A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods,” Mater. Sci. 22(4), 476–480 (2016).
[Crossref]

Veggel, F. C. J. M. V.

J. W. Stouwdam, M. Raudsepp, and F. C. J. M. V. Veggel, “Colloidal nanoparticles of Ln3+-doped LaVO4: energy transfer to visible- and near-infrared-emitting lanthanide ions,” Langmuir 21(15), 7003–7008 (2005).
[Crossref]

Wadati, H.

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

Wang, C.

H. S. Yuan, K. Wang, C. Wang, B. Zhou, K. Yang, J. Liu, and B. Zou, “Pressure-induced phase transformations of zircon-type LaVO4 nanorods,” J. Phys. Chem. C 119(15), 8364–8372 (2015).
[Crossref]

Wang, C. W.

H. G. Chen, C. W. Wang, and Z. F. Tu, “Facile hydrothermal epitaxial growth of vertical ZnO post arrays on sapphire substrates,” Mater. Lett. 107, 276–279 (2013).
[Crossref]

Wang, K.

H. S. Yuan, K. Wang, C. Wang, B. Zhou, K. Yang, J. Liu, and B. Zou, “Pressure-induced phase transformations of zircon-type LaVO4 nanorods,” J. Phys. Chem. C 119(15), 8364–8372 (2015).
[Crossref]

Wang, L. L.

L. L. Wang, Q. Xu, L. L. Liu, Q. S. Song, H. Lv, G. Zhu, and D. Zhang, “Single-hole hollow tetragonal LaVO4:Eu3+ microspheres prepared by Ostwald ripening and their luminescence property,” J. Lumin. 192, 1020–1025 (2017).
[Crossref]

J. F. Liu, L. L. Wang, X. M. Sun, and X. Q. Zhu, “Cerium vanadate nanorod arrays from ionic chelator-mediated self-assembly,” Angew. Chem., Int. Ed. 49(20), 3492–3495 (2010).
[Crossref]

Wang, X. J.

J. L. Zhang, J. X. Shi, J. B. Tan, X. J. Wang, and M. L. Gong, “Morphology-controllable synthesis of tetragonal LaVO4 nanostructures,” CrystEngComm 12(4), 1079–1085 (2010).
[Crossref]

Wang, Y.

B. W. Luo, Y. Deng, Y. Wang, M. Tan, and L. L. Cao, “Independent growth of CdTe nanorod arrays on different substrates with enhanced photoelectrical property,” J. Nanopart. Res. 14(6), 946 (2012).
[Crossref]

Wang, Y. Q.

X. R. Cheng, D. J. Guo, S. Q. Feng, K. Yang, Y. Q. Wang, Y. F. Ren, and Y. Song, “Structure and stability of monazite- and zircon-type LaVO4 under hydrostatic pressure,” Opt. Mater. 49, 32–38 (2015).
[Crossref]

Wei, L. H.

C. J. Jia, L. D. Sun, F. Luo, X. C. Jiang, L. H. Wei, and C.-H. Yan, “Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals,” Appl. Phys. Lett. 84(26), 5305–5307 (2004).
[Crossref]

Wu, D. D.

D. D. Wu, Y. Q. Ma, X. Zhang, S. B. Qian, G. H. Zheng, M. Z. Wu, G. Li, and Z. Q. Sun, “Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations,” J. Rare Earths 30(4), 325–329 (2012).
[Crossref]

Wu, J. H.

B. Yan and J. H. Wu, “Solid state-hydrothermal synthesis and photoluminescence of LaVO4: Eu3+ nanophosphors,” Mater. Lett. 63(11), 946–948 (2009).
[Crossref]

Wu, M. Z.

D. D. Wu, Y. Q. Ma, X. Zhang, S. B. Qian, G. H. Zheng, M. Z. Wu, G. Li, and Z. Q. Sun, “Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations,” J. Rare Earths 30(4), 325–329 (2012).
[Crossref]

Xu, Q.

L. L. Wang, Q. Xu, L. L. Liu, Q. S. Song, H. Lv, G. Zhu, and D. Zhang, “Single-hole hollow tetragonal LaVO4:Eu3+ microspheres prepared by Ostwald ripening and their luminescence property,” J. Lumin. 192, 1020–1025 (2017).
[Crossref]

Yan, B.

