Abstract

Freeform optics can reduce the cost, weight, and size of advanced imaging systems, but it is challenging to manufacture the complex rotationally asymmetric surfaces to optical tolerances. To address the need for disruptive, high-precision sub-aperture forming and finishing techniques for freeform optics, we investigate an alternative, non-contact polishing methodology using femtosecond lasers, combining modeling, experiments, and demonstrations. Femtosecond-laser-based polishing of germanium was investigated using an experimentally-validated two-temperature model of laser/germanium interaction to guide the understanding and selection of laser parameters to achieve near-nonthermal ablation for polishing and figuring. For the first time to our knowledge, model-guided femtosecond laser polishing of germanium was successfully demonstrated, achieving precision material removal while maintaining single-digit nanometer optical surface quality. The demonstrated femtosecond-laser-based polishing technique lays the foundation for semiconductor optics polishing/fabrication using femtosecond lasers and opens a viable path for high-precision, complex sub-aperture optical polishing tasks on various materials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of a high-quality axicon by femtosecond laser ablation and CO2 laser polishing for quasi-Bessel beam generation

Simon Schwarz, Stefan Rung, Cemal Esen, and Ralf Hellmann
Opt. Express 26(18) 23287-23294 (2018)

Integrating two-temperature and classical heat accumulation models to predict femtosecond laser processing of silicon

Lauren L. Taylor, Ryan E. Scott, and Jie Qiao
Opt. Mater. Express 8(3) 648-658 (2018)

Model-based self-optimization method for form correction in the computer controlled bonnet polishing of optical freeform surfaces

Zhong-Chen Cao, Chi Fai Cheung, and Ming Yu Liu
Opt. Express 26(2) 2065-2078 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays,” Opt. Express 22(11), 13155–13163 (2014).
    [Crossref]
  2. G. W. Forbes, “Characterizing the shape of freeform optics,” Opt. Express 20(3), 2483–2499 (2012).
    [Crossref]
  3. F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. 62(2), 823–846 (2013).
    [Crossref]
  4. C. Miao, J. C. Lambropoulos, and S. D. Jacobs, “Process parameter effects on material removal in magnetorheological finishing of borosilicate glass,” Appl. Opt. 49(10), 1951–1963 (2010).
    [Crossref]
  5. D. Li, B. Wang, Z. Qiao, and X. Jiang, “Ultraprecision machining of microlens arrays with integrated on-machine surface metrology,” Opt. Express 27(1), 212–224 (2019).
    [Crossref]
  6. Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
    [Crossref]
  7. D. Li, N. Li, X. Su, K. Liu, P. Ji, and B. Wang, “Modelling of removal characteristics and surface morphology formation in capacitively coupled atmospheric pressure plasma processing of fused silica optics,” Opt. Mater. Express 9(4), 1893–1906 (2019).
    [Crossref]
  8. X. Su, P. Ji, K. Liu, D. Walker, G. Yu, H. Li, D. Li, and B. Wang, “Combined processing chain for freeform optics based on atmospheric pressure plasma processing and bonnet polishing,” Opt. Express 27(13), 17979–17992 (2019).
    [Crossref]
  9. T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 616(2-3), 147–156 (2010).
    [Crossref]
  10. H. Shahinian, M. Hassan, H. Cherukuri, and B. A. Mullany, “Fiber-based tools: material removal and mid-spatial frequency error reduction,” Appl. Opt. 56(29), 8266–8274 (2017).
    [Crossref]
  11. J. D. Owen, J. A. Shultz, T. J. Suleski, and M. A. Davies, “Error correction methodology for ultra-precision three-axis milling of freeform optics,” CIRP Ann. 66(1), 97–100 (2017).
    [Crossref]
  12. M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
    [Crossref]
  13. S. Heidrich, A. Richmann, P. Schmitz, E. Willenborg, K. Wissenbach, P. Loosen, and R. Poprawe, “Optics manufacturing by laser radiation,” Opt. Lasers Eng. 59, 34–40 (2014).
    [Crossref]
  14. T. L. Perry, D. Werschmoeller, X. Li, F. E. Pfefferkorn, and N. A. Duffie, “The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples,” J. Manuf. Sci. Eng. 131(3), 031002 (2009).
    [Crossref]
  15. E. V. Bordatchev, A. M. K. Hafiz, and O. R. Tutunea-Fatan, “Performance of laser polishing in finishing of metallic surfaces,” Int. J. Adv. Manuf. Technol. 73(1-4), 35–52 (2014).
    [Crossref]
  16. M. Vadali, C. Ma, N. A. Duffie, X. Li, and F. E. Pfefferkorn, “Effects of pulse duration on laser micro polishing,” J. Micro Nano-Manuf. 1(1), 011006 (2013).
    [Crossref]
  17. J. D. Morrow, J. Vockrodt, K. Klingbeil, and F. E. Pfefferkorn, “Predicting laser polishing outcomes at edge features,” J. Laser Appl. 29(1), 011703 (2017).
    [Crossref]
  18. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
    [Crossref]
  19. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
    [Crossref]
  20. R. M. Carter, J. Chen, J. D. Shephard, R. R. Thomson, and D. P. Hand, “Picosecond laser welding of similar and dissimilar materials,” Appl. Opt. 53(19), 4233–4238 (2014).
    [Crossref]
  21. Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
    [Crossref]
  22. B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
    [Crossref]
  23. J. Bliedtner, C. Schindler, M. Seiler, S. Wächter, M. Friedrich, and J. Giesecke, “Ultrashort pulse laser material processing,” Laser Tech. J. 13(5), 46–50 (2016).
    [Crossref]
  24. A. M. K. Hafiz, E. V. Bordatchev, and R. O. Tutunea-Fatan, “Experimental analysis of applicability of a picosecond laser for micro-polishing of micromilled Inconel 718 superalloy,” Int. J. Adv. Manuf. Technol. 70(9-12), 1963–1978 (2014).
    [Crossref]
  25. Y. D. Chen, W. J. Tsai, S. H. Liu, and J. B. Horng, “Picosecond laser pulse polishing of ASP23 steel,” Opt. Laser Technol. 107, 180–185 (2018).
    [Crossref]
  26. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
    [Crossref]
  27. B. Neuenschwander, B. Jaeggi, and M. Schmid, “From fs to sub-ns: dependence of the material removal rate on the pulse duration for metals,” Phys. Procedia 41, 794–801 (2013).
    [Crossref]
  28. L. L. Taylor, J. Qiao, and J. Qiao, “Optimization of femtosecond laser processing of silicon via numerical modeling,” Opt. Mater. Express 6(9), 2745–2758 (2016).
    [Crossref]
  29. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A: Mater. Sci. Process. 74(1), 19–25 (2002).
    [Crossref]
  30. L. L. Taylor, R. E. Scott, and J. Qiao, “Integrating two-temperature and classical heat accumulation models to predict femtosecond laser processing of silicon,” Opt. Mater. Express 8(3), 648–658 (2018).
    [Crossref]
  31. J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48(3-4), 501–509 (2005).
    [Crossref]
  32. H. M. Van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-um picosecond laser pulses,” Phys. Rev. B 35(15), 8166–8176 (1987).
    [Crossref]
  33. J. R. Rumble, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Press, 2018).
  34. J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
    [Crossref]
  35. Y. Gan and J. K. Chen, “Numerical analysis of ultrashort pulse laser-induced thermomechanical response of germanium thin films,” Nanoscale Microscale Thermophys. Eng. 16(4), 274–287 (2012).
    [Crossref]
  36. J. M. Liu, “Simple technique for measurements of pulsed gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref]
  37. D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
    [Crossref]
  38. J. Bauer, A. Lehmann, M. Ulitschka, Y. Li, and T. Arnold, “Finishing of metal optics by ion beam technologies,” Opt. Eng. 58(9), 1–12 (2019).
    [Crossref]
  39. I. F. Stowers, R. Komanduri, and E. D. Baird, “Review of precision surface generating processes and their potential application to the fabrication of large optical components,” Proc. SPIE 0966, 62 (1989).
    [Crossref]
  40. P. Stampfli and K. H. Bennemann, “Theory for the instability of the diamond structure of Si, Ge and C induced by a dense electron-hole plasma,” Phys. Rev. B 42(11), 7163–7173 (1990).
    [Crossref]
  41. K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, and D. von der Linde, “Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation,” Phys. Rev. B 58(18), R11805 (1998).
    [Crossref]
  42. J. A. Van Vechten, R. Tsu, and F. W. Saris, “Nonthermal pulsed laser annealing of Si; plasma annealing,” Phys. Lett. A 74(6), 422–426 (1979).
    [Crossref]
  43. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
    [Crossref]
  44. M. I. Gallant and H. M. van Driel, “Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium,” Phys. Rev. B 26(4), 2133–2146 (1982).
    [Crossref]
  45. J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
    [Crossref]
  46. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, 1959).
  47. S. C. Baker-Finch, K. R. McIntosh, D. Yan, K. C. Fong, and T. C. Kho, “Near-infrared free carrier absorption in heavily doped silicon,” J. Appl. Phys. 116(6), 063106 (2014).
    [Crossref]
  48. D. Agassi, “Phenomenological model for pisosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984).
    [Crossref]

