Abstract

Cr-doped GdScO3 single crystals were grown by the EFG method. Based on their absorption and emission spectras, the crystal field strength and the crystal field parameters of the octahedrally-coordinated Cr3+ ions were determined: Dq = 1553 cm-1, B = 574 cm-1, C = 3211 cm-1, and Dq/B = 2.71 for 0.5% Cr:GdScO3. Effective phonon energy was calculated to be 412 cm−1, and the Huang–Rhys factor was 3.0. The emission spectra of Cr3+ doped GdScO3 crystal covered the region from 650 nm to 1100 nm, and the emission cross-section at 767 nm was calculated to be 0.32×10−20 cm2. In comparison with the other Cr3+ doped materials, the Cr:GdScO3 crystal has a short fluorescence lifetime, it can be used as a potential tunable laser gain medium.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan
J. Opt. Soc. Am. B 23(4) 676-683 (2006)

Near-infrared laser operation of Cr3+ centers in chromium-doped LiInGeO4 and LiScGeO4 crystals

M. Sharonov, V. Petricevic, A. Bykov, and R. R. Alfano
Opt. Lett. 30(8) 851-853 (2005)

Evaluation of growth, thermal and spectroscopic properties of Yb3+-doped GSGG crystals for use in ultrashort pulsed and tunable lasers

Li Tian, Hao Yuan, Shuxian Wang, Kui Wu, Zhongben Pan, Huaqiang Cai, Haohai Yu, and Huaijin Zhang
Opt. Mater. Express 4(9) 1953-1965 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. G. Schlom and J. H. Haeni, “A thermodynamic approach to selecting alternative gate dielectrics,” MRS Bull. 27(3), 198–204 (2002).
    [Crossref]
  2. H. M. Christen, G. E. Jellison Jr, I. Ohkubo, S. Huang, M. E. Reeves, E. Cicerrella, and D. G. Schlom, “Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior,” Appl. Phys. Lett. 88(26), 262906 (2006).
    [Crossref]
  3. S. G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, and G. Lucovsky, “Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry,” J. Appl. Phys. 91(7), 4500–4505 (2002).
    [Crossref]
  4. G. Lucovsky, Y. Zhang, J. L. Whitten, D. G. Schlom, and J. L. Freeouf, “Separate and independent control of interfacial band alignments and dielectric constants in transition metal rare earth complex oxides,” Microelectron. Eng. 72(1-4), 288–293 (2004).
    [Crossref]
  5. G. Lucovsky, J. G. Hong, C. C. Fulton, Y. Zou, R. J. Nemanich, H. Ade, and J. L. Freeouf, “Spectroscopic studies of metal high-k dielectrics: transition metal oxides and silicates, and complex rare earth/transition metal oxides,” Phys. Status Solidi B 241(10), 2221–2235 (2004).
    [Crossref]
  6. K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res. 11(11), 2757–2776 (1996).
    [Crossref]
  7. J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom, “Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110),” Appl. Phys. Lett. 82(20), 3460–3462 (2003).
    [Crossref]
  8. J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, and A. K. Tagantsev, “Room-temperature ferroelectricity in strained SrTiO3,” Nature 430(7001), 758–761 (2004).
    [Crossref]
  9. K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, and L. Q. Chen, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
    [Crossref]
  10. M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, and P. Reiche, “Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates,” Appl. Phys. Lett. 88(19), 192907 (2006).
    [Crossref]
  11. J. B. Clark, P. W. Richter, and L. Du Toit, “High-pressure synthesis of YScO3, HoScO3, ErScO3 and TmScO3, and a reevaluation of the lattice constants of the rare earth scandates,” J. Solid State Chem. 23(1-2), 129–134 (1978).
    [Crossref]
  12. B. Veličkov, V. Kahlenberg, R. Bertram, and M. Bernhagen, “Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3,” Z. Kristallogr. 222(9), 466–473 (2007).
    [Crossref]
  13. R. Uecker, H. Wilke, D. G. Schlom, B. Velickov, P. Reiche, A. Polity, and M. Rossberg, “Spiral formation during Czochralski growth of rare-earth scandates,” J. Cryst. Growth 295(1), 84–91 (2006).
    [Crossref]
  14. F. Peng, W. Liu, Q. Zhang, J. Luo, D. Sun, G. Sun, and X. Wang, “Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy:GdScO3,” J. Lumin. 201, 176–181 (2018).
    [Crossref]
  15. P. A. Arsenev, K. E. Bienert, and R. K. Sviridova, “Spectral properties of neodymium ions in the lattice of GdScO3 crystals,” Phys. Status Solidi A 9(2), K103–K104 (1972).
    [Crossref]
  16. S. N. Amanyan, P. A. Arsen’ev, K. S. Bagdasarov, A. M. Kevorkov, D. I. Korolev, A. V. Potemkin, and V. V. Femin, “Synthesis and examination of GdScO3 single crystals activated by Nd3+,” J. Appl. Spectrosc. 38(3), 343–348 (1983).
    [Crossref]
  17. Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions II,” J. Phys. Soc. Jpn. 9(5), 766–779 (1954).
    [Crossref]
  18. M. Gelder, D. Gath, and R. Mayou, “Oxford textbook of psychiatry,” Oxford university press (1989).
  19. K. P. O’donnell, A. Marshall, M. Yamaga, B. Henderson, and B. Cockayne, “Vibronic structure in the photoluminescence spectrum of Cr3+ ions in garnets,” J. Lumin. 42(6), 365–373 (1989).
    [Crossref]
  20. W.M. Yen and P.M. Selzer, “High resolution laser spectroscopy of ions in crystals,” in Laser Spectroscopy of Solids (Springer, 1986), pp. 141–188.
    [Crossref]
  21. S. Kück, E. Heumann, T. Kärner, and A. Maaroos, “Continuous wave laser oscillation of Cr3+: MgO,” In Advanced Solid State Lasers p. PD6 (1999).
  22. S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Spectroscopic properties of Cr-doped Sc2O3,” J. Lumin. 87-89, 1122–1125 (2000).
    [Crossref]
  23. B. Malysa, A. Meijerink, and T. Jüstel, “Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La),” J. Lumin. 202, 523–531 (2018).
    [Crossref]
  24. B. Malysa, A. Meijerink, W. Wu, and T. Jüstel, “On the influence of calcium substitution to the optical properties of Cr3+ doped SrSc2O4,” J. Lumin. 190, 234–241 (2017).
    [Crossref]
  25. X. Long, Z. Lin, Z. Hu, and G. Wang, “Polarized spectral characteristics and energy levels of Cr3+:LaSc3(BO3)4 crystal,” Chem. Phys. Lett. 392(1-3), 192–195 (2004).
    [Crossref]
  26. I. Nikolov, X. Mateos, F. Güell, J. Massons, V. Nikolov, P. Peshev, and F. Dıaz, “Optical properties of Cr3+:NaAl(WO4)2 crystals, a new candidate for broadband laser applications,” Opt. Mater. 25(1), 53–58 (2004).
    [Crossref]
  27. P. T. Kenyon, L. Andrews, B. McCollum, and A. Lempicki, “Tunable infrared solid state laser materials based on Cr3+ in low ligand fields,” IEEE J. Quantum Electron. 18(8), 1189–1197 (1982).
    [Crossref]
  28. B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B: Photophys. Laser Chem. 30(3), 117–120 (1983).
    [Crossref]
  29. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6: Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
    [Crossref]
  30. G. Wang, X. Long, L. Zhang, G. Wang, S. Polosan, and T. Tsuboi, “Spectroscopic characteristic and energy levels of Cr3+ in Cr3+:KAl(MoO4)2 crystal,” J. Lumin. 128(10), 1556–1560 (2008).
    [Crossref]
  31. G. Wang, Z. Lin, L. Zhang, Y. Huang, and G. Wang, “Spectral characterization and energy levels of Cr3+:Sc2(MoO4)3 crystal,” J. Lumin. 129(11), 1398–1400 (2009).
    [Crossref]
  32. R. Moncorgé, “Laser materials based on transition metal ions,” Opt. Mater. 63, 105–117 (2017).
    [Crossref]