B. Yan and J. H. Wu, “Solid state-hydrothermal synthesis and photoluminescence of LaVO4: Eu3+ nanophosphors,” Mater. Lett. 63(11), 946–948 (2009).
[Crossref]

X. Q. Su and B. Yan, “Matrix-induced synthesis and photoluminescence of M3Ln(VO4)3:RE (M = Ca, Sr, Ba; Ln = Y, Gd; RE = Eu3+, Dy3+, Er3+) phosphors by hybrid precursors,” J. Alloys Compd. 421(1-2), 273–278 (2006).
[Crossref]

Yan, C.-H.

C. J. Jia, L. D. Sun, F. Luo, X. C. Jiang, L. H. Wei, and C.-H. Yan, “Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals,” Appl. Phys. Lett. 84(26), 5305–5307 (2004).
[Crossref]

Yan, H.

C. J. Jia, L. D. Sun, L. P. You, X. C. Jiang, F. L. Yu, C. P. Chun, and H. Yan, “Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 109(8), 3284–3290 (2005).
[Crossref]

Yan, J. F.

T. G. You, J. F. Yan, Z. Y. Zhang, J. Li, J. X. Tian, J. N. Yun, and W. Zhao, “Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process,” Mater. Lett. 66(1), 246–249 (2012).
[Crossref]

Yang, K.

H. S. Yuan, K. Wang, C. Wang, B. Zhou, K. Yang, J. Liu, and B. Zou, “Pressure-induced phase transformations of zircon-type LaVO4 nanorods,” J. Phys. Chem. C 119(15), 8364–8372 (2015).
[Crossref]

X. R. Cheng, D. J. Guo, S. Q. Feng, K. Yang, Y. Q. Wang, Y. F. Ren, and Y. Song, “Structure and stability of monazite- and zircon-type LaVO4 under hydrostatic pressure,” Opt. Mater. 49, 32–38 (2015).
[Crossref]

You, H. P.

B. Q. Shao, Q. Zhao, N. Guo, Y. C. Jia, W. Z. Lv, M. M. Jiao, W. Lü, and H. P. You, “Novel synthesis and luminescence properties of t-LaVO4:Eu3+ micro cube,” CrystEngComm 16(2), 152–158 (2014).
[Crossref]

You, L. P.

C. J. Jia, L. D. Sun, L. P. You, X. C. Jiang, F. L. Yu, C. P. Chun, and H. Yan, “Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 109(8), 3284–3290 (2005).
[Crossref]

You, T. G.

T. G. You, J. F. Yan, Z. Y. Zhang, J. Li, J. X. Tian, J. N. Yun, and W. Zhao, “Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process,” Mater. Lett. 66(1), 246–249 (2012).
[Crossref]

Yu, F. L.

C. J. Jia, L. D. Sun, L. P. You, X. C. Jiang, F. L. Yu, C. P. Chun, and H. Yan, “Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 109(8), 3284–3290 (2005).
[Crossref]

Yuan, H. S.

H. S. Yuan, K. Wang, C. Wang, B. Zhou, K. Yang, J. Liu, and B. Zou, “Pressure-induced phase transformations of zircon-type LaVO4 nanorods,” J. Phys. Chem. C 119(15), 8364–8372 (2015).
[Crossref]

Yun, J. N.

T. G. You, J. F. Yan, Z. Y. Zhang, J. Li, J. X. Tian, J. N. Yun, and W. Zhao, “Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process,” Mater. Lett. 66(1), 246–249 (2012).
[Crossref]

Zahedifar, M.

M. Zahedifar, Z. Chamanzadeh, and S. M. H. Mashkani, “Synthesis of LaVO4:Dy3+ luminescent nanostructure and optimization of its performance as down-converter in dye-sensitized solar cells,” J. Lumin. 135, 66–73 (2013).
[Crossref]

Zhang, D.

L. L. Wang, Q. Xu, L. L. Liu, Q. S. Song, H. Lv, G. Zhu, and D. Zhang, “Single-hole hollow tetragonal LaVO4:Eu3+ microspheres prepared by Ostwald ripening and their luminescence property,” J. Lumin. 192, 1020–1025 (2017).
[Crossref]

Zhang, J. L.

J. L. Zhang, J. X. Shi, J. B. Tan, X. J. Wang, and M. L. Gong, “Morphology-controllable synthesis of tetragonal LaVO4 nanostructures,” CrystEngComm 12(4), 1079–1085 (2010).
[Crossref]

Zhang, K. J.

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

Zhang, L. X.

H. F. Jiu, H. G. Jiao, L. X. Zhang, W. B. Jia, C. S. Huang, and J. X. Chang, “Improved luminescence behavior of YVO4:Eu3+ hollow microspheres by Ca2+ doping,” Superlattices Microstruct. 83, 627–634 (2015).
[Crossref]

Zhang, X.

