Abstract

High-purity samples of the new Ge36Ga5Se59 glass composition doped with 2×1019, 5×1019 and 1020 cm−3 of Pr3+ atoms were synthesized and their luminescent properties were investigated in the 1.6–7.5 µm spectral range. The luminescence registration method involved has made it possible to separate the spectra of the overlapping transitions in Pr3+ in the 2–2.7 µm emission band and to determine the respective lifetimes as well as their concentration dependencies. High sensitivity of the detection system has allowed to detect weak luminescence band at ∼7.2 µm corresponding to 3F33F2 transition for the first time in Pr doped glasses. The experiments showed that intense cross-relaxation processes in investigated glasses can cause a steep ∼ 5 µm emission rise with Pr3+ concentration increase. This effect can be of use for the design of efficient ∼ 5 µm luminescent sources with population efficiency significantly exceeding 100% (when pumped at ∼ 1.5 µm) and luminescence quantum yield close to unity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tb3+ doped Ga5Ge20Sb10Se65-xTex (x = 0-37.5) chalcogenide glasses and fibers for MWIR and LWIR emissions

N. Abdellaoui, F. Starecki, C. Boussard-Pledel, Y. Shpotyuk, J.-L. Doualan, A. Braud, E. Baudet, P. Nemec, F. Cheviré, M. Dussauze, B. Bureau, P. Camy, and V. Nazabal
Opt. Mater. Express 8(9) 2887-2900 (2018)

Mid-infrared emission properties of Pr3+-doped Ge-Sb-Se-Ga-I chalcogenide glasses

Mingming Li, Yinsheng Xu, Xiaomeng Jia, Lei Yang, Nengbing Long, Zijun Liu, and Shixun Dai
Opt. Mater. Express 8(4) 992-1000 (2018)

Influence of BaF2 and activator concentration on broadband near-infrared luminescence of Pr3+ ions in gallo-germanate glasses

Joanna Pisarska, Martyna Kowal, Marcin Kochanowicz, Jacek Zmojda, Jan Dorosz, Dominik Dorosz, and Wojciech A. Pisarski
Opt. Express 24(3) 2427-2435 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
    [Crossref]
  2. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
    [Crossref]
  3. L. Shaw, P. Thielen, J. Sanghera, S. Bayya, and I. Aggrawal, “Rare-Earth Doped Chalcogenide Glass for Mid- And Long Wave IR Fiber Lasers,” Advances in Fiber Devices (L.N. Durvasula, Editor, Proc. of SPIE)4974, 60–64 (2003).
  4. S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
    [Crossref]
  5. L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses,” Opt. Express 1(4), 87–96 (1997).
    [Crossref]
  6. E. V. Karaksina, V. S. Shiryaev, M. F. Churbanov, E. A. Anashkina, T. V. Kotereva, and G. E. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: Preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
    [Crossref]
  7. V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
    [Crossref]
  8. V. G. Borisevich, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Influence of hydrogen impurity on optical losses in As-S and As-Se glasses,” High-Purity Substances (Vysokochistie Veshchestva) 2, 11–21 (1994). (in Russian).
  9. F. Starecki, N. Abdellaoui, A. Braud, J.-L. Doualan, C. Boussard-Plédel, B. Bureau, P. Camy, and V. Nazabal, “8 µm luminescence from a Tb3+ GaGeSbSe fiber,” Opt. Lett. 43(6), 1211–1214 (2018).
    [Crossref]
  10. F. Starecki, A. Braud, N. Abdllaoui, J.-L. Doualan, C. Boussard-Pledel, B. Bureau, P. Vamy, and V. Nazabal, “7 to 8 µm emission from Sm3+ doped selenide fiber,” Opt. Express 26(20), 26462–26469 (2018).
    [Crossref]
  11. M. V. Sukhanov, A. P. Velmuzhov, T. V. Kotereva, I. V. Skripachev, and M. F. Churbanov, “New approach for preparation of high-purity sulfide-germanium glasses doped with praseodymium,” Opt. Mater. Express 9(8), 3204–3214 (2019).
    [Crossref]
  12. S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-µm Praseodymium-Based Solid-state Laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).
    [Crossref]
  13. B. Denker, V. Dorefeev, B. Galagan, V. Koltashev, S. Motorin, S. Sverchkov, and V. Plotnichenko, “Rare-earth ions doped zinc-tellurite glass for 2÷3 µm lasers,” Appl. Phys. B: Lasers Opt. 124(12), 235 (2018).
    [Crossref]
  14. J. Ari, F. Starecki, C. Boussard-Pledel, Y. Ledemi, Y. Messaddeq, J.-L. Doualan, A. Braud, B. Bureau, and V. Nazabal, “Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission,” Opt. Lett. 43(12), 2893–2896 (2018).
    [Crossref]
  15. M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist’s view of the formalism and its application,” J. Lumin. 136, 221–239 (2013).
    [Crossref]