2018 (2)

F. Peng, W. Liu, Q. Zhang, J. Luo, D. Sun, G. Sun, and X. Wang, “Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy:GdScO3,” J. Lumin. 201, 176–181 (2018).
[Crossref]

B. Malysa, A. Meijerink, and T. Jüstel, “Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La),” J. Lumin. 202, 523–531 (2018).
[Crossref]

2017 (2)

B. Malysa, A. Meijerink, W. Wu, and T. Jüstel, “On the influence of calcium substitution to the optical properties of Cr3+ doped SrSc2O4,” J. Lumin. 190, 234–241 (2017).
[Crossref]

R. Moncorgé, “Laser materials based on transition metal ions,” Opt. Mater. 63, 105–117 (2017).
[Crossref]

2009 (1)

G. Wang, Z. Lin, L. Zhang, Y. Huang, and G. Wang, “Spectral characterization and energy levels of Cr3+:Sc2(MoO4)3 crystal,” J. Lumin. 129(11), 1398–1400 (2009).
[Crossref]

2008 (1)

G. Wang, X. Long, L. Zhang, G. Wang, S. Polosan, and T. Tsuboi, “Spectroscopic characteristic and energy levels of Cr3+ in Cr3+:KAl(MoO4)2 crystal,” J. Lumin. 128(10), 1556–1560 (2008).
[Crossref]

2007 (1)

B. Veličkov, V. Kahlenberg, R. Bertram, and M. Bernhagen, “Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3,” Z. Kristallogr. 222(9), 466–473 (2007).
[Crossref]

2006 (3)

R. Uecker, H. Wilke, D. G. Schlom, B. Velickov, P. Reiche, A. Polity, and M. Rossberg, “Spiral formation during Czochralski growth of rare-earth scandates,” J. Cryst. Growth 295(1), 84–91 (2006).
[Crossref]

M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, and P. Reiche, “Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates,” Appl. Phys. Lett. 88(19), 192907 (2006).
[Crossref]

H. M. Christen, G. E. Jellison Jr, I. Ohkubo, S. Huang, M. E. Reeves, E. Cicerrella, and D. G. Schlom, “Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior,” Appl. Phys. Lett. 88(26), 262906 (2006).
[Crossref]

2004 (6)

G. Lucovsky, Y. Zhang, J. L. Whitten, D. G. Schlom, and J. L. Freeouf, “Separate and independent control of interfacial band alignments and dielectric constants in transition metal rare earth complex oxides,” Microelectron. Eng. 72(1-4), 288–293 (2004).
[Crossref]

G. Lucovsky, J. G. Hong, C. C. Fulton, Y. Zou, R. J. Nemanich, H. Ade, and J. L. Freeouf, “Spectroscopic studies of metal high-k dielectrics: transition metal oxides and silicates, and complex rare earth/transition metal oxides,” Phys. Status Solidi B 241(10), 2221–2235 (2004).
[Crossref]

J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, and A. K. Tagantsev, “Room-temperature ferroelectricity in strained SrTiO3,” Nature 430(7001), 758–761 (2004).
[Crossref]

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, and L. Q. Chen, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref]

X. Long, Z. Lin, Z. Hu, and G. Wang, “Polarized spectral characteristics and energy levels of Cr3+:LaSc3(BO3)4 crystal,” Chem. Phys. Lett. 392(1-3), 192–195 (2004).
[Crossref]

I. Nikolov, X. Mateos, F. Güell, J. Massons, V. Nikolov, P. Peshev, and F. Dıaz, “Optical properties of Cr3+:NaAl(WO4)2 crystals, a new candidate for broadband laser applications,” Opt. Mater. 25(1), 53–58 (2004).
[Crossref]

2003 (1)

J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom, “Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110),” Appl. Phys. Lett. 82(20), 3460–3462 (2003).
[Crossref]

2002 (2)

D. G. Schlom and J. H. Haeni, “A thermodynamic approach to selecting alternative gate dielectrics,” MRS Bull. 27(3), 198–204 (2002).
[Crossref]

S. G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, and G. Lucovsky, “Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry,” J. Appl. Phys. 91(7), 4500–4505 (2002).
[Crossref]

2000 (1)

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Spectroscopic properties of Cr-doped Sc2O3,” J. Lumin. 87-89, 1122–1125 (2000).
[Crossref]

1996 (1)

K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res. 11(11), 2757–2776 (1996).
[Crossref]

1989 (1)

K. P. O’donnell, A. Marshall, M. Yamaga, B. Henderson, and B. Cockayne, “Vibronic structure in the photoluminescence spectrum of Cr3+ ions in garnets,” J. Lumin. 42(6), 365–373 (1989).
[Crossref]

1988 (1)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6: Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

1983 (2)

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B: Photophys. Laser Chem. 30(3), 117–120 (1983).
[Crossref]

S. N. Amanyan, P. A. Arsen’ev, K. S. Bagdasarov, A. M. Kevorkov, D. I. Korolev, A. V. Potemkin, and V. V. Femin, “Synthesis and examination of GdScO3 single crystals activated by Nd3+,” J. Appl. Spectrosc. 38(3), 343–348 (1983).
[Crossref]

1982 (1)

P. T. Kenyon, L. Andrews, B. McCollum, and A. Lempicki, “Tunable infrared solid state laser materials based on Cr3+ in low ligand fields,” IEEE J. Quantum Electron. 18(8), 1189–1197 (1982).
[Crossref]

1978 (1)

J. B. Clark, P. W. Richter, and L. Du Toit, “High-pressure synthesis of YScO3, HoScO3, ErScO3 and TmScO3, and a reevaluation of the lattice constants of the rare earth scandates,” J. Solid State Chem. 23(1-2), 129–134 (1978).
[Crossref]

1972 (1)

P. A. Arsenev, K. E. Bienert, and R. K. Sviridova, “Spectral properties of neodymium ions in the lattice of GdScO3 crystals,” Phys. Status Solidi A 9(2), K103–K104 (1972).
[Crossref]

1954 (1)

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions II,” J. Phys. Soc. Jpn. 9(5), 766–779 (1954).
[Crossref]

Ade, H.