D. D. Wu, Y. Q. Ma, X. Zhang, S. B. Qian, G. H. Zheng, M. Z. Wu, G. Li, and Z. Q. Sun, “Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations,” J. Rare Earths 30(4), 325–329 (2012).
[Crossref]

Zhang, Z. Y.

T. G. You, J. F. Yan, Z. Y. Zhang, J. Li, J. X. Tian, J. N. Yun, and W. Zhao, “Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process,” Mater. Lett. 66(1), 246–249 (2012).
[Crossref]

Zhao, H. Y.

Q. P. Jiang, Y. H. Li, G. F. Du, Y. J. Liu, and H. Y. Zhao, “A novel structure of SnO2 nanorod arrays synthesized via a hydrothermal method,” Mater. Lett. 105, 95–97 (2013).
[Crossref]

Zhao, Q.

B. Q. Shao, Q. Zhao, N. Guo, Y. C. Jia, W. Z. Lv, M. M. Jiao, W. Lü, and H. P. You, “Novel synthesis and luminescence properties of t-LaVO4:Eu3+ micro cube,” CrystEngComm 16(2), 152–158 (2014).
[Crossref]

Zhao, W.

T. G. You, J. F. Yan, Z. Y. Zhang, J. Li, J. X. Tian, J. N. Yun, and W. Zhao, “Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process,” Mater. Lett. 66(1), 246–249 (2012).
[Crossref]

Zhao, X.

P. Li, X. Zhao, C. J. Jia, H. G. Sun, Y. L. Li, L. M. Sun, X. F. Cheng, L. Liu, and W. L. Fan, “Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights,” Cryst. Growth Des. 12(10), 5042–5050 (2012).
[Crossref]

W. L. Fan, X. Y. Song, Y. X. Bu, S. X. Sun, and X. Zhao, “Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 110(46), 23247–23254 (2006).
[Crossref]

Zheng, G. H.

D. D. Wu, Y. Q. Ma, X. Zhang, S. B. Qian, G. H. Zheng, M. Z. Wu, G. Li, and Z. Q. Sun, “Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations,” J. Rare Earths 30(4), 325–329 (2012).
[Crossref]

Zhou, B.

H. S. Yuan, K. Wang, C. Wang, B. Zhou, K. Yang, J. Liu, and B. Zou, “Pressure-induced phase transformations of zircon-type LaVO4 nanorods,” J. Phys. Chem. C 119(15), 8364–8372 (2015).
[Crossref]

Zhu, G.

L. L. Wang, Q. Xu, L. L. Liu, Q. S. Song, H. Lv, G. Zhu, and D. Zhang, “Single-hole hollow tetragonal LaVO4:Eu3+ microspheres prepared by Ostwald ripening and their luminescence property,” J. Lumin. 192, 1020–1025 (2017).
[Crossref]

Zhu, X. B.

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

Zhu, X. Q.

J. F. Liu, L. L. Wang, X. M. Sun, and X. Q. Zhu, “Cerium vanadate nanorod arrays from ionic chelator-mediated self-assembly,” Angew. Chem., Int. Ed. 49(20), 3492–3495 (2010).
[Crossref]

Zou, B.

H. S. Yuan, K. Wang, C. Wang, B. Zhou, K. Yang, J. Liu, and B. Zou, “Pressure-induced phase transformations of zircon-type LaVO4 nanorods,” J. Phys. Chem. C 119(15), 8364–8372 (2015).
[Crossref]

Angew. Chem., Int. Ed. (1)

J. F. Liu, L. L. Wang, X. M. Sun, and X. Q. Zhu, “Cerium vanadate nanorod arrays from ionic chelator-mediated self-assembly,” Angew. Chem., Int. Ed. 49(20), 3492–3495 (2010).
[Crossref]

Appl. Phys. Lett. (3)

T. Higuchi, Y. Hotta, Y. Hikita, S. Maruyama, Y. Hayamizu, H. Akiyama, H. Wadati, D. G. Hawthorn, T. Z. Regier, R. I. R. Blyth, G. A. Sawatzky, and H. Y. Hwang, “LaVO4:Eu Phosphor films with enhanced Eu solubility,” Appl. Phys. Lett. 98(7), 071902 (2011).
[Crossref]

C. J. Jia, L. D. Sun, F. Luo, X. C. Jiang, L. H. Wei, and C.-H. Yan, “Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals,” Appl. Phys. Lett. 84(26), 5305–5307 (2004).
[Crossref]