2019 (4)

2018 (2)

2017 (3)

H. Shahinian, M. Hassan, H. Cherukuri, and B. A. Mullany, “Fiber-based tools: material removal and mid-spatial frequency error reduction,” Appl. Opt. 56(29), 8266–8274 (2017).
[Crossref]

J. D. Owen, J. A. Shultz, T. J. Suleski, and M. A. Davies, “Error correction methodology for ultra-precision three-axis milling of freeform optics,” CIRP Ann. 66(1), 97–100 (2017).
[Crossref]

J. D. Morrow, J. Vockrodt, K. Klingbeil, and F. E. Pfefferkorn, “Predicting laser polishing outcomes at edge features,” J. Laser Appl. 29(1), 011703 (2017).
[Crossref]

2016 (4)

L. L. Taylor, J. Qiao, and J. Qiao, “Optimization of femtosecond laser processing of silicon via numerical modeling,” Opt. Mater. Express 6(9), 2745–2758 (2016).
[Crossref]

D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

J. Bliedtner, C. Schindler, M. Seiler, S. Wächter, M. Friedrich, and J. Giesecke, “Ultrashort pulse laser material processing,” Laser Tech. J. 13(5), 46–50 (2016).
[Crossref]

2015 (2)

Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
[Crossref]

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

2014 (6)

S. Heidrich, A. Richmann, P. Schmitz, E. Willenborg, K. Wissenbach, P. Loosen, and R. Poprawe, “Optics manufacturing by laser radiation,” Opt. Lasers Eng. 59, 34–40 (2014).
[Crossref]

E. V. Bordatchev, A. M. K. Hafiz, and O. R. Tutunea-Fatan, “Performance of laser polishing in finishing of metallic surfaces,” Int. J. Adv. Manuf. Technol. 73(1-4), 35–52 (2014).
[Crossref]

A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays,” Opt. Express 22(11), 13155–13163 (2014).
[Crossref]