G. Lucovsky, J. G. Hong, C. C. Fulton, Y. Zou, R. J. Nemanich, H. Ade, and J. L. Freeouf, “Spectroscopic studies of metal high-k dielectrics: transition metal oxides and silicates, and complex rare earth/transition metal oxides,” Phys. Status Solidi B 241(10), 2221–2235 (2004).
[Crossref]

Amanyan, S. N.

S. N. Amanyan, P. A. Arsen’ev, K. S. Bagdasarov, A. M. Kevorkov, D. I. Korolev, A. V. Potemkin, and V. V. Femin, “Synthesis and examination of GdScO3 single crystals activated by Nd3+,” J. Appl. Spectrosc. 38(3), 343–348 (1983).
[Crossref]

Andrews, L.

P. T. Kenyon, L. Andrews, B. McCollum, and A. Lempicki, “Tunable infrared solid state laser materials based on Cr3+ in low ligand fields,” IEEE J. Quantum Electron. 18(8), 1189–1197 (1982).
[Crossref]

Arsen’ev, P. A.

S. N. Amanyan, P. A. Arsen’ev, K. S. Bagdasarov, A. M. Kevorkov, D. I. Korolev, A. V. Potemkin, and V. V. Femin, “Synthesis and examination of GdScO3 single crystals activated by Nd3+,” J. Appl. Spectrosc. 38(3), 343–348 (1983).
[Crossref]

Arsenev, P. A.

P. A. Arsenev, K. E. Bienert, and R. K. Sviridova, “Spectral properties of neodymium ions in the lattice of GdScO3 crystals,” Phys. Status Solidi A 9(2), K103–K104 (1972).
[Crossref]

Bagdasarov, K. S.

S. N. Amanyan, P. A. Arsen’ev, K. S. Bagdasarov, A. M. Kevorkov, D. I. Korolev, A. V. Potemkin, and V. V. Femin, “Synthesis and examination of GdScO3 single crystals activated by Nd3+,” J. Appl. Spectrosc. 38(3), 343–348 (1983).
[Crossref]

Balbashov, A. M.

S. G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, and G. Lucovsky, “Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry,” J. Appl. Phys. 91(7), 4500–4505 (2002).
[Crossref]

Bernhagen, M.

B. Veličkov, V. Kahlenberg, R. Bertram, and M. Bernhagen, “Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3,” Z. Kristallogr. 222(9), 466–473 (2007).
[Crossref]

Bertram, R.

B. Veličkov, V. Kahlenberg, R. Bertram, and M. Bernhagen, “Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3,” Z. Kristallogr. 222(9), 466–473 (2007).
[Crossref]

Biegalski, M.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, and L. Q. Chen, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref]

Biegalski, M. D.

M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, and P. Reiche, “Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates,” Appl. Phys. Lett. 88(19), 192907 (2006).
[Crossref]

Bienert, K. E.

P. A. Arsenev, K. E. Bienert, and R. K. Sviridova, “Spectral properties of neodymium ions in the lattice of GdScO3 crystals,” Phys. Status Solidi A 9(2), K103–K104 (1972).
[Crossref]

Chang, W.

J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, and A. K. Tagantsev, “Room-temperature ferroelectricity in strained SrTiO3,” Nature 430(7001), 758–761 (2004).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6: Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Chen, L. Q.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, and L. Q. Chen, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref]

Choi, K. J.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, and L. Q. Chen, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref]

Christen, H. M.

H. M. Christen, G. E. Jellison Jr, I. Ohkubo, S. Huang, M. E. Reeves, E. Cicerrella, and D. G. Schlom, “Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior,” Appl. Phys. Lett. 88(26), 262906 (2006).
[Crossref]

Cicerrella, E.

H. M. Christen, G. E. Jellison Jr, I. Ohkubo, S. Huang, M. E. Reeves, E. Cicerrella, and D. G. Schlom, “Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior,” Appl. Phys. Lett. 88(26), 262906 (2006).
[Crossref]

Clark, J. B.

J. B. Clark, P. W. Richter, and L. Du Toit, “High-pressure synthesis of YScO3, HoScO3, ErScO3 and TmScO3, and a reevaluation of the lattice constants of the rare earth scandates,” J. Solid State Chem. 23(1-2), 129–134 (1978).
[Crossref]

Cockayne, B.

K. P. O’donnell, A. Marshall, M. Yamaga, B. Henderson, and B. Cockayne, “Vibronic structure in the photoluminescence spectrum of Cr3+ ions in garnets,” J. Lumin. 42(6), 365–373 (1989).
[Crossref]

Diaz, F.

I. Nikolov, X. Mateos, F. Güell, J. Massons, V. Nikolov, P. Peshev, and F. Dıaz, “Optical properties of Cr3+:NaAl(WO4)2 crystals, a new candidate for broadband laser applications,” Opt. Mater. 25(1), 53–58 (2004).
[Crossref]

Du Toit, L.

J. B. Clark, P. W. Richter, and L. Du Toit, “High-pressure synthesis of YScO3, HoScO3, ErScO3 and TmScO3, and a reevaluation of the lattice constants of the rare earth scandates,” J. Solid State Chem. 23(1-2), 129–134 (1978).
[Crossref]

Femin, V. V.

S. N. Amanyan, P. A. Arsen’ev, K. S. Bagdasarov, A. M. Kevorkov, D. I. Korolev, A. V. Potemkin, and V. V. Femin, “Synthesis and examination of GdScO3 single crystals activated by Nd3+,” J. Appl. Spectrosc. 38(3), 343–348 (1983).
[Crossref]

Fornasiero, L.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Spectroscopic properties of Cr-doped Sc2O3,” J. Lumin. 87-89, 1122–1125 (2000).
[Crossref]

Freeouf, J. L.

G. Lucovsky, J. G. Hong, C. C. Fulton, Y. Zou, R. J. Nemanich, H. Ade, and J. L. Freeouf, “Spectroscopic studies of metal high-k dielectrics: transition metal oxides and silicates, and complex rare earth/transition metal oxides,” Phys. Status Solidi B 241(10), 2221–2235 (2004).
[Crossref]

G. Lucovsky, Y. Zhang, J. L. Whitten, D. G. Schlom, and J. L. Freeouf, “Separate and independent control of interfacial band alignments and dielectric constants in transition metal rare earth complex oxides,” Microelectron. Eng. 72(1-4), 288–293 (2004).
[Crossref]

Fulton, C. C.

G. Lucovsky, J. G. Hong, C. C. Fulton, Y. Zou, R. J. Nemanich, H. Ade, and J. L. Freeouf, “Spectroscopic studies of metal high-k dielectrics: transition metal oxides and silicates, and complex rare earth/transition metal oxides,” Phys. Status Solidi B 241(10), 2221–2235 (2004).
[Crossref]

Gath, D.

M. Gelder, D. Gath, and R. Mayou, “Oxford textbook of psychiatry,” Oxford university press (1989).

Gelder, M.

M. Gelder, D. Gath, and R. Mayou, “Oxford textbook of psychiatry,” Oxford university press (1989).

Güell, F.

