Abstract

We report the fabrication of a low numerical aperture large mode area, high concentration thulium doped germanate glass fiber using a rod-in tube technique. The fiber core is 20 µm in diameter and operates in the single-mode regime in the 2 µm region. The Tm3+ ion concentration is 3×1020/cm3 and the background fiber attenuation is 1.1 dB/m in the near infrared. We also demonstrate a high-power, high-efficiency fiber laser emitting at 1950 nm using a short (21-cm-long) length of the fiber. A slope efficiency of 55.9% with respect to absorbed pump power and a maximum output power of ∼1.52W was achieved. This represents both the highest slope efficiency and the highest output power reported so far for Tm3+ doped germanate single mode fiber using in-band core pumping. The large core area, short device length and high efficiency make this fiber attractive for the development of high peak power pulsed fiber amplifiers and single-frequency fiber lasers operating in the 2 um region.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950 nm

Xianchao Guan, Changsheng Yang, Tian Qiao, Wei Lin, Qilai Zhao, Guowu Tang, Guoquan Qian, Qi Qian, Zhongmin Yang, and Shanhui Xu
Opt. Express 26(6) 6817-6825 (2018)

Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser

Xin Wen, Guowu Tang, Jinwen Wang, Xiaodong Chen, Qi Qian, and Zhongmin Yang
Opt. Express 23(6) 7722-7731 (2015)

Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications

Guowu Tang, Tingting Zhu, Wangwang Liu, Wei Lin, Tian Qiao, Min Sun, Dongdan Chen, Qi Qian, and Zhongmin Yang
Opt. Mater. Express 6(6) 2147-2157 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho: LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
    [Crossref]
  2. S. D. Jackson and A. Lauto, “Diode pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
    [Crossref]
  3. P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, and M. C. Richardson, “Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns,” Proc. SPIE 7924, 79240L (2001).
    [Crossref]
  4. X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 µm laser,” Opt. Express 23(6), 7722 (2015).
    [Crossref]
  5. J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Tech. Letters 18, 334–346 (2006).
    [Crossref]
  6. X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 µm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
    [Crossref]
  7. F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
    [Crossref]
  8. R. Tumminelli, V. Petit, A. Carter, A. Hemming, N. Simakov, and J. Hob, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 105120M (2018).
    [Crossref]
  9. C. Jollivet, K. Farley, M. Conroy, H. Dabhi, J. Edgecumbe, A. Carter, and K. Tankala, “Deseign optimization of Tm-doped large-mode area fibers for power scaling of 2 µm lasers and Amplifiers,” Proc. SPIE 10083, 100830I (2017).
    [Crossref]
  10. X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 µm laser,” Sci. Rep. 6(1), 20344 (2016).
    [Crossref]
  11. Y.-W. Lee, H.-Y. Ling, Y.-H. Lin, and S. Jiang, “Heavily Tm3+-doped silicate fiber with high gain per unit length,” Opt. Mater. Express 5(3), 549 (2015).
    [Crossref]
  12. M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
    [Crossref]
  13. Q. Yang, X. Shan-Hui, L. Can, Y. Shang-Sheng, F. Zhou-Ming, X. Yu, H. Xiang, and Y. Zhong-Min, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
    [Crossref]
  14. Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2 µm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
    [Crossref]
  15. G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
    [Crossref]
  16. J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
    [Crossref]
  17. F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 µm emission of high thermally and chemically durable glasses based on AlF,” Sci. Rep. 4(1), 3607 (2015).
    [Crossref]
  18. R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
    [Crossref]
  19. M. Pollnau and M. Eichhorn, “Emission cross section, Fuchtbauer-Ladenburg Equation, and Purcell Factor,” in Nano-Optics: Principles Enabling Basic Research and Applications, NATO Science for Peace and Security Series B: Physics and Biophysics (Springer Dordrecht, 2017).
  20. X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
    [Crossref]
  21. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montage, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24(3), 563–574 (2003).
    [Crossref]
  22. B. M. Walsh and N. P. Barnes, “Comparison of Tm: ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 µm,” Appl. Phys. B 78(3-4), 325–333 (2004).
    [Crossref]
  23. R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
    [Crossref]
  24. G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate silica and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
    [Crossref]
  25. X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
    [Crossref]
  26. X. Fan, P. Kuan, K. Li, L. Zhang, W. Li, and L. Hu, “A 2 um continuous wave and passively Q-switched fiber laser in thulium-doped germinate glass fibers,” Laser Phys. 24(8), 085107 (2014).
    [Crossref]
  27. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [Crossref]

2018 (2)