2019 (2)

S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
[Crossref]

M. V. Sukhanov, A. P. Velmuzhov, T. V. Kotereva, I. V. Skripachev, and M. F. Churbanov, “New approach for preparation of high-purity sulfide-germanium glasses doped with praseodymium,” Opt. Mater. Express 9(8), 3204–3214 (2019).
[Crossref]

2018 (5)

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

F. Starecki, N. Abdellaoui, A. Braud, J.-L. Doualan, C. Boussard-Plédel, B. Bureau, P. Camy, and V. Nazabal, “8 µm luminescence from a Tb3+ GaGeSbSe fiber,” Opt. Lett. 43(6), 1211–1214 (2018).
[Crossref]

F. Starecki, A. Braud, N. Abdllaoui, J.-L. Doualan, C. Boussard-Pledel, B. Bureau, P. Vamy, and V. Nazabal, “7 to 8 µm emission from Sm3+ doped selenide fiber,” Opt. Express 26(20), 26462–26469 (2018).
[Crossref]

B. Denker, V. Dorefeev, B. Galagan, V. Koltashev, S. Motorin, S. Sverchkov, and V. Plotnichenko, “Rare-earth ions doped zinc-tellurite glass for 2÷3 µm lasers,” Appl. Phys. B: Lasers Opt. 124(12), 235 (2018).
[Crossref]

J. Ari, F. Starecki, C. Boussard-Pledel, Y. Ledemi, Y. Messaddeq, J.-L. Doualan, A. Braud, B. Bureau, and V. Nazabal, “Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission,” Opt. Lett. 43(12), 2893–2896 (2018).
[Crossref]

2017 (1)

E. V. Karaksina, V. S. Shiryaev, M. F. Churbanov, E. A. Anashkina, T. V. Kotereva, and G. E. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: Preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

2015 (1)

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

2013 (1)

M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist’s view of the formalism and its application,” J. Lumin. 136, 221–239 (2013).
[Crossref]

2009 (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

1997 (1)

1996 (1)

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-µm Praseodymium-Based Solid-state Laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).
[Crossref]

Abdellaoui, N.

Abdllaoui, N.

Abouraddy, A. F.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Aggarwal, I. D.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses,” Opt. Express 1(4), 87–96 (1997).
[Crossref]

Aggrawal, I.

L. Shaw, P. Thielen, J. Sanghera, S. Bayya, and I. Aggrawal, “Rare-Earth Doped Chalcogenide Glass for Mid- And Long Wave IR Fiber Lasers,” Advances in Fiber Devices (L.N. Durvasula, Editor, Proc. of SPIE)4974, 60–64 (2003).

Anashkina, E. A.

E. V. Karaksina, V. S. Shiryaev, M. F. Churbanov, E. A. Anashkina, T. V. Kotereva, and G. E. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: Preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Anders, K.

S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
[Crossref]

Antonov, I. N.

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

Ari, J.

Badding, J. V.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Ballato, J.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Barney, E.

S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
[Crossref]

Bayya, S.

L. Shaw, P. Thielen, J. Sanghera, S. Bayya, and I. Aggrawal, “Rare-Earth Doped Chalcogenide Glass for Mid- And Long Wave IR Fiber Lasers,” Advances in Fiber Devices (L.N. Durvasula, Editor, Proc. of SPIE)4974, 60–64 (2003).

Benson, T.

S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
[Crossref]

Beres-Pawlik, E.

S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
[Crossref]

Borisevich, V. G.