I. Nikolov, X. Mateos, F. Güell, J. Massons, V. Nikolov, P. Peshev, and F. Dıaz, “Optical properties of Cr3+:NaAl(WO4)2 crystals, a new candidate for broadband laser applications,” Opt. Mater. 25(1), 53–58 (2004).
[Crossref]

Haeni, J. H.

J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, and A. K. Tagantsev, “Room-temperature ferroelectricity in strained SrTiO3,” Nature 430(7001), 758–761 (2004).
[Crossref]

D. G. Schlom and J. H. Haeni, “A thermodynamic approach to selecting alternative gate dielectrics,” MRS Bull. 27(3), 198–204 (2002).
[Crossref]

S. G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, and G. Lucovsky, “Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry,” J. Appl. Phys. 91(7), 4500–4505 (2002).
[Crossref]

Henderson, B.

K. P. O’donnell, A. Marshall, M. Yamaga, B. Henderson, and B. Cockayne, “Vibronic structure in the photoluminescence spectrum of Cr3+ ions in garnets,” J. Lumin. 42(6), 365–373 (1989).
[Crossref]

Heumann, E.

S. Kück, E. Heumann, T. Kärner, and A. Maaroos, “Continuous wave laser oscillation of Cr3+: MgO,” In Advanced Solid State Lasers p. PD6 (1999).

Hong, J. G.

G. Lucovsky, J. G. Hong, C. C. Fulton, Y. Zou, R. J. Nemanich, H. Ade, and J. L. Freeouf, “Spectroscopic studies of metal high-k dielectrics: transition metal oxides and silicates, and complex rare earth/transition metal oxides,” Phys. Status Solidi B 241(10), 2221–2235 (2004).
[Crossref]

Hu, Z.

X. Long, Z. Lin, Z. Hu, and G. Wang, “Polarized spectral characteristics and energy levels of Cr3+:LaSc3(BO3)4 crystal,” Chem. Phys. Lett. 392(1-3), 192–195 (2004).
[Crossref]

Huang, S.

H. M. Christen, G. E. Jellison Jr, I. Ohkubo, S. Huang, M. E. Reeves, E. Cicerrella, and D. G. Schlom, “Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior,” Appl. Phys. Lett. 88(26), 262906 (2006).
[Crossref]

Huang, Y.

G. Wang, Z. Lin, L. Zhang, Y. Huang, and G. Wang, “Spectral characterization and energy levels of Cr3+:Sc2(MoO4)3 crystal,” J. Lumin. 129(11), 1398–1400 (2009).
[Crossref]

Hubbard, K. J.

K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res. 11(11), 2757–2776 (1996).
[Crossref]

Huber, G.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Spectroscopic properties of Cr-doped Sc2O3,” J. Lumin. 87-89, 1122–1125 (2000).
[Crossref]

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B: Photophys. Laser Chem. 30(3), 117–120 (1983).
[Crossref]

Irvin, P.

J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, and A. K. Tagantsev, “Room-temperature ferroelectricity in strained SrTiO3,” Nature 430(7001), 758–761 (2004).
[Crossref]

Jackson, T. N.

S. G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, and G. Lucovsky, “Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry,” J. Appl. Phys. 91(7), 4500–4505 (2002).
[Crossref]

Jellison Jr, G. E.

H. M. Christen, G. E. Jellison Jr, I. Ohkubo, S. Huang, M. E. Reeves, E. Cicerrella, and D. G. Schlom, “Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior,” Appl. Phys. Lett. 88(26), 262906 (2006).
[Crossref]

Jia, C. L.

J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom, “Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110),” Appl. Phys. Lett. 82(20), 3460–3462 (2003).
[Crossref]

Jia, Y.

M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, and P. Reiche, “Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates,” Appl. Phys. Lett. 88(19), 192907 (2006).
[Crossref]

Jüstel, T.

B. Malysa, A. Meijerink, and T. Jüstel, “Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La),” J. Lumin. 202, 523–531 (2018).
[Crossref]

B. Malysa, A. Meijerink, W. Wu, and T. Jüstel, “On the influence of calcium substitution to the optical properties of Cr3+ doped SrSc2O4,” J. Lumin. 190, 234–241 (2017).
[Crossref]

Kahlenberg, V.

B. Veličkov, V. Kahlenberg, R. Bertram, and M. Bernhagen, “Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3,” Z. Kristallogr. 222(9), 466–473 (2007).
[Crossref]

Kärner, T.

S. Kück, E. Heumann, T. Kärner, and A. Maaroos, “Continuous wave laser oscillation of Cr3+: MgO,” In Advanced Solid State Lasers p. PD6 (1999).

Kenyon, P. T.

P. T. Kenyon, L. Andrews, B. McCollum, and A. Lempicki, “Tunable infrared solid state laser materials based on Cr3+ in low ligand fields,” IEEE J. Quantum Electron. 18(8), 1189–1197 (1982).
[Crossref]

Kevorkov, A. M.

S. N. Amanyan, P. A. Arsen’ev, K. S. Bagdasarov, A. M. Kevorkov, D. I. Korolev, A. V. Potemkin, and V. V. Femin, “Synthesis and examination of GdScO3 single crystals activated by Nd3+,” J. Appl. Spectrosc. 38(3), 343–348 (1983).
[Crossref]

Korolev, D. I.

S. N. Amanyan, P. A. Arsen’ev, K. S. Bagdasarov, A. M. Kevorkov, D. I. Korolev, A. V. Potemkin, and V. V. Femin, “Synthesis and examination of GdScO3 single crystals activated by Nd3+,” J. Appl. Spectrosc. 38(3), 343–348 (1983).
[Crossref]

Kriventsov, S.

S. G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, and G. Lucovsky, “Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry,” J. Appl. Phys. 91(7), 4500–4505 (2002).
[Crossref]

Krupke, W. F.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6: Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Kück, S.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Spectroscopic properties of Cr-doped Sc2O3,” J. Lumin. 87-89, 1122–1125 (2000).
[Crossref]

S. Kück, E. Heumann, T. Kärner, and A. Maaroos, “Continuous wave laser oscillation of Cr3+: MgO,” In Advanced Solid State Lasers p. PD6 (1999).

Laptev, V. V.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B: Photophys. Laser Chem. 30(3), 117–120 (1983).
[Crossref]

Lempicki, A.

P. T. Kenyon, L. Andrews, B. McCollum, and A. Lempicki, “Tunable infrared solid state laser materials based on Cr3+ in low ligand fields,” IEEE J. Quantum Electron. 18(8), 1189–1197 (1982).
[Crossref]

Li, Y. L.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, and L. Q. Chen, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref]

J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, and A. K. Tagantsev, “Room-temperature ferroelectricity in strained SrTiO3,” Nature 430(7001), 758–761 (2004).
[Crossref]

Lim, S. G.

S. G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, and G. Lucovsky, “Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry,” J. Appl. Phys. 91(7), 4500–4505 (2002).
[Crossref]

Lin, Z.