R. Tumminelli, V. Petit, A. Carter, A. Hemming, N. Simakov, and J. Hob, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 105120M (2018).
[Crossref]

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

2017 (1)

C. Jollivet, K. Farley, M. Conroy, H. Dabhi, J. Edgecumbe, A. Carter, and K. Tankala, “Deseign optimization of Tm-doped large-mode area fibers for power scaling of 2 µm lasers and Amplifiers,” Proc. SPIE 10083, 100830I (2017).
[Crossref]

2016 (1)

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 µm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref]

2015 (5)

Y.-W. Lee, H.-Y. Ling, Y.-H. Lin, and S. Jiang, “Heavily Tm3+-doped silicate fiber with high gain per unit length,” Opt. Mater. Express 5(3), 549 (2015).
[Crossref]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 µm laser,” Opt. Express 23(6), 7722 (2015).
[Crossref]

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 µm emission of high thermally and chemically durable glasses based on AlF,” Sci. Rep. 4(1), 3607 (2015).
[Crossref]

Q. Yang, X. Shan-Hui, L. Can, Y. Shang-Sheng, F. Zhou-Ming, X. Yu, H. Xiang, and Y. Zhong-Min, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

2014 (3)

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

X. Fan, P. Kuan, K. Li, L. Zhang, W. Li, and L. Hu, “A 2 um continuous wave and passively Q-switched fiber laser in thulium-doped germinate glass fibers,” Laser Phys. 24(8), 085107 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (1)

R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
[Crossref]

2008 (1)

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate silica and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

2007 (1)

2006 (1)

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Tech. Letters 18, 334–346 (2006).
[Crossref]

2004 (2)

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho: LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[Crossref]

B. M. Walsh and N. P. Barnes, “Comparison of Tm: ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 µm,” Appl. Phys. B 78(3-4), 325–333 (2004).
[Crossref]

2003 (1)

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montage, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

2002 (1)

S. D. Jackson and A. Lauto, “Diode pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref]

2001 (2)

P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, and M. C. Richardson, “Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns,” Proc. SPIE 7924, 79240L (2001).
[Crossref]

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
[Crossref]

1999 (1)

Adam, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montage, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Altal, F.

P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, and M. C. Richardson, “Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns,” Proc. SPIE 7924, 79240L (2001).
[Crossref]

Auzel, F.

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
[Crossref]

Bai, G.

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Barnes, N. P.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Tech. Letters 18, 334–346 (2006).
[Crossref]

B. M. Walsh and N. P. Barnes, “Comparison of Tm: ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 µm,” Appl. Phys. B 78(3-4), 325–333 (2004).
[Crossref]

Bass, M.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate silica and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

Can, L.

Q. Yang, X. Shan-Hui, L. Can, Y. Shang-Sheng, F. Zhou-Ming, X. Yu, H. Xiang, and Y. Zhong-Min, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Carter, A.

R. Tumminelli, V. Petit, A. Carter, A. Hemming, N. Simakov, and J. Hob, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 105120M (2018).
[Crossref]

C. Jollivet, K. Farley, M. Conroy, H. Dabhi, J. Edgecumbe, A. Carter, and K. Tankala, “Deseign optimization of Tm-doped large-mode area fibers for power scaling of 2 µm lasers and Amplifiers,” Proc. SPIE 10083, 100830I (2017).
[Crossref]

Chavez-Pirson, A.

Chen, D.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 µm emission of high thermally and chemically durable glasses based on AlF,” Sci. Rep. 4(1), 3607 (2015).
[Crossref]

X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 µm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]

Chen, X.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 µm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 µm laser,” Opt. Express 23(6), 7722 (2015).
[Crossref]

Cheng, H.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Chia, J.

P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, and M. C. Richardson, “Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns,” Proc. SPIE 7924, 79240L (2001).
[Crossref]

Conroy, M.

C. Jollivet, K. Farley, M. Conroy, H. Dabhi, J. Edgecumbe, A. Carter, and K. Tankala, “Deseign optimization of Tm-doped large-mode area fibers for power scaling of 2 µm lasers and Amplifiers,” Proc. SPIE 10083, 100830I (2017).
[Crossref]

Dabhi, H.

C. Jollivet, K. Farley, M. Conroy, H. Dabhi, J. Edgecumbe, A. Carter, and K. Tankala, “Deseign optimization of Tm-doped large-mode area fibers for power scaling of 2 µm lasers and Amplifiers,” Proc. SPIE 10083, 100830I (2017).
[Crossref]

Doualan, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montage, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Edgecumbe, J.