V. G. Borisevich, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Influence of hydrogen impurity on optical losses in As-S and As-Se glasses,” High-Purity Substances (Vysokochistie Veshchestva) 2, 11–21 (1994). (in Russian).

Boussard-Pledel, C.

Boussard-Plédel, C.

Bowman, S. R.

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-µm Praseodymium-Based Solid-state Laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).
[Crossref]

Braud, A.

Brik, M. G.

M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist’s view of the formalism and its application,” J. Lumin. 136, 221–239 (2013).
[Crossref]

Bureau, B.

Camy, P.

Churbanov, M. F.

M. V. Sukhanov, A. P. Velmuzhov, T. V. Kotereva, I. V. Skripachev, and M. F. Churbanov, “New approach for preparation of high-purity sulfide-germanium glasses doped with praseodymium,” Opt. Mater. Express 9(8), 3204–3214 (2019).
[Crossref]

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

E. V. Karaksina, V. S. Shiryaev, M. F. Churbanov, E. A. Anashkina, T. V. Kotereva, and G. E. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: Preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

V. G. Borisevich, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Influence of hydrogen impurity on optical losses in As-S and As-Se glasses,” High-Purity Substances (Vysokochistie Veshchestva) 2, 11–21 (1994). (in Russian).

Cole, B.

Danto, S.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Denker, B.

B. Denker, V. Dorefeev, B. Galagan, V. Koltashev, S. Motorin, S. Sverchkov, and V. Plotnichenko, “Rare-earth ions doped zinc-tellurite glass for 2÷3 µm lasers,” Appl. Phys. B: Lasers Opt. 124(12), 235 (2018).
[Crossref]

Dorefeev, V.

B. Denker, V. Dorefeev, B. Galagan, V. Koltashev, S. Motorin, S. Sverchkov, and V. Plotnichenko, “Rare-earth ions doped zinc-tellurite glass for 2÷3 µm lasers,” Appl. Phys. B: Lasers Opt. 124(12), 235 (2018).
[Crossref]

Doualan, J.-L.

Ebendorff-Heidepriem, H.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Evdokimov, I. I.

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

Feldman, B. J.

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-µm Praseodymium-Based Solid-state Laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).
[Crossref]

Filatov, A. I.

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

Fink, Y.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Furniss, D.

S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
[Crossref]

Galagan, B.

B. Denker, V. Dorefeev, B. Galagan, V. Koltashev, S. Motorin, S. Sverchkov, and V. Plotnichenko, “Rare-earth ions doped zinc-tellurite glass for 2÷3 µm lasers,” Appl. Phys. B: Lasers Opt. 124(12), 235 (2018).
[Crossref]

Ganem, J.

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-µm Praseodymium-Based Solid-state Laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).
[Crossref]

Harbison, B. B.

Hehlen, M. P.

M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist’s view of the formalism and its application,” J. Lumin. 136, 221–239 (2013).
[Crossref]

Karaksina, E. V.

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

E. V. Karaksina, V. S. Shiryaev, M. F. Churbanov, E. A. Anashkina, T. V. Kotereva, and G. E. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: Preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Ketkova, L. A.

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

Koltashev, V.

B. Denker, V. Dorefeev, B. Galagan, V. Koltashev, S. Motorin, S. Sverchkov, and V. Plotnichenko, “Rare-earth ions doped zinc-tellurite glass for 2÷3 µm lasers,” Appl. Phys. B: Lasers Opt. 124(12), 235 (2018).
[Crossref]

Koltashev, V. V.

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

Kotereva, T. V.

M. V. Sukhanov, A. P. Velmuzhov, T. V. Kotereva, I. V. Skripachev, and M. F. Churbanov, “New approach for preparation of high-purity sulfide-germanium glasses doped with praseodymium,” Opt. Mater. Express 9(8), 3204–3214 (2019).
[Crossref]

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

E. V. Karaksina, V. S. Shiryaev, M. F. Churbanov, E. A. Anashkina, T. V. Kotereva, and G. E. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: Preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Krämer, K. W.

M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist’s view of the formalism and its application,” J. Lumin. 136, 221–239 (2013).
[Crossref]

Ledemi, Y.

Messaddeq, Y.