G. Wang, Z. Lin, L. Zhang, Y. Huang, and G. Wang, “Spectral characterization and energy levels of Cr3+:Sc2(MoO4)3 crystal,” J. Lumin. 129(11), 1398–1400 (2009).
[Crossref]

X. Long, Z. Lin, Z. Hu, and G. Wang, “Polarized spectral characteristics and energy levels of Cr3+:LaSc3(BO3)4 crystal,” Chem. Phys. Lett. 392(1-3), 192–195 (2004).
[Crossref]

Liu, W.

F. Peng, W. Liu, Q. Zhang, J. Luo, D. Sun, G. Sun, and X. Wang, “Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy:GdScO3,” J. Lumin. 201, 176–181 (2018).
[Crossref]

Long, X.

G. Wang, X. Long, L. Zhang, G. Wang, S. Polosan, and T. Tsuboi, “Spectroscopic characteristic and energy levels of Cr3+ in Cr3+:KAl(MoO4)2 crystal,” J. Lumin. 128(10), 1556–1560 (2008).
[Crossref]

X. Long, Z. Lin, Z. Hu, and G. Wang, “Polarized spectral characteristics and energy levels of Cr3+:LaSc3(BO3)4 crystal,” Chem. Phys. Lett. 392(1-3), 192–195 (2004).
[Crossref]

Lucovsky, G.

G. Lucovsky, Y. Zhang, J. L. Whitten, D. G. Schlom, and J. L. Freeouf, “Separate and independent control of interfacial band alignments and dielectric constants in transition metal rare earth complex oxides,” Microelectron. Eng. 72(1-4), 288–293 (2004).
[Crossref]

G. Lucovsky, J. G. Hong, C. C. Fulton, Y. Zou, R. J. Nemanich, H. Ade, and J. L. Freeouf, “Spectroscopic studies of metal high-k dielectrics: transition metal oxides and silicates, and complex rare earth/transition metal oxides,” Phys. Status Solidi B 241(10), 2221–2235 (2004).
[Crossref]

S. G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, and G. Lucovsky, “Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry,” J. Appl. Phys. 91(7), 4500–4505 (2002).
[Crossref]

Luo, J.

F. Peng, W. Liu, Q. Zhang, J. Luo, D. Sun, G. Sun, and X. Wang, “Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy:GdScO3,” J. Lumin. 201, 176–181 (2018).
[Crossref]

Maaroos, A.

S. Kück, E. Heumann, T. Kärner, and A. Maaroos, “Continuous wave laser oscillation of Cr3+: MgO,” In Advanced Solid State Lasers p. PD6 (1999).

Malysa, B.

B. Malysa, A. Meijerink, and T. Jüstel, “Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La),” J. Lumin. 202, 523–531 (2018).
[Crossref]

B. Malysa, A. Meijerink, W. Wu, and T. Jüstel, “On the influence of calcium substitution to the optical properties of Cr3+ doped SrSc2O4,” J. Lumin. 190, 234–241 (2017).
[Crossref]

Marshall, A.

K. P. O’donnell, A. Marshall, M. Yamaga, B. Henderson, and B. Cockayne, “Vibronic structure in the photoluminescence spectrum of Cr3+ ions in garnets,” J. Lumin. 42(6), 365–373 (1989).
[Crossref]

Massons, J.

I. Nikolov, X. Mateos, F. Güell, J. Massons, V. Nikolov, P. Peshev, and F. Dıaz, “Optical properties of Cr3+:NaAl(WO4)2 crystals, a new candidate for broadband laser applications,” Opt. Mater. 25(1), 53–58 (2004).
[Crossref]

Mateos, X.

I. Nikolov, X. Mateos, F. Güell, J. Massons, V. Nikolov, P. Peshev, and F. Dıaz, “Optical properties of Cr3+:NaAl(WO4)2 crystals, a new candidate for broadband laser applications,” Opt. Mater. 25(1), 53–58 (2004).
[Crossref]

Mayou, R.

M. Gelder, D. Gath, and R. Mayou, “Oxford textbook of psychiatry,” Oxford university press (1989).

McCollum, B.

P. T. Kenyon, L. Andrews, B. McCollum, and A. Lempicki, “Tunable infrared solid state laser materials based on Cr3+ in low ligand fields,” IEEE J. Quantum Electron. 18(8), 1189–1197 (1982).
[Crossref]

Meijerink, A.

B. Malysa, A. Meijerink, and T. Jüstel, “Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La),” J. Lumin. 202, 523–531 (2018).
[Crossref]

B. Malysa, A. Meijerink, W. Wu, and T. Jüstel, “On the influence of calcium substitution to the optical properties of Cr3+ doped SrSc2O4,” J. Lumin. 190, 234–241 (2017).
[Crossref]

Mix, E.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Spectroscopic properties of Cr-doped Sc2O3,” J. Lumin. 87-89, 1122–1125 (2000).
[Crossref]

Moncorgé, R.

R. Moncorgé, “Laser materials based on transition metal ions,” Opt. Mater. 63, 105–117 (2017).
[Crossref]

Nemanich, R. J.

G. Lucovsky, J. G. Hong, C. C. Fulton, Y. Zou, R. J. Nemanich, H. Ade, and J. L. Freeouf, “Spectroscopic studies of metal high-k dielectrics: transition metal oxides and silicates, and complex rare earth/transition metal oxides,” Phys. Status Solidi B 241(10), 2221–2235 (2004).
[Crossref]

Newkirk, H. W.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6: Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Nikolov, I.

I. Nikolov, X. Mateos, F. Güell, J. Massons, V. Nikolov, P. Peshev, and F. Dıaz, “Optical properties of Cr3+:NaAl(WO4)2 crystals, a new candidate for broadband laser applications,” Opt. Mater. 25(1), 53–58 (2004).
[Crossref]

Nikolov, V.

I. Nikolov, X. Mateos, F. Güell, J. Massons, V. Nikolov, P. Peshev, and F. Dıaz, “Optical properties of Cr3+:NaAl(WO4)2 crystals, a new candidate for broadband laser applications,” Opt. Mater. 25(1), 53–58 (2004).
[Crossref]

O’donnell, K. P.

K. P. O’donnell, A. Marshall, M. Yamaga, B. Henderson, and B. Cockayne, “Vibronic structure in the photoluminescence spectrum of Cr3+ ions in garnets,” J. Lumin. 42(6), 365–373 (1989).
[Crossref]

Ohkubo, I.

H. M. Christen, G. E. Jellison Jr, I. Ohkubo, S. Huang, M. E. Reeves, E. Cicerrella, and D. G. Schlom, “Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior,” Appl. Phys. Lett. 88(26), 262906 (2006).
[Crossref]

Payne, S. A.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6: Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Peng, F.

F. Peng, W. Liu, Q. Zhang, J. Luo, D. Sun, G. Sun, and X. Wang, “Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy:GdScO3,” J. Lumin. 201, 176–181 (2018).
[Crossref]

Peshev, P.

I. Nikolov, X. Mateos, F. Güell, J. Massons, V. Nikolov, P. Peshev, and F. Dıaz, “Optical properties of Cr3+:NaAl(WO4)2 crystals, a new candidate for broadband laser applications,” Opt. Mater. 25(1), 53–58 (2004).
[Crossref]

Petraru, A.