A. M. K. Hafiz, E. V. Bordatchev, and R. O. Tutunea-Fatan, “Experimental analysis of applicability of a picosecond laser for micro-polishing of micromilled Inconel 718 superalloy,” Int. J. Adv. Manuf. Technol. 70(9-12), 1963–1978 (2014).
[Crossref]

R. M. Carter, J. Chen, J. D. Shephard, R. R. Thomson, and D. P. Hand, “Picosecond laser welding of similar and dissimilar materials,” Appl. Opt. 53(19), 4233–4238 (2014).
[Crossref]

S. C. Baker-Finch, K. R. McIntosh, D. Yan, K. C. Fong, and T. C. Kho, “Near-infrared free carrier absorption in heavily doped silicon,” J. Appl. Phys. 116(6), 063106 (2014).
[Crossref]

2013 (4)

B. Neuenschwander, B. Jaeggi, and M. Schmid, “From fs to sub-ns: dependence of the material removal rate on the pulse duration for metals,” Phys. Procedia 41, 794–801 (2013).
[Crossref]

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. 62(2), 823–846 (2013).
[Crossref]

Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
[Crossref]

M. Vadali, C. Ma, N. A. Duffie, X. Li, and F. E. Pfefferkorn, “Effects of pulse duration on laser micro polishing,” J. Micro Nano-Manuf. 1(1), 011006 (2013).
[Crossref]

2012 (3)

G. W. Forbes, “Characterizing the shape of freeform optics,” Opt. Express 20(3), 2483–2499 (2012).
[Crossref]

Y. Gan and J. K. Chen, “Numerical analysis of ultrashort pulse laser-induced thermomechanical response of germanium thin films,” Nanoscale Microscale Thermophys. Eng. 16(4), 274–287 (2012).
[Crossref]

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[Crossref]

2011 (1)

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

2010 (2)

C. Miao, J. C. Lambropoulos, and S. D. Jacobs, “Process parameter effects on material removal in magnetorheological finishing of borosilicate glass,” Appl. Opt. 49(10), 1951–1963 (2010).
[Crossref]

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 616(2-3), 147–156 (2010).
[Crossref]

2009 (1)

T. L. Perry, D. Werschmoeller, X. Li, F. E. Pfefferkorn, and N. A. Duffie, “The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples,” J. Manuf. Sci. Eng. 131(3), 031002 (2009).
[Crossref]

2006 (1)

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

2005 (1)

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48(3-4), 501–509 (2005).
[Crossref]

2002 (2)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A: Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref]

2001 (1)

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

1998 (1)

K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, and D. von der Linde, “Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation,” Phys. Rev. B 58(18), R11805 (1998).
[Crossref]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

1990 (1)

P. Stampfli and K. H. Bennemann, “Theory for the instability of the diamond structure of Si, Ge and C induced by a dense electron-hole plasma,” Phys. Rev. B 42(11), 7163–7173 (1990).
[Crossref]

1989 (1)

I. F. Stowers, R. Komanduri, and E. D. Baird, “Review of precision surface generating processes and their potential application to the fabrication of large optical components,” Proc. SPIE 0966, 62 (1989).
[Crossref]

1987 (1)

H. M. Van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-um picosecond laser pulses,” Phys. Rev. B 35(15), 8166–8176 (1987).
[Crossref]

1984 (1)

D. Agassi, “Phenomenological model for pisosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984).
[Crossref]

1982 (2)

M. I. Gallant and H. M. van Driel, “Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium,” Phys. Rev. B 26(4), 2133–2146 (1982).
[Crossref]

J. M. Liu, “Simple technique for measurements of pulsed gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
[Crossref]

1979 (1)

J. A. Van Vechten, R. Tsu, and F. W. Saris, “Nonthermal pulsed laser annealing of Si; plasma annealing,” Phys. Lett. A 74(6), 422–426 (1979).
[Crossref]

Agassi, D.

D. Agassi, “Phenomenological model for pisosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984).
[Crossref]

Arnold, T.

J. Bauer, A. Lehmann, M. Ulitschka, Y. Li, and T. Arnold, “Finishing of metal optics by ion beam technologies,” Opt. Eng. 58(9), 1–12 (2019).
[Crossref]

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 616(2-3), 147–156 (2010).
[Crossref]

Audebert, P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Austin, D. R.

D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
[Crossref]

Bachelier, G.

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

Baird, E. D.

I. F. Stowers, R. Komanduri, and E. D. Baird, “Review of precision surface generating processes and their potential application to the fabrication of large optical components,” Proc. SPIE 0966, 62 (1989).
[Crossref]

Baker-Finch, S. C.

S. C. Baker-Finch, K. R. McIntosh, D. Yan, K. C. Fong, and T. C. Kho, “Near-infrared free carrier absorption in heavily doped silicon,” J. Appl. Phys. 116(6), 063106 (2014).
[Crossref]

Balcou, Ph.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Bass, I. L.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A: Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Bauer, A.

Bauer, J.

J. Bauer, A. Lehmann, M. Ulitschka, Y. Li, and T. Arnold, “Finishing of metal optics by ion beam technologies,” Opt. Eng. 58(9), 1–12 (2019).
[Crossref]

Bennemann, K. H.

P. Stampfli and K. H. Bennemann, “Theory for the instability of the diamond structure of Si, Ge and C induced by a dense electron-hole plasma,” Phys. Rev. B 42(11), 7163–7173 (1990).
[Crossref]

Beraun, J. E.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48(3-4), 501–509 (2005).
[Crossref]

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, and D. von der Linde, “Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation,” Phys. Rev. B 58(18), R11805 (1998).
[Crossref]

Bian, H.

Blaga, C. I.

D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
[Crossref]

Bliedtner, J.