Motorin, S.

B. Denker, V. Dorefeev, B. Galagan, V. Koltashev, S. Motorin, S. Sverchkov, and V. Plotnichenko, “Rare-earth ions doped zinc-tellurite glass for 2÷3 µm lasers,” Appl. Phys. B: Lasers Opt. 124(12), 235 (2018).
[Crossref]

Nazabal, V.

Piramidowicz, R.

S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
[Crossref]

Plotnichenko, V.

B. Denker, V. Dorefeev, B. Galagan, V. Koltashev, S. Motorin, S. Sverchkov, and V. Plotnichenko, “Rare-earth ions doped zinc-tellurite glass for 2÷3 µm lasers,” Appl. Phys. B: Lasers Opt. 124(12), 235 (2018).
[Crossref]

Plotnichenko, V. G.

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

V. G. Borisevich, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Influence of hydrogen impurity on optical losses in As-S and As-Se glasses,” High-Purity Substances (Vysokochistie Veshchestva) 2, 11–21 (1994). (in Russian).

Sanghera, J.

L. Shaw, P. Thielen, J. Sanghera, S. Bayya, and I. Aggrawal, “Rare-Earth Doped Chalcogenide Glass for Mid- And Long Wave IR Fiber Lasers,” Advances in Fiber Devices (L.N. Durvasula, Editor, Proc. of SPIE)4974, 60–64 (2003).

Sanghera, J. S.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses,” Opt. Express 1(4), 87–96 (1997).
[Crossref]

Seddon, A.

S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
[Crossref]

Shaw, L.

L. Shaw, P. Thielen, J. Sanghera, S. Bayya, and I. Aggrawal, “Rare-Earth Doped Chalcogenide Glass for Mid- And Long Wave IR Fiber Lasers,” Advances in Fiber Devices (L.N. Durvasula, Editor, Proc. of SPIE)4974, 60–64 (2003).

Shaw, L. B.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses,” Opt. Express 1(4), 87–96 (1997).
[Crossref]

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-µm Praseodymium-Based Solid-state Laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).
[Crossref]

Shiryaev, V. S.

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

E. V. Karaksina, V. S. Shiryaev, M. F. Churbanov, E. A. Anashkina, T. V. Kotereva, and G. E. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: Preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Skripachev, I. V.

M. V. Sukhanov, A. P. Velmuzhov, T. V. Kotereva, I. V. Skripachev, and M. F. Churbanov, “New approach for preparation of high-purity sulfide-germanium glasses doped with praseodymium,” Opt. Mater. Express 9(8), 3204–3214 (2019).
[Crossref]

V. G. Borisevich, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Influence of hydrogen impurity on optical losses in As-S and As-Se glasses,” High-Purity Substances (Vysokochistie Veshchestva) 2, 11–21 (1994). (in Russian).

Snopatin, G. E.

E. V. Karaksina, V. S. Shiryaev, M. F. Churbanov, E. A. Anashkina, T. V. Kotereva, and G. E. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: Preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Sojka, L.

S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
[Crossref]

Starecki, F.

Stepanov, B. S.

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

Stolyarov, A. M.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Sujecki, S.

S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
[Crossref]

Sukhanov, M. V.

Sverchkov, S.

B. Denker, V. Dorefeev, B. Galagan, V. Koltashev, S. Motorin, S. Sverchkov, and V. Plotnichenko, “Rare-earth ions doped zinc-tellurite glass for 2÷3 µm lasers,” Appl. Phys. B: Lasers Opt. 124(12), 235 (2018).
[Crossref]

Tang, Z.

S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
[Crossref]

Tao, G.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Thielen, P.

L. Shaw, P. Thielen, J. Sanghera, S. Bayya, and I. Aggrawal, “Rare-Earth Doped Chalcogenide Glass for Mid- And Long Wave IR Fiber Lasers,” Advances in Fiber Devices (L.N. Durvasula, Editor, Proc. of SPIE)4974, 60–64 (2003).

Vamy, P.

Velmuzhov, A. P.