C. Jollivet, K. Farley, M. Conroy, H. Dabhi, J. Edgecumbe, A. Carter, and K. Tankala, “Deseign optimization of Tm-doped large-mode area fibers for power scaling of 2 µm lasers and Amplifiers,” Proc. SPIE 10083, 100830I (2017).
[Crossref]

Eichhorn, M.

M. Pollnau and M. Eichhorn, “Emission cross section, Fuchtbauer-Ladenburg Equation, and Purcell Factor,” in Nano-Optics: Principles Enabling Basic Research and Applications, NATO Science for Peace and Security Series B: Physics and Biophysics (Springer Dordrecht, 2017).

Fan, X.

X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

X. Fan, P. Kuan, K. Li, L. Zhang, W. Li, and L. Hu, “A 2 um continuous wave and passively Q-switched fiber laser in thulium-doped germinate glass fibers,” Laser Phys. 24(8), 085107 (2014).
[Crossref]

Fang, Q.

Farley, K.

C. Jollivet, K. Farley, M. Conroy, H. Dabhi, J. Edgecumbe, A. Carter, and K. Tankala, “Deseign optimization of Tm-doped large-mode area fibers for power scaling of 2 µm lasers and Amplifiers,” Proc. SPIE 10083, 100830I (2017).
[Crossref]

Geng, J.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Tech. Letters 18, 334–346 (2006).
[Crossref]

Girard, S.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montage, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Goldner, P.

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
[Crossref]

Guo, Y.

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Haquin, H.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montage, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

He, X.

Hemming, A.

R. Tumminelli, V. Petit, A. Carter, A. Hemming, N. Simakov, and J. Hob, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 105120M (2018).
[Crossref]

Heumann, E.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho: LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[Crossref]

Hob, J.

R. Tumminelli, V. Petit, A. Carter, A. Hemming, N. Simakov, and J. Hob, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 105120M (2018).
[Crossref]

Hu, L.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 µm emission of high thermally and chemically durable glasses based on AlF,” Sci. Rep. 4(1), 3607 (2015).
[Crossref]

X. Fan, P. Kuan, K. Li, L. Zhang, W. Li, and L. Hu, “A 2 um continuous wave and passively Q-switched fiber laser in thulium-doped germinate glass fibers,” Laser Phys. 24(8), 085107 (2014).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
[Crossref]

Huang, F.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 µm emission of high thermally and chemically durable glasses based on AlF,” Sci. Rep. 4(1), 3607 (2015).
[Crossref]

Huang, K.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Huber, G.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho: LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[Crossref]

Jackson, S. D.

S. D. Jackson and A. Lauto, “Diode pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref]

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
[Crossref]

Jiang, L.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Jiang, S.

Jing, X.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Jollivet, C.

C. Jollivet, K. Farley, M. Conroy, H. Dabhi, J. Edgecumbe, A. Carter, and K. Tankala, “Deseign optimization of Tm-doped large-mode area fibers for power scaling of 2 µm lasers and Amplifiers,” Proc. SPIE 10083, 100830I (2017).
[Crossref]

Kadwani, P.

P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, and M. C. Richardson, “Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns,” Proc. SPIE 7924, 79240L (2001).
[Crossref]

Kieu, K.

Killinger, D.

P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, and M. C. Richardson, “Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns,” Proc. SPIE 7924, 79240L (2001).
[Crossref]

King, T. A.

Kuan, P.

X. Fan, P. Kuan, K. Li, L. Zhang, W. Li, and L. Hu, “A 2 um continuous wave and passively Q-switched fiber laser in thulium-doped germinate glass fibers,” Laser Phys. 24(8), 085107 (2014).
[Crossref]

Kuan, P. W.

X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Lauto, A.

S. D. Jackson and A. Lauto, “Diode pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref]

Lee, Y.-W.

Li, B.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Li, C.

Li, K.

X. Fan, P. Kuan, K. Li, L. Zhang, W. Li, and L. Hu, “A 2 um continuous wave and passively Q-switched fiber laser in thulium-doped germinate glass fibers,” Laser Phys. 24(8), 085107 (2014).
[Crossref]

X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

Li, M.

X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Li, R.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Li, W.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 µm emission of high thermally and chemically durable glasses based on AlF,” Sci. Rep. 4(1), 3607 (2015).
[Crossref]

X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

X. Fan, P. Kuan, K. Li, L. Zhang, W. Li, and L. Hu, “A 2 um continuous wave and passively Q-switched fiber laser in thulium-doped germinate glass fibers,” Laser Phys. 24(8), 085107 (2014).
[Crossref]

Lin, W.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Lin, Y.-H.

Ling, H.-Y.