J. Bliedtner, C. Schindler, M. Seiler, S. Wächter, M. Friedrich, and J. Giesecke, “Ultrashort pulse laser material processing,” Laser Tech. J. 13(5), 46–50 (2016).
[Crossref]

Böhm, G.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 616(2-3), 147–156 (2010).
[Crossref]

Boing, M.

K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, and D. von der Linde, “Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation,” Phys. Rev. B 58(18), R11805 (1998).
[Crossref]

Bonse, J.

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A: Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Bordatchev, E. V.

A. M. K. Hafiz, E. V. Bordatchev, and R. O. Tutunea-Fatan, “Experimental analysis of applicability of a picosecond laser for micro-polishing of micromilled Inconel 718 superalloy,” Int. J. Adv. Manuf. Technol. 70(9-12), 1963–1978 (2014).
[Crossref]

E. V. Bordatchev, A. M. K. Hafiz, and O. R. Tutunea-Fatan, “Performance of laser polishing in finishing of metallic surfaces,” Int. J. Adv. Manuf. Technol. 73(1-4), 35–52 (2014).
[Crossref]

Bruno, T. J.

J. R. Rumble, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Press, 2018).

Carslaw, H. S.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, 1959).

Carter, R. M.

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, and D. von der Linde, “Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation,” Phys. Rev. B 58(18), R11805 (1998).
[Crossref]

Chen, F.

Chen, J.

Chen, J. K.

Y. Gan and J. K. Chen, “Numerical analysis of ultrashort pulse laser-induced thermomechanical response of germanium thin films,” Nanoscale Microscale Thermophys. Eng. 16(4), 274–287 (2012).
[Crossref]

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48(3-4), 501–509 (2005).
[Crossref]

Chen, Y. D.

Y. D. Chen, W. J. Tsai, S. H. Liu, and J. B. Horng, “Picosecond laser pulse polishing of ASP23 steel,” Opt. Laser Technol. 107, 180–185 (2018).
[Crossref]

Cherukuri, H.

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Chowdhury, E. A.

D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
[Crossref]

Davies, M. A.

J. D. Owen, J. A. Shultz, T. J. Suleski, and M. A. Davies, “Error correction methodology for ultra-precision three-axis milling of freeform optics,” CIRP Ann. 66(1), 97–100 (2017).
[Crossref]

de Loor, R.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Deng, Z.

DiMauro, L. F.

D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
[Crossref]

Duffie, N. A.

M. Vadali, C. Ma, N. A. Duffie, X. Li, and F. E. Pfefferkorn, “Effects of pulse duration on laser micro polishing,” J. Micro Nano-Manuf. 1(1), 011006 (2013).
[Crossref]

T. L. Perry, D. Werschmoeller, X. Li, F. E. Pfefferkorn, and N. A. Duffie, “The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples,” J. Manuf. Sci. Eng. 131(3), 031002 (2009).
[Crossref]

Eaton, S. M.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

Elhadj, S.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Evans, C.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. 62(2), 823–846 (2013).
[Crossref]

Fang, F. Z.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. 62(2), 823–846 (2013).
[Crossref]

Fechner, R.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 616(2-3), 147–156 (2010).
[Crossref]

Fong, K. C.

S. C. Baker-Finch, K. R. McIntosh, D. Yan, K. C. Fong, and T. C. Kho, “Near-infrared free carrier absorption in heavily doped silicon,” J. Appl. Phys. 116(6), 063106 (2014).
[Crossref]

Forbes, G. W.

Forster, E.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Foss, S. E.

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[Crossref]

Fourmaux, S.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Friedrich, M.

J. Bliedtner, C. Schindler, M. Seiler, S. Wächter, M. Friedrich, and J. Giesecke, “Ultrashort pulse laser material processing,” Laser Tech. J. 13(5), 46–50 (2016).
[Crossref]

Frost, F.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 616(2-3), 147–156 (2010).
[Crossref]

Gallant, M. I.

M. I. Gallant and H. M. van Driel, “Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium,” Phys. Rev. B 26(4), 2133–2146 (1982).
[Crossref]

Gan, Y.

Y. Gan and J. K. Chen, “Numerical analysis of ultrashort pulse laser-induced thermomechanical response of germanium thin films,” Nanoscale Microscale Thermophys. Eng. 16(4), 274–287 (2012).
[Crossref]

Gauthier, J. C.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Geindre, J. P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Giesecke, J.

J. Bliedtner, C. Schindler, M. Seiler, S. Wächter, M. Friedrich, and J. Giesecke, “Ultrashort pulse laser material processing,” Laser Tech. J. 13(5), 46–50 (2016).
[Crossref]

Grillon, G.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Guss, G.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Hafiz, A. M. K.

A. M. K. Hafiz, E. V. Bordatchev, and R. O. Tutunea-Fatan, “Experimental analysis of applicability of a picosecond laser for micro-polishing of micromilled Inconel 718 superalloy,” Int. J. Adv. Manuf. Technol. 70(9-12), 1963–1978 (2014).
[Crossref]

E. V. Bordatchev, A. M. K. Hafiz, and O. R. Tutunea-Fatan, “Performance of laser polishing in finishing of metallic surfaces,” Int. J. Adv. Manuf. Technol. 73(1-4), 35–52 (2014).
[Crossref]

Hand, D. P.

Hänsel, T.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 616(2-3), 147–156 (2010).
[Crossref]

Hassan, M.

Heidrich, S.

S. Heidrich, A. Richmann, P. Schmitz, E. Willenborg, K. Wissenbach, P. Loosen, and R. Poprawe, “Optics manufacturing by laser radiation,” Opt. Lasers Eng. 59, 34–40 (2014).
[Crossref]

Herman, P. R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

Horng, J. B.