C. Liu, S. H. Chang, and T. W. Noh, “Initial growth behavior and resulting microstructural properties of heteroepitaxial ZnO thin films on sapphire (0001) substrates,” Appl. Phys. Lett. 90(1), 011906 (2007).
[Crossref]

Cryst. Growth Des. (1)

P. Li, X. Zhao, C. J. Jia, H. G. Sun, Y. L. Li, L. M. Sun, X. F. Cheng, L. Liu, and W. L. Fan, “Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights,” Cryst. Growth Des. 12(10), 5042–5050 (2012).
[Crossref]

CrystEngComm (2)

B. Q. Shao, Q. Zhao, N. Guo, Y. C. Jia, W. Z. Lv, M. M. Jiao, W. Lü, and H. P. You, “Novel synthesis and luminescence properties of t-LaVO4:Eu3+ micro cube,” CrystEngComm 16(2), 152–158 (2014).
[Crossref]

J. L. Zhang, J. X. Shi, J. B. Tan, X. J. Wang, and M. L. Gong, “Morphology-controllable synthesis of tetragonal LaVO4 nanostructures,” CrystEngComm 12(4), 1079–1085 (2010).
[Crossref]

Inorg. Mater. (1)

T. V. Plakhova, M. V. Shestakov, and A. N. Baranov, “Effect of textured seeds on the morphology and optical properties of solution and vapor grown ZnO nanorod arrays,” Inorg. Mater. 48(5), 469–475 (2012).
[Crossref]

Int. J. Hydrogen Energy (1)

P. S. Aadesh, K. Nisha, D. Avishek, K. Satheesh, and R. M. Bodh, “Improvement in the structural, optical, electronic and photoelectrochemical properties of hydrogen treated bismuth vanadate thin films,” Int. J. Hydrogen Energy 40(12), 4311–4319 (2015).
[Crossref]

J. Alloys Compd. (2)

S. Mahapatra and A. Ramanan, “Hydrothermal synthesis and structural study of lanthanide orthovanadates, LnVO4 (Ln = Sm, Gd, Dy and Ho),” J. Alloys Compd. 395(1-2), 149–153 (2005).
[Crossref]

X. Q. Su and B. Yan, “Matrix-induced synthesis and photoluminescence of M3Ln(VO4)3:RE (M = Ca, Sr, Ba; Ln = Y, Gd; RE = Eu3+, Dy3+, Er3+) phosphors by hybrid precursors,” J. Alloys Compd. 421(1-2), 273–278 (2006).
[Crossref]

J. Lumin. (2)

M. Zahedifar, Z. Chamanzadeh, and S. M. H. Mashkani, “Synthesis of LaVO4:Dy3+ luminescent nanostructure and optimization of its performance as down-converter in dye-sensitized solar cells,” J. Lumin. 135, 66–73 (2013).
[Crossref]

L. L. Wang, Q. Xu, L. L. Liu, Q. S. Song, H. Lv, G. Zhu, and D. Zhang, “Single-hole hollow tetragonal LaVO4:Eu3+ microspheres prepared by Ostwald ripening and their luminescence property,” J. Lumin. 192, 1020–1025 (2017).
[Crossref]

J. Mater. Sci. (1)

A. Bao, Z. Q. Song, O. Haschaolu, H. D. Bai, and O. Tegus, “Morphology-controllable synthesis and photoluminescence properties of t-LaVO4:Ln3+ nanostructures on glass substrates,” J. Mater. Sci. 52(5), 2661–2672 (2017).
[Crossref]

J. Nanopart. Res. (1)

B. W. Luo, Y. Deng, Y. Wang, M. Tan, and L. L. Cao, “Independent growth of CdTe nanorod arrays on different substrates with enhanced photoelectrical property,” J. Nanopart. Res. 14(6), 946 (2012).
[Crossref]

J. Phys. Chem. B (2)

C. J. Jia, L. D. Sun, L. P. You, X. C. Jiang, F. L. Yu, C. P. Chun, and H. Yan, “Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 109(8), 3284–3290 (2005).
[Crossref]

W. L. Fan, X. Y. Song, Y. X. Bu, S. X. Sun, and X. Zhao, “Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals,” J. Phys. Chem. B 110(46), 23247–23254 (2006).
[Crossref]

J. Phys. Chem. C (1)

H. S. Yuan, K. Wang, C. Wang, B. Zhou, K. Yang, J. Liu, and B. Zou, “Pressure-induced phase transformations of zircon-type LaVO4 nanorods,” J. Phys. Chem. C 119(15), 8364–8372 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