J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom, “Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110),” Appl. Phys. Lett. 82(20), 3460–3462 (2003).
[Crossref]

Polity, A.

R. Uecker, H. Wilke, D. G. Schlom, B. Velickov, P. Reiche, A. Polity, and M. Rossberg, “Spiral formation during Czochralski growth of rare-earth scandates,” J. Cryst. Growth 295(1), 84–91 (2006).
[Crossref]

Polosan, S.

G. Wang, X. Long, L. Zhang, G. Wang, S. Polosan, and T. Tsuboi, “Spectroscopic characteristic and energy levels of Cr3+ in Cr3+:KAl(MoO4)2 crystal,” J. Lumin. 128(10), 1556–1560 (2008).
[Crossref]

Potemkin, A. V.

S. N. Amanyan, P. A. Arsen’ev, K. S. Bagdasarov, A. M. Kevorkov, D. I. Korolev, A. V. Potemkin, and V. V. Femin, “Synthesis and examination of GdScO3 single crystals activated by Nd3+,” J. Appl. Spectrosc. 38(3), 343–348 (1983).
[Crossref]

Reeves, M. E.

H. M. Christen, G. E. Jellison Jr, I. Ohkubo, S. Huang, M. E. Reeves, E. Cicerrella, and D. G. Schlom, “Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior,” Appl. Phys. Lett. 88(26), 262906 (2006).
[Crossref]

Reiche, P.

M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, and P. Reiche, “Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates,” Appl. Phys. Lett. 88(19), 192907 (2006).
[Crossref]

R. Uecker, H. Wilke, D. G. Schlom, B. Velickov, P. Reiche, A. Polity, and M. Rossberg, “Spiral formation during Czochralski growth of rare-earth scandates,” J. Cryst. Growth 295(1), 84–91 (2006).
[Crossref]

J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, and A. K. Tagantsev, “Room-temperature ferroelectricity in strained SrTiO3,” Nature 430(7001), 758–761 (2004).
[Crossref]

J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom, “Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110),” Appl. Phys. Lett. 82(20), 3460–3462 (2003).
[Crossref]

Richter, P. W.

J. B. Clark, P. W. Richter, and L. Du Toit, “High-pressure synthesis of YScO3, HoScO3, ErScO3 and TmScO3, and a reevaluation of the lattice constants of the rare earth scandates,” J. Solid State Chem. 23(1-2), 129–134 (1978).
[Crossref]

Rossberg, M.

R. Uecker, H. Wilke, D. G. Schlom, B. Velickov, P. Reiche, A. Polity, and M. Rossberg, “Spiral formation during Czochralski growth of rare-earth scandates,” J. Cryst. Growth 295(1), 84–91 (2006).
[Crossref]

Schlom, D. G.

R. Uecker, H. Wilke, D. G. Schlom, B. Velickov, P. Reiche, A. Polity, and M. Rossberg, “Spiral formation during Czochralski growth of rare-earth scandates,” J. Cryst. Growth 295(1), 84–91 (2006).
[Crossref]

M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, and P. Reiche, “Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates,” Appl. Phys. Lett. 88(19), 192907 (2006).
[Crossref]

H. M. Christen, G. E. Jellison Jr, I. Ohkubo, S. Huang, M. E. Reeves, E. Cicerrella, and D. G. Schlom, “Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior,” Appl. Phys. Lett. 88(26), 262906 (2006).
[Crossref]

G. Lucovsky, Y. Zhang, J. L. Whitten, D. G. Schlom, and J. L. Freeouf, “Separate and independent control of interfacial band alignments and dielectric constants in transition metal rare earth complex oxides,” Microelectron. Eng. 72(1-4), 288–293 (2004).
[Crossref]

J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom, “Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110),” Appl. Phys. Lett. 82(20), 3460–3462 (2003).
[Crossref]

D. G. Schlom and J. H. Haeni, “A thermodynamic approach to selecting alternative gate dielectrics,” MRS Bull. 27(3), 198–204 (2002).
[Crossref]

S. G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, and G. Lucovsky, “Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry,” J. Appl. Phys. 91(7), 4500–4505 (2002).
[Crossref]

K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res. 11(11), 2757–2776 (1996).
[Crossref]

Schubert, J.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, and L. Q. Chen, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref]

J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom, “Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110),” Appl. Phys. Lett. 82(20), 3460–3462 (2003).
[Crossref]

Selzer, P.M.

W.M. Yen and P.M. Selzer, “High resolution laser spectroscopy of ions in crystals,” in Laser Spectroscopy of Solids (Springer, 1986), pp. 141–188.
[Crossref]

Sharan, A.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, and L. Q. Chen, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref]

Shcherbakov, I. A.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B: Photophys. Laser Chem. 30(3), 117–120 (1983).
[Crossref]

Sherman, V.

M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, and P. Reiche, “Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates,” Appl. Phys. Lett. 88(19), 192907 (2006).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6: Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Streiffer, S. K.

M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, and P. Reiche, “Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates,” Appl. Phys. Lett. 88(19), 192907 (2006).
[Crossref]

Struve, B.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B: Photophys. Laser Chem. 30(3), 117–120 (1983).
[Crossref]

Sugano, S.

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions II,” J. Phys. Soc. Jpn. 9(5), 766–779 (1954).
[Crossref]

Sun, D.

F. Peng, W. Liu, Q. Zhang, J. Luo, D. Sun, G. Sun, and X. Wang, “Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy:GdScO3,” J. Lumin. 201, 176–181 (2018).
[Crossref]

Sun, G.

F. Peng, W. Liu, Q. Zhang, J. Luo, D. Sun, G. Sun, and X. Wang, “Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy:GdScO3,” J. Lumin. 201, 176–181 (2018).
[Crossref]

Sviridova, R. K.

P. A. Arsenev, K. E. Bienert, and R. K. Sviridova, “Spectral properties of neodymium ions in the lattice of GdScO3 crystals,” Phys. Status Solidi A 9(2), K103–K104 (1972).
[Crossref]

Tagantsev, A. K.

J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, and A. K. Tagantsev, “Room-temperature ferroelectricity in strained SrTiO3,” Nature 430(7001), 758–761 (2004).
[Crossref]

Tanabe, Y.

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions II,” J. Phys. Soc. Jpn. 9(5), 766–779 (1954).
[Crossref]

Trithaveesak, O.

J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom, “Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110),” Appl. Phys. Lett. 82(20), 3460–3462 (2003).
[Crossref]

Trolier-McKinstry, S.

M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, and P. Reiche, “Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates,” Appl. Phys. Lett. 88(19), 192907 (2006).
[Crossref]

Tsuboi, T.

G. Wang, X. Long, L. Zhang, G. Wang, S. Polosan, and T. Tsuboi, “Spectroscopic characteristic and energy levels of Cr3+ in Cr3+:KAl(MoO4)2 crystal,” J. Lumin. 128(10), 1556–1560 (2008).
[Crossref]

Uecker, R.