Y. D. Chen, W. J. Tsai, S. H. Liu, and J. B. Horng, “Picosecond laser pulse polishing of ASP23 steel,” Opt. Laser Technol. 107, 180–185 (2018).
[Crossref]

Hou, X.

Hulin, D.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Jacobs, S. D.

Jaeger, J. C.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, 1959).

Jaeggi, B.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

B. Neuenschwander, B. Jaeggi, and M. Schmid, “From fs to sub-ns: dependence of the material removal rate on the pulse duration for metals,” Phys. Procedia 41, 794–801 (2013).
[Crossref]

Ji, P.

Jiang, X.

Kafka, K. R. P.

D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
[Crossref]

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A: Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Kho, T. C.

S. C. Baker-Finch, K. R. McIntosh, D. Yan, K. C. Fong, and T. C. Kho, “Near-infrared free carrier absorption in heavily doped silicon,” J. Appl. Phys. 116(6), 063106 (2014).
[Crossref]

Klingbeil, K.

J. D. Morrow, J. Vockrodt, K. Klingbeil, and F. E. Pfefferkorn, “Predicting laser polishing outcomes at edge features,” J. Laser Appl. 29(1), 011703 (2017).
[Crossref]

Komanduri, R.

I. F. Stowers, R. Komanduri, and E. D. Baird, “Review of precision surface generating processes and their potential application to the fabrication of large optical components,” Proc. SPIE 0966, 62 (1989).
[Crossref]

Krüger, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A: Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Lai, Y. H.

D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
[Crossref]

Lambropoulos, J. C.

Lehmann, A.

J. Bauer, A. Lehmann, M. Ulitschka, Y. Li, and T. Arnold, “Finishing of metal optics by ion beam technologies,” Opt. Eng. 58(9), 1–12 (2019).
[Crossref]

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A: Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Li, D.

Li, H.

X. Su, P. Ji, K. Liu, D. Walker, G. Yu, H. Li, D. Li, and B. Wang, “Combined processing chain for freeform optics based on atmospheric pressure plasma processing and bonnet polishing,” Opt. Express 27(13), 17979–17992 (2019).
[Crossref]

D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
[Crossref]

Li, N.

Li, X.

M. Vadali, C. Ma, N. A. Duffie, X. Li, and F. E. Pfefferkorn, “Effects of pulse duration on laser micro polishing,” J. Micro Nano-Manuf. 1(1), 011006 (2013).
[Crossref]

T. L. Perry, D. Werschmoeller, X. Li, F. E. Pfefferkorn, and N. A. Duffie, “The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples,” J. Manuf. Sci. Eng. 131(3), 031002 (2009).
[Crossref]

Li, Y.

J. Bauer, A. Lehmann, M. Ulitschka, Y. Li, and T. Arnold, “Finishing of metal optics by ion beam technologies,” Opt. Eng. 58(9), 1–12 (2019).
[Crossref]

Lide, D. R.

J. R. Rumble, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Press, 2018).

Liu, J. M.

Liu, K.

Liu, Q.

Liu, S. H.

Y. D. Chen, W. J. Tsai, S. H. Liu, and J. B. Horng, “Picosecond laser pulse polishing of ASP23 steel,” Opt. Laser Technol. 107, 180–185 (2018).
[Crossref]

Loosen, P.

S. Heidrich, A. Richmann, P. Schmitz, E. Willenborg, K. Wissenbach, P. Loosen, and R. Poprawe, “Optics manufacturing by laser radiation,” Opt. Lasers Eng. 59, 34–40 (2014).
[Crossref]

Luo, D.

Ma, C.

M. Vadali, C. Ma, N. A. Duffie, X. Li, and F. E. Pfefferkorn, “Effects of pulse duration on laser micro polishing,” J. Micro Nano-Manuf. 1(1), 011006 (2013).
[Crossref]

Markovic, V.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Matthews, M. J.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Mazur, E.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref]

McIntosh, K. R.

S. C. Baker-Finch, K. R. McIntosh, D. Yan, K. C. Fong, and T. C. Kho, “Near-infrared free carrier absorption in heavily doped silicon,” J. Appl. Phys. 116(6), 063106 (2014).
[Crossref]

Meister, J.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 616(2-3), 147–156 (2010).
[Crossref]

Meng, X.

Miao, C.

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Morrow, J. D.

J. D. Morrow, J. Vockrodt, K. Klingbeil, and F. E. Pfefferkorn, “Predicting laser polishing outcomes at edge features,” J. Laser Appl. 29(1), 011703 (2017).
[Crossref]

Mullany, B. A.

Neuenschwander, B.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

B. Neuenschwander, B. Jaeggi, and M. Schmid, “From fs to sub-ns: dependence of the material removal rate on the pulse duration for metals,” Phys. Procedia 41, 794–801 (2013).
[Crossref]

Ng, M. L.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

Nickel, A.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 616(2-3), 147–156 (2010).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Nostrand, M. C.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Osellame, R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

Owen, J. D.

J. D. Owen, J. A. Shultz, T. J. Suleski, and M. A. Davies, “Error correction methodology for ultra-precision three-axis milling of freeform optics,” CIRP Ann. 66(1), 97–100 (2017).
[Crossref]

Penning, L.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Perry, T. L.

T. L. Perry, D. Werschmoeller, X. Li, F. E. Pfefferkorn, and N. A. Duffie, “The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples,” J. Manuf. Sci. Eng. 131(3), 031002 (2009).
[Crossref]

Pfefferkorn, F. E.