Adv. Opt. Photonics (1)

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

B. Denker, V. Dorefeev, B. Galagan, V. Koltashev, S. Motorin, S. Sverchkov, and V. Plotnichenko, “Rare-earth ions doped zinc-tellurite glass for 2÷3 µm lasers,” Appl. Phys. B: Lasers Opt. 124(12), 235 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-µm Praseodymium-Based Solid-state Laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

J. Lumin. (2)

S. Sujecki, L. Sojka, E. Beres-Pawlik, K. Anders, R. Piramidowicz, Z. Tang, D. Furniss, E. Barney, T. Benson, and A. Seddon, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide chalcogenide fiber,” J. Lumin. 209, 14–20 (2019).
[Crossref]

M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist’s view of the formalism and its application,” J. Lumin. 136, 221–239 (2013).
[Crossref]

Mater. Res. Bull. (1)

V. S. Shiryaev, E. V. Karaksina, M. F. Churbanov, T. V. Kotereva, B. S. Stepanov, L. A. Ketkova, I. I. Evdokimov, V. V. Koltashev, V. G. Plotnichenko, A. I. Filatov, and I. N. Antonov, “Special pure germanium-rich GaGeAsSe glasses for active mid-IR fiber optics,” Mater. Res. Bull. 107, 430–437 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

E. V. Karaksina, V. S. Shiryaev, M. F. Churbanov, E. A. Anashkina, T. V. Kotereva, and G. E. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: Preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Opt. Mater. Express (1)

Other (2)

V. G. Borisevich, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Influence of hydrogen impurity on optical losses in As-S and As-Se glasses,” High-Purity Substances (Vysokochistie Veshchestva) 2, 11–21 (1994). (in Russian).

L. Shaw, P. Thielen, J. Sanghera, S. Bayya, and I. Aggrawal, “Rare-Earth Doped Chalcogenide Glass for Mid- And Long Wave IR Fiber Lasers,” Advances in Fiber Devices (L.N. Durvasula, Editor, Proc. of SPIE)4974, 60–64 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Pr3+ energy level scheme. The transitions observed in this paper are indicated by arrows.
Fig. 2.
Fig. 2. The absorption (bottom) and emission (top) spectra of the glass sample #1 with 2×1019 cm−3 Pr content. (Blue lines show selected portions of the spectrum with 10-fold multiplication. Weak 3F23H5 and 3F33F2 transitions are indicated by arrows. The recession in the emissions spectrum at ∼ 4.25 μm is due to CO2 absorption in the air. The recession at 4.85 μm is an artifact caused by the specificity of the registration system).
Fig. 3.
Fig. 3. Luminescence rise and decay functions of the glass sample #1 with minimal (2×1019 cm−3) Pr content. Black curve (registration wavelength 2.5 µm) - 3F33H5 transition; Red curve (registration wavelength 1.68 µm) - 3F33H4 transition; Blue curve (registration wavelength 2.03 µm ) - 3F23H4 transition.
Fig. 4.
Fig. 4. Luminescence spectra of the glass sample #1 with minimal (2×1019 cm−3) Pr content. Curve 1 – pumping diode modulated at 65 Hz. Curve 2 – pumping diode modulated at 4 kHz. Curve 3 – the difference between them. Vertical lines indicate the registration wavelengths of the decay functions in Fig. 3.
Fig. 5.
Fig. 5. 1.68 µm luminescence decay functions of the samples ##1–3 with various Pr doping level: 2×1019 cm−3 (curve 1), 5 ×1019 cm−3 (curve 2) and 1020 cm−3 (curve 3).
Fig. 6.
Fig. 6. Mid-infrared luminescence rise and decay functions. Curve numbers correspond to sample numbers in Table 1.
Fig. 7.
Fig. 7. Cross-relaxation processes in heavily Pr3+ doped chalcogenide glass.
Fig. 8.
Fig. 8. Relative intensities of 2–2.7 and 5 µm emission bands depending on Pr3+ concentration. Curve numbers correspond to sample numbers in Table 1.

Tables (3)

Tables Icon

Table 1. Investigated glass samples.

Tables Icon

Table 2. e-fold lifetimes (in µs).

Tables Icon

Table 3. Calculated energies of bands, oscillator strengths, predicted spontaneous-radiative transition rates, branching ratios and lifetimes of Pr3+ in Ge36Ga5Se59 glass