R. Uecker, H. Wilke, D. G. Schlom, B. Velickov, P. Reiche, A. Polity, and M. Rossberg, “Spiral formation during Czochralski growth of rare-earth scandates,” J. Cryst. Growth 295(1), 84–91 (2006).
[Crossref]

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, and L. Q. Chen, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref]

J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, and A. K. Tagantsev, “Room-temperature ferroelectricity in strained SrTiO3,” Nature 430(7001), 758–761 (2004).
[Crossref]

J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom, “Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110),” Appl. Phys. Lett. 82(20), 3460–3462 (2003).
[Crossref]

Velickov, B.

B. Veličkov, V. Kahlenberg, R. Bertram, and M. Bernhagen, “Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3,” Z. Kristallogr. 222(9), 466–473 (2007).
[Crossref]

R. Uecker, H. Wilke, D. G. Schlom, B. Velickov, P. Reiche, A. Polity, and M. Rossberg, “Spiral formation during Czochralski growth of rare-earth scandates,” J. Cryst. Growth 295(1), 84–91 (2006).
[Crossref]

Wang, G.

G. Wang, Z. Lin, L. Zhang, Y. Huang, and G. Wang, “Spectral characterization and energy levels of Cr3+:Sc2(MoO4)3 crystal,” J. Lumin. 129(11), 1398–1400 (2009).
[Crossref]

G. Wang, Z. Lin, L. Zhang, Y. Huang, and G. Wang, “Spectral characterization and energy levels of Cr3+:Sc2(MoO4)3 crystal,” J. Lumin. 129(11), 1398–1400 (2009).
[Crossref]

G. Wang, X. Long, L. Zhang, G. Wang, S. Polosan, and T. Tsuboi, “Spectroscopic characteristic and energy levels of Cr3+ in Cr3+:KAl(MoO4)2 crystal,” J. Lumin. 128(10), 1556–1560 (2008).
[Crossref]

G. Wang, X. Long, L. Zhang, G. Wang, S. Polosan, and T. Tsuboi, “Spectroscopic characteristic and energy levels of Cr3+ in Cr3+:KAl(MoO4)2 crystal,” J. Lumin. 128(10), 1556–1560 (2008).
[Crossref]

X. Long, Z. Lin, Z. Hu, and G. Wang, “Polarized spectral characteristics and energy levels of Cr3+:LaSc3(BO3)4 crystal,” Chem. Phys. Lett. 392(1-3), 192–195 (2004).
[Crossref]

Wang, X.

F. Peng, W. Liu, Q. Zhang, J. Luo, D. Sun, G. Sun, and X. Wang, “Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy:GdScO3,” J. Lumin. 201, 176–181 (2018).
[Crossref]

Whitten, J. L.

G. Lucovsky, Y. Zhang, J. L. Whitten, D. G. Schlom, and J. L. Freeouf, “Separate and independent control of interfacial band alignments and dielectric constants in transition metal rare earth complex oxides,” Microelectron. Eng. 72(1-4), 288–293 (2004).
[Crossref]

Wilke, H.

R. Uecker, H. Wilke, D. G. Schlom, B. Velickov, P. Reiche, A. Polity, and M. Rossberg, “Spiral formation during Czochralski growth of rare-earth scandates,” J. Cryst. Growth 295(1), 84–91 (2006).
[Crossref]

Wu, W.

B. Malysa, A. Meijerink, W. Wu, and T. Jüstel, “On the influence of calcium substitution to the optical properties of Cr3+ doped SrSc2O4,” J. Lumin. 190, 234–241 (2017).
[Crossref]

Yamaga, M.

K. P. O’donnell, A. Marshall, M. Yamaga, B. Henderson, and B. Cockayne, “Vibronic structure in the photoluminescence spectrum of Cr3+ ions in garnets,” J. Lumin. 42(6), 365–373 (1989).
[Crossref]

Yen, W.M.

W.M. Yen and P.M. Selzer, “High resolution laser spectroscopy of ions in crystals,” in Laser Spectroscopy of Solids (Springer, 1986), pp. 141–188.
[Crossref]

Zhang, L.

G. Wang, Z. Lin, L. Zhang, Y. Huang, and G. Wang, “Spectral characterization and energy levels of Cr3+:Sc2(MoO4)3 crystal,” J. Lumin. 129(11), 1398–1400 (2009).
[Crossref]

G. Wang, X. Long, L. Zhang, G. Wang, S. Polosan, and T. Tsuboi, “Spectroscopic characteristic and energy levels of Cr3+ in Cr3+:KAl(MoO4)2 crystal,” J. Lumin. 128(10), 1556–1560 (2008).
[Crossref]

Zhang, Q.

F. Peng, W. Liu, Q. Zhang, J. Luo, D. Sun, G. Sun, and X. Wang, “Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy:GdScO3,” J. Lumin. 201, 176–181 (2018).
[Crossref]

Zhang, Y.

G. Lucovsky, Y. Zhang, J. L. Whitten, D. G. Schlom, and J. L. Freeouf, “Separate and independent control of interfacial band alignments and dielectric constants in transition metal rare earth complex oxides,” Microelectron. Eng. 72(1-4), 288–293 (2004).
[Crossref]

Zharikov, E. V.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B: Photophys. Laser Chem. 30(3), 117–120 (1983).
[Crossref]

Zou, Y.

G. Lucovsky, J. G. Hong, C. C. Fulton, Y. Zou, R. J. Nemanich, H. Ade, and J. L. Freeouf, “Spectroscopic studies of metal high-k dielectrics: transition metal oxides and silicates, and complex rare earth/transition metal oxides,” Phys. Status Solidi B 241(10), 2221–2235 (2004).
[Crossref]

Appl. Phys. B: Photophys. Laser Chem. (1)

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B: Photophys. Laser Chem. 30(3), 117–120 (1983).
[Crossref]

Appl. Phys. Lett. (3)

H. M. Christen, G. E. Jellison Jr, I. Ohkubo, S. Huang, M. E. Reeves, E. Cicerrella, and D. G. Schlom, “Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior,” Appl. Phys. Lett. 88(26), 262906 (2006).
[Crossref]

J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom, “Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110),” Appl. Phys. Lett. 82(20), 3460–3462 (2003).
[Crossref]

M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, and P. Reiche, “Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates,” Appl. Phys. Lett. 88(19), 192907 (2006).
[Crossref]

Chem. Phys. Lett. (1)

X. Long, Z. Lin, Z. Hu, and G. Wang, “Polarized spectral characteristics and energy levels of Cr3+:LaSc3(BO3)4 crystal,” Chem. Phys. Lett. 392(1-3), 192–195 (2004).
[Crossref]

IEEE J. Quantum Electron. (2)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6: Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

P. T. Kenyon, L. Andrews, B. McCollum, and A. Lempicki, “Tunable infrared solid state laser materials based on Cr3+ in low ligand fields,” IEEE J. Quantum Electron. 18(8), 1189–1197 (1982).
[Crossref]

J. Appl. Phys. (1)

S. G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, and G. Lucovsky, “Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry,” J. Appl. Phys. 91(7), 4500–4505 (2002).
[Crossref]