L. Hu, X. W. Tang, X. Luo, K. J. Zhang, L. H. Jin, G. T. Lin, L. Chen, X. B. Zhu, W. H. Song, J. M. Dai, and Y. P. Sun, “Forming-free unipolar resistive switching behavior with conical conducting filaments in LaVO4 thin films,” J. Phys. D: Appl. Phys. 49(16), 165308 (2016).
[Crossref]

J. Rare Earths (1)

D. D. Wu, Y. Q. Ma, X. Zhang, S. B. Qian, G. H. Zheng, M. Z. Wu, G. Li, and Z. Q. Sun, “Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations,” J. Rare Earths 30(4), 325–329 (2012).
[Crossref]

Langmuir (1)

J. W. Stouwdam, M. Raudsepp, and F. C. J. M. V. Veggel, “Colloidal nanoparticles of Ln3+-doped LaVO4: energy transfer to visible- and near-infrared-emitting lanthanide ions,” Langmuir 21(15), 7003–7008 (2005).
[Crossref]

Mater. Lett. (4)

B. Yan and J. H. Wu, “Solid state-hydrothermal synthesis and photoluminescence of LaVO4: Eu3+ nanophosphors,” Mater. Lett. 63(11), 946–948 (2009).
[Crossref]

H. G. Chen, C. W. Wang, and Z. F. Tu, “Facile hydrothermal epitaxial growth of vertical ZnO post arrays on sapphire substrates,” Mater. Lett. 107, 276–279 (2013).
[Crossref]

Q. P. Jiang, Y. H. Li, G. F. Du, Y. J. Liu, and H. Y. Zhao, “A novel structure of SnO2 nanorod arrays synthesized via a hydrothermal method,” Mater. Lett. 105, 95–97 (2013).
[Crossref]

T. G. You, J. F. Yan, Z. Y. Zhang, J. Li, J. X. Tian, J. N. Yun, and W. Zhao, “Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process,” Mater. Lett. 66(1), 246–249 (2012).
[Crossref]

Mater. Sci. (1)

S. M. Karadeniz, B. B. Cirak, T. Kilinc, C. Cirak, M. Inal, Z. Turgut, A. E. Ekinci, and M. Ertugrul, “A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods,” Mater. Sci. 22(4), 476–480 (2016).
[Crossref]

Mater. Sci. Eng., B (1)

R. Okram, G. Phaomei, and N. R. Singh, “Water driven enhanced photoluminescence of Ln (=Dy3+, Sm3+) doped LaVO4 nanoparticles and effect of Ba2+ co-doping,” Mater. Sci. Eng., B 178(7), 409–416 (2013).
[Crossref]

Opt. Mater. (1)

X. R. Cheng, D. J. Guo, S. Q. Feng, K. Yang, Y. Q. Wang, Y. F. Ren, and Y. Song, “Structure and stability of monazite- and zircon-type LaVO4 under hydrostatic pressure,” Opt. Mater. 49, 32–38 (2015).
[Crossref]

Superlattices Microstruct. (1)

H. F. Jiu, H. G. Jiao, L. X. Zhang, W. B. Jia, C. S. Huang, and J. X. Chang, “Improved luminescence behavior of YVO4:Eu3+ hollow microspheres by Ca2+ doping,” Superlattices Microstruct. 83, 627–634 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The surface (1) and cross-section (2) SEM images of the films prepared from different concentrations of the reactants: (a) 0.05 mol/L; (b) 0.10 mol/L; (c) 0.20 mol/L.
Fig. 2.
Fig. 2. XRD patterns and Raman spectra of the films prepared from different concentrations of the reactants.
Fig. 3.
Fig. 3. EDS pattern and mapping graphs of the film prepared from 0.20 mol/L of the reactants.
Fig. 4.
Fig. 4. TEM image (a), the corresponding HRTEM pattern (b) and SAED pattern (c) of the LaVO4:Cu,Eu nanorod array film prepared from 0.20 mol/L of the reactants.
Fig. 5.
Fig. 5. Scheme for the formation of LaVO4:Cu,Eu nanorod array film on Cu substrate.
Fig. 6.
Fig. 6. Uv-vis spectra, luminescence spectra and lifetimes of the LaVO4:Cu,Eu nanorod array films prepared from different concentrations of the reactants.

Tables (1)

Tables Icon

Table 1. Lattice parameters of the LaVO4:Cu,Eu films prepared from different concentrations of the reactants

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Cu + O 2 = CuO
CuO + H 2 O = C u 2 + + 2O H
N a 2 Cu O 2 + 2 H 2 O = C u 2 + + 2O H + 2NaOH