J. D. Morrow, J. Vockrodt, K. Klingbeil, and F. E. Pfefferkorn, “Predicting laser polishing outcomes at edge features,” J. Laser Appl. 29(1), 011703 (2017).
[Crossref]

M. Vadali, C. Ma, N. A. Duffie, X. Li, and F. E. Pfefferkorn, “Effects of pulse duration on laser micro polishing,” J. Micro Nano-Manuf. 1(1), 011006 (2013).
[Crossref]

T. L. Perry, D. Werschmoeller, X. Li, F. E. Pfefferkorn, and N. A. Duffie, “The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples,” J. Manuf. Sci. Eng. 131(3), 031002 (2009).
[Crossref]

Poprawe, R.

S. Heidrich, A. Richmann, P. Schmitz, E. Willenborg, K. Wissenbach, P. Loosen, and R. Poprawe, “Optics manufacturing by laser radiation,” Opt. Lasers Eng. 59, 34–40 (2014).
[Crossref]

Qiao, J.

Qiao, Z.

Raman, R. N.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Resan, B.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Richmann, A.

S. Heidrich, A. Richmann, P. Schmitz, E. Willenborg, K. Wissenbach, P. Loosen, and R. Poprawe, “Optics manufacturing by laser radiation,” Opt. Lasers Eng. 59, 34–40 (2014).
[Crossref]

Rischel, C.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Rolland, J. P.

Rousse, A.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Rumble, J. R.

J. R. Rumble, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Press, 2018).

Saris, F. W.

J. A. Van Vechten, R. Tsu, and F. W. Saris, “Nonthermal pulsed laser annealing of Si; plasma annealing,” Phys. Lett. A 74(6), 422–426 (1979).
[Crossref]

Schindler, A.

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 616(2-3), 147–156 (2010).
[Crossref]

Schindler, C.

J. Bliedtner, C. Schindler, M. Seiler, S. Wächter, M. Friedrich, and J. Giesecke, “Ultrashort pulse laser material processing,” Laser Tech. J. 13(5), 46–50 (2016).
[Crossref]

Schmid, M.

B. Neuenschwander, B. Jaeggi, and M. Schmid, “From fs to sub-ns: dependence of the material removal rate on the pulse duration for metals,” Phys. Procedia 41, 794–801 (2013).
[Crossref]

Schmitz, P.

S. Heidrich, A. Richmann, P. Schmitz, E. Willenborg, K. Wissenbach, P. Loosen, and R. Poprawe, “Optics manufacturing by laser radiation,” Opt. Lasers Eng. 59, 34–40 (2014).
[Crossref]

Scott, R. E.

Sebban, S.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Seiler, M.

J. Bliedtner, C. Schindler, M. Seiler, S. Wächter, M. Friedrich, and J. Giesecke, “Ultrashort pulse laser material processing,” Laser Tech. J. 13(5), 46–50 (2016).
[Crossref]

Shahinian, H.

Shan, C.

Shen, N.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Shephard, J. D.

Shultz, J. A.

J. D. Owen, J. A. Shultz, T. J. Suleski, and M. A. Davies, “Error correction methodology for ultra-precision three-axis milling of freeform optics,” CIRP Ann. 66(1), 97–100 (2017).
[Crossref]

Siegel, J.

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, and D. von der Linde, “Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation,” Phys. Rev. B 58(18), R11805 (1998).
[Crossref]

Solis, J.

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

Stampfli, P.

P. Stampfli and K. H. Bennemann, “Theory for the instability of the diamond structure of Si, Ge and C induced by a dense electron-hole plasma,” Phys. Rev. B 42(11), 7163–7173 (1990).
[Crossref]

Stowers, I. F.

I. F. Stowers, R. Komanduri, and E. D. Baird, “Review of precision surface generating processes and their potential application to the fabrication of large optical components,” Proc. SPIE 0966, 62 (1989).
[Crossref]

Su, X.

Suleski, T. J.

J. D. Owen, J. A. Shultz, T. J. Suleski, and M. A. Davies, “Error correction methodology for ultra-precision three-axis milling of freeform optics,” CIRP Ann. 66(1), 97–100 (2017).
[Crossref]

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref]

Taylor, L. L.

Thomson, R. R.

Thorstensen, J.

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[Crossref]

Tsai, W. J.

Y. D. Chen, W. J. Tsai, S. H. Liu, and J. B. Horng, “Picosecond laser pulse polishing of ASP23 steel,” Opt. Laser Technol. 107, 180–185 (2018).
[Crossref]

Tsu, R.

J. A. Van Vechten, R. Tsu, and F. W. Saris, “Nonthermal pulsed laser annealing of Si; plasma annealing,” Phys. Lett. A 74(6), 422–426 (1979).
[Crossref]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Tutunea-Fatan, O. R.

E. V. Bordatchev, A. M. K. Hafiz, and O. R. Tutunea-Fatan, “Performance of laser polishing in finishing of metallic surfaces,” Int. J. Adv. Manuf. Technol. 73(1-4), 35–52 (2014).
[Crossref]

Tutunea-Fatan, R. O.

A. M. K. Hafiz, E. V. Bordatchev, and R. O. Tutunea-Fatan, “Experimental analysis of applicability of a picosecond laser for micro-polishing of micromilled Inconel 718 superalloy,” Int. J. Adv. Manuf. Technol. 70(9-12), 1963–1978 (2014).
[Crossref]

Tzou, D. Y.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48(3-4), 501–509 (2005).
[Crossref]

Ulitschka, M.

J. Bauer, A. Lehmann, M. Ulitschka, Y. Li, and T. Arnold, “Finishing of metal optics by ion beam technologies,” Opt. Eng. 58(9), 1–12 (2019).
[Crossref]

Uschmann, I.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Vadali, M.