J. Appl. Spectrosc. (1)

S. N. Amanyan, P. A. Arsen’ev, K. S. Bagdasarov, A. M. Kevorkov, D. I. Korolev, A. V. Potemkin, and V. V. Femin, “Synthesis and examination of GdScO3 single crystals activated by Nd3+,” J. Appl. Spectrosc. 38(3), 343–348 (1983).
[Crossref]

J. Cryst. Growth (1)

R. Uecker, H. Wilke, D. G. Schlom, B. Velickov, P. Reiche, A. Polity, and M. Rossberg, “Spiral formation during Czochralski growth of rare-earth scandates,” J. Cryst. Growth 295(1), 84–91 (2006).
[Crossref]

J. Lumin. (7)

F. Peng, W. Liu, Q. Zhang, J. Luo, D. Sun, G. Sun, and X. Wang, “Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy:GdScO3,” J. Lumin. 201, 176–181 (2018).
[Crossref]

K. P. O’donnell, A. Marshall, M. Yamaga, B. Henderson, and B. Cockayne, “Vibronic structure in the photoluminescence spectrum of Cr3+ ions in garnets,” J. Lumin. 42(6), 365–373 (1989).
[Crossref]

G. Wang, X. Long, L. Zhang, G. Wang, S. Polosan, and T. Tsuboi, “Spectroscopic characteristic and energy levels of Cr3+ in Cr3+:KAl(MoO4)2 crystal,” J. Lumin. 128(10), 1556–1560 (2008).
[Crossref]

G. Wang, Z. Lin, L. Zhang, Y. Huang, and G. Wang, “Spectral characterization and energy levels of Cr3+:Sc2(MoO4)3 crystal,” J. Lumin. 129(11), 1398–1400 (2009).
[Crossref]

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Spectroscopic properties of Cr-doped Sc2O3,” J. Lumin. 87-89, 1122–1125 (2000).
[Crossref]

B. Malysa, A. Meijerink, and T. Jüstel, “Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La),” J. Lumin. 202, 523–531 (2018).
[Crossref]

B. Malysa, A. Meijerink, W. Wu, and T. Jüstel, “On the influence of calcium substitution to the optical properties of Cr3+ doped SrSc2O4,” J. Lumin. 190, 234–241 (2017).
[Crossref]

J. Mater. Res. (1)

K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res. 11(11), 2757–2776 (1996).
[Crossref]

J. Phys. Soc. Jpn. (1)

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions II,” J. Phys. Soc. Jpn. 9(5), 766–779 (1954).
[Crossref]

J. Solid State Chem. (1)

J. B. Clark, P. W. Richter, and L. Du Toit, “High-pressure synthesis of YScO3, HoScO3, ErScO3 and TmScO3, and a reevaluation of the lattice constants of the rare earth scandates,” J. Solid State Chem. 23(1-2), 129–134 (1978).
[Crossref]

Microelectron. Eng. (1)

G. Lucovsky, Y. Zhang, J. L. Whitten, D. G. Schlom, and J. L. Freeouf, “Separate and independent control of interfacial band alignments and dielectric constants in transition metal rare earth complex oxides,” Microelectron. Eng. 72(1-4), 288–293 (2004).
[Crossref]

MRS Bull. (1)

D. G. Schlom and J. H. Haeni, “A thermodynamic approach to selecting alternative gate dielectrics,” MRS Bull. 27(3), 198–204 (2002).
[Crossref]

Nature (1)

J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, and A. K. Tagantsev, “Room-temperature ferroelectricity in strained SrTiO3,” Nature 430(7001), 758–761 (2004).
[Crossref]

Opt. Mater. (2)

I. Nikolov, X. Mateos, F. Güell, J. Massons, V. Nikolov, P. Peshev, and F. Dıaz, “Optical properties of Cr3+:NaAl(WO4)2 crystals, a new candidate for broadband laser applications,” Opt. Mater. 25(1), 53–58 (2004).
[Crossref]

R. Moncorgé, “Laser materials based on transition metal ions,” Opt. Mater. 63, 105–117 (2017).
[Crossref]

Phys. Status Solidi A (1)

P. A. Arsenev, K. E. Bienert, and R. K. Sviridova, “Spectral properties of neodymium ions in the lattice of GdScO3 crystals,” Phys. Status Solidi A 9(2), K103–K104 (1972).
[Crossref]

Phys. Status Solidi B (1)

G. Lucovsky, J. G. Hong, C. C. Fulton, Y. Zou, R. J. Nemanich, H. Ade, and J. L. Freeouf, “Spectroscopic studies of metal high-k dielectrics: transition metal oxides and silicates, and complex rare earth/transition metal oxides,” Phys. Status Solidi B 241(10), 2221–2235 (2004).
[Crossref]

Science (1)

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, and L. Q. Chen, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004).
[Crossref]

Z. Kristallogr. (1)

B. Veličkov, V. Kahlenberg, R. Bertram, and M. Bernhagen, “Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3,” Z. Kristallogr. 222(9), 466–473 (2007).
[Crossref]

Other (3)

M. Gelder, D. Gath, and R. Mayou, “Oxford textbook of psychiatry,” Oxford university press (1989).

W.M. Yen and P.M. Selzer, “High resolution laser spectroscopy of ions in crystals,” in Laser Spectroscopy of Solids (Springer, 1986), pp. 141–188.
[Crossref]

S. Kück, E. Heumann, T. Kärner, and A. Maaroos, “Continuous wave laser oscillation of Cr3+: MgO,” In Advanced Solid State Lasers p. PD6 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Photographs of polished 0.1at.% Cr:GdScO3 (a) and 0.5at.% Cr:GdScO3 (b) crystals
Fig. 2.
Fig. 2. XRD patterns of Cr:GdScO3 single crystals.
Fig. 3.
Fig. 3. The unpolarized absorption spectra of Cr:GdScO3 crystals
Fig. 4.
Fig. 4. Tanabe Sugano diagram of Cr:GdScO3 crystals with the Dq/B ratio
Fig. 5.
Fig. 5. Emission spectra of Cr:GdScO3 crystals on 446 nm excitation at room temperature.
Fig. 6.
Fig. 6. The fluorescence decay curves of Cr:GdScO3 crystals at room temperature.

Tables (3)

Tables Icon

Table 1. The lattice parameters of the Cr:GdScO3 crystals.

Tables Icon

Table 2. Spectroscopic parameters of Cr3+ ions in various crystals. Dq is the crystal field splitting, B and C are the Racah parameters.

Tables Icon

Table 3. Spectral parameters and thermal conductivity of Cr:GdScO3 crystal and other Cr3+ doped materials.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η = C crystal C melt .
E ( 4 T 2 ) = 10 D q .
B D q = ( δ E D q ) 2 10 ( δ E D q ) 15 ( δ E D q 8 ) .
C = [ E ( 2 E ) 7.9 B + 1.8 B 2 D q ] / 3.05.
ω 2.25 E a [ 0.3456 / ( E a E e ) ] 1 / 2 .
E s = 2 S ω .
σ e = λ 2 4 π 2 τ f n 2 ν .