Liu, X.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 µm emission of high thermally and chemically durable glasses based on AlF,” Sci. Rep. 4(1), 3607 (2015).
[Crossref]

X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Luo, T.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Tech. Letters 18, 334–346 (2006).
[Crossref]

Ma, Y.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 µm emission of high thermally and chemically durable glasses based on AlF,” Sci. Rep. 4(1), 3607 (2015).
[Crossref]

Mo, S.

Montage, J.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montage, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Petersen, E.

Petit, V.

R. Tumminelli, V. Petit, A. Carter, A. Hemming, N. Simakov, and J. Hob, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 105120M (2018).
[Crossref]

Peyghambarian, N.

Pollnau, M.

M. Pollnau and M. Eichhorn, “Emission cross section, Fuchtbauer-Ladenburg Equation, and Purcell Factor,” in Nano-Optics: Principles Enabling Basic Research and Applications, NATO Science for Peace and Security Series B: Physics and Biophysics (Springer Dordrecht, 2017).

Qian, G.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Qian, Q.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 µm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 µm laser,” Opt. Express 23(6), 7722 (2015).
[Crossref]

Richardson, M.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate silica and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

Richardson, M. C.

P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, and M. C. Richardson, “Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns,” Proc. SPIE 7924, 79240L (2001).
[Crossref]

Ruan, F.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Scholle, K.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho: LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[Crossref]

Shah, L.

P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, and M. C. Richardson, “Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns,” Proc. SPIE 7924, 79240L (2001).
[Crossref]

Shang-Sheng, Y.

Q. Yang, X. Shan-Hui, L. Can, Y. Shang-Sheng, F. Zhou-Ming, X. Yu, H. Xiang, and Y. Zhong-Min, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Shan-Hui, X.

Q. Yang, X. Shan-Hui, L. Can, Y. Shang-Sheng, F. Zhou-Ming, X. Yu, H. Xiang, and Y. Zhong-Min, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Shi, W.

Simakov, N.

R. Tumminelli, V. Petit, A. Carter, A. Hemming, N. Simakov, and J. Hob, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 105120M (2018).
[Crossref]

Sims, R. A.

P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, and M. C. Richardson, “Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns,” Proc. SPIE 7924, 79240L (2001).
[Crossref]

Sudesh, V.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate silica and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

Tang, G.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 µm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 µm laser,” Opt. Express 23(6), 7722 (2015).
[Crossref]

Tankala, K.

C. Jollivet, K. Farley, M. Conroy, H. Dabhi, J. Edgecumbe, A. Carter, and K. Tankala, “Deseign optimization of Tm-doped large-mode area fibers for power scaling of 2 µm lasers and Amplifiers,” Proc. SPIE 10083, 100830I (2017).
[Crossref]

Tian, C.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Tian, Y.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Toncelli, A.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate silica and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

Tonelli, M.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate silica and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

Tumminelli, R.

R. Tumminelli, V. Petit, A. Carter, A. Hemming, N. Simakov, and J. Hob, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 105120M (2018).
[Crossref]

Turri, G.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate silica and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

Walsh, B. M.

B. M. Walsh and N. P. Barnes, “Comparison of Tm: ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 µm,” Appl. Phys. B 78(3-4), 325–333 (2004).
[Crossref]

Wang, F.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Wang, J.

Wang, L.

X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Wang, X.

X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

Wei, T.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Wen, X.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 µm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 µm laser,” Opt. Express 23(6), 7722 (2015).
[Crossref]

Willis, C.

P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, and M. C. Richardson, “Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns,” Proc. SPIE 7924, 79240L (2001).
[Crossref]

Wu, J.

J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[Crossref]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Tech. Letters 18, 334–346 (2006).
[Crossref]

Xiang, H.

Q. Yang, X. Shan-Hui, L. Can, Y. Shang-Sheng, F. Zhou-Ming, X. Yu, H. Xiang, and Y. Zhong-Min, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Xu, L.

R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
[Crossref]

Xu, R.

R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
[Crossref]

Xu, S.

Yang, C.

Yang, Q.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 µm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref]

Q. Yang, X. Shan-Hui, L. Can, Y. Shang-Sheng, F. Zhou-Ming, X. Yu, H. Xiang, and Y. Zhong-Min, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 µm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]

Yang, Z.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 µm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 µm laser,” Opt. Express 23(6), 7722 (2015).
[Crossref]

X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 µm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]

Yao, Z.

Yu, C.

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

Yu, X.

Q. Yang, X. Shan-Hui, L. Can, Y. Shang-Sheng, F. Zhou-Ming, X. Yu, H. Xiang, and