M. Vadali, C. Ma, N. A. Duffie, X. Li, and F. E. Pfefferkorn, “Effects of pulse duration on laser micro polishing,” J. Micro Nano-Manuf. 1(1), 011006 (2013).
[Crossref]

Van Driel, H. M.

H. M. Van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-um picosecond laser pulses,” Phys. Rev. B 35(15), 8166–8176 (1987).
[Crossref]

M. I. Gallant and H. M. van Driel, “Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium,” Phys. Rev. B 26(4), 2133–2146 (1982).
[Crossref]

Van Vechten, J. A.

J. A. Van Vechten, R. Tsu, and F. W. Saris, “Nonthermal pulsed laser annealing of Si; plasma annealing,” Phys. Lett. A 74(6), 422–426 (1979).
[Crossref]

Vockrodt, J.

J. D. Morrow, J. Vockrodt, K. Klingbeil, and F. E. Pfefferkorn, “Predicting laser polishing outcomes at edge features,” J. Laser Appl. 29(1), 011703 (2017).
[Crossref]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, and D. von der Linde, “Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation,” Phys. Rev. B 58(18), R11805 (1998).
[Crossref]

Wächter, S.

J. Bliedtner, C. Schindler, M. Seiler, S. Wächter, M. Friedrich, and J. Giesecke, “Ultrashort pulse laser material processing,” Laser Tech. J. 13(5), 46–50 (2016).
[Crossref]

Walker, D.

Wang, B.

Wang, Z.

D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
[Crossref]

Weckenmann, A.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. 62(2), 823–846 (2013).
[Crossref]

Wegner, P. J.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Weingarten, K.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Werschmoeller, D.

T. L. Perry, D. Werschmoeller, X. Li, F. E. Pfefferkorn, and N. A. Duffie, “The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples,” J. Manuf. Sci. Eng. 131(3), 031002 (2009).
[Crossref]

Willenborg, E.

S. Heidrich, A. Richmann, P. Schmitz, E. Willenborg, K. Wissenbach, P. Loosen, and R. Poprawe, “Optics manufacturing by laser radiation,” Opt. Lasers Eng. 59, 34–40 (2014).
[Crossref]

Wissenbach, K.

S. Heidrich, A. Richmann, P. Schmitz, E. Willenborg, K. Wissenbach, P. Loosen, and R. Poprawe, “Optics manufacturing by laser radiation,” Opt. Lasers Eng. 59, 34–40 (2014).
[Crossref]

Yan, D.

S. C. Baker-Finch, K. R. McIntosh, D. Yan, K. C. Fong, and T. C. Kho, “Near-infrared free carrier absorption in heavily doped silicon,” J. Appl. Phys. 116(6), 063106 (2014).
[Crossref]

Yang, Q.

Yang, S. T.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Yi, A. Y.

D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
[Crossref]

Yong, J.

Yu, G.

Zhang, G. X.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. 62(2), 823–846 (2013).
[Crossref]

Zhang, K.

D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
[Crossref]

Zhang, X. D.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. 62(2), 823–846 (2013).
[Crossref]

Zhou, X.

Zhu, Z.

Zimmermannn, M.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Adv. Eng. Mater. (1)

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. A (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A: Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

CIRP Ann. (2)

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. 62(2), 823–846 (2013).
[Crossref]

J. D. Owen, J. A. Shultz, T. J. Suleski, and M. A. Davies, “Error correction methodology for ultra-precision three-axis milling of freeform optics,” CIRP Ann. 66(1), 97–100 (2017).
[Crossref]

Int. J. Adv. Manuf. Technol. (2)

E. V. Bordatchev, A. M. K. Hafiz, and O. R. Tutunea-Fatan, “Performance of laser polishing in finishing of metallic surfaces,” Int. J. Adv. Manuf. Technol. 73(1-4), 35–52 (2014).
[Crossref]

A. M. K. Hafiz, E. V. Bordatchev, and R. O. Tutunea-Fatan, “Experimental analysis of applicability of a picosecond laser for micro-polishing of micromilled Inconel 718 superalloy,” Int. J. Adv. Manuf. Technol. 70(9-12), 1963–1978 (2014).
[Crossref]

Int. J. Heat Mass Transfer (1)

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48(3-4), 501–509 (2005).
[Crossref]

J. Appl. Phys. (4)

D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, K. Zhang, H. Li, C. I. Blaga, A. Y. Yi, L. F. DiMauro, and E. A. Chowdhury, “High spatial frequency laser induced periodic surface structure formation in germanium under strong mid-IR fields,” J. Appl. Phys. 120(14), 143103 (2016).
[Crossref]

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[Crossref]

S. C. Baker-Finch, K. R. McIntosh, D. Yan, K. C. Fong, and T. C. Kho, “Near-infrared free carrier absorption in heavily doped silicon,” J. Appl. Phys. 116(6), 063106 (2014).
[Crossref]

D. Agassi, “Phenomenological model for pisosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984).
[Crossref]

J. Laser Appl. (2)

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

J. D. Morrow, J. Vockrodt, K. Klingbeil, and F. E. Pfefferkorn, “Predicting laser polishing outcomes at edge features,” J. Laser Appl. 29(1), 011703 (2017).
[Crossref]

J. Manuf. Sci. Eng. (1)

T. L. Perry, D. Werschmoeller, X. Li, F. E. Pfefferkorn, and N. A. Duffie, “The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples,” J. Manuf. Sci. Eng. 131(3), 031002 (2009).
[Crossref]

J. Micro Nano-Manuf. (1)

M. Vadali, C. Ma, N. A. Duffie, X. Li, and F. E. Pfefferkorn, “Effects of pulse duration on laser micro polishing,” J. Micro Nano-Manuf. 1(1), 011006 (2013).
[Crossref]

J. Non-Cryst. Solids (1)

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

Laser Tech. J. (1)

J. Bliedtner, C. Schindler, M. Seiler, S. Wächter, M. Friedrich, and J. Giesecke, “Ultrashort pulse laser material processing,” Laser Tech. J. 13(5), 46–50 (2016).
[Crossref]

Nanoscale Microscale Thermophys. Eng. (1)

Y. Gan and J. K. Chen, “Numerical analysis of ultrashort pulse laser-induced thermomechanical response of germanium thin films,” Nanoscale Microscale Thermophys. Eng. 16(4), 274–287 (2012).
[Crossref]

Nat. Mater. (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref]

Nature (1)

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, , Ph. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. A (1)

T. Arnold, G. Böhm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hänsel, and A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 616(2-3), 147–156 (2010).
[Crossref]

Opt. Eng. (1)

J. Bauer, A. Lehmann, M. Ulitschka, Y. Li, and T. Arnold, “Finishing of metal optics by ion beam technologies,” Opt. Eng. 58(9), 1–12 (2019).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

Y. D. Chen, W. J. Tsai, S. H. Liu, and J. B. Horng, “Picosecond laser pulse polishing of ASP23 steel,” Opt. Laser Technol. 107, 180–185 (2018).
[Crossref]

Opt. Lasers Eng. (1)

S. Heidrich, A. Richmann, P. Schmitz, E. Willenborg, K. Wissenbach, P. Loosen, and R. Poprawe, “Optics manufacturing by laser radiation,” Opt. Lasers Eng. 59, 34–40 (2014).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (3)

Phys. Lett. A (1)

J. A. Van Vechten, R. Tsu, and F. W. Saris, “Nonthermal pulsed laser annealing of Si; plasma annealing,” Phys. Lett. A 74(6), 422–426 (1979).
[Crossref]

Phys. Procedia (1)

B. Neuenschwander, B. Jaeggi, and M. Schmid, “From fs to sub-ns: dependence of the material removal rate on the pulse duration for metals,” Phys. Procedia 41, 794–801 (2013).
[Crossref]

Phys. Rev. B (5)

H. M. Van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-um picosecond laser pulses,” Phys. Rev. B 35(15), 8166–8176 (1987).
[Crossref]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

P. Stampfli and K. H. Bennemann, “Theory for the instability of the diamond structure of Si, Ge and C induced by a dense electron-hole plasma,” Phys. Rev. B 42(11), 7163–7173 (1990).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, and D. von der Linde, “Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation,” Phys. Rev. B 58(18), R11805 (1998).
[Crossref]

M. I. Gallant and H. M. van Driel, “Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium,” Phys. Rev. B 26(4), 2133–2146 (1982).
[Crossref]

Proc. SPIE (1)

I. F. Stowers, R. Komanduri, and E. D. Baird, “Review of precision surface generating processes and their potential application to the fabrication of large optical components,” Proc. SPIE 0966, 62 (1989).
[Crossref]

Other (2)

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, 1959).

J. R. Rumble, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Press, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. TTM-simulated number density of free-carrier electrons (Nc), carrier-system temperature (Tc), and lattice temperature (Tl) at the location of peak intensity for incident-pulse fluences of (a) 0.37 J/cm2 and (b) 0.22 J/cm2. Times are relative to the arrival of the peak pulse intensity at 0 ps. (c) Dissipation of surface temperature following laser irradiation and electron/lattice temperature equilibration. In all plots, the dashed horizontal line corresponds to the Ge melting point at 1213 K [33].
Fig. 2.
Fig. 2. Predicted surface temperature evolution due to femtosecond laser interaction using the initially determined set of laser parameters. (a) The maximum surface temperature corresponds to the location of peak fluence of the immediate-past pulse. (b) Predicted base surface temperature achieved prior to the next laser pulse for processing with 125 laser pulses.
Fig. 3.
Fig. 3. (a) Sensitivity of ablated crater area to single-shot laser fluence. (b) Optical microscope image of single-shot processing at a fluence of 0.22 J/cm2.
Fig. 4.
Fig. 4. Optical micrographs of line processing using a 1 m/s scan speed and a 250 kHz repetition rate for two laser fluences: (a) 0.22 J/cm2, (b) 0.37 J/cm2. The processed region corresponds to the ∼30-50 µm wide bright track and the structures therein.
Fig. 5.
Fig. 5. Comparison of optical micrographs within (a) unprocessed and (b) 20-pass laser-polished surface regions.
Fig. 6.
Fig. 6. Full-area height map of Ge polishing using 20 laser passes (central rectangular feature) and zoomed-in surface profiles for unprocessed and polished surface regions.
Fig. 7.
Fig. 7. (a) Impact of the number of polishing passes on material removal depth (black) and the resulting RMS surface roughness (gray). (b) Material removal depth versus total deposited energy varied by polishing with: (▴) 10 passes/scan-line overlap of ∼60 to 90% of the laser spot diameter, (♦) 100 passes/scan-line overlap of ∼60 to 75%, and (●) 5 to 20 passes/75% scan-line overlap.

Tables (1)

Tables Icon

Table 1. Key parameters for the Ge TTM

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d I / d z = ( α + Θ N c ) I
N c t = α I E p h o t o n γ N c 3 J ¯
C e h T c t = ( α + Θ N c ) I [ C e h τ ( T c T l ) + W ¯ + N c t ( E g a p + 3 k b T c ) + E g a p t N c ]
C l T l t = C e h τ ( T c T l ) + ( κ l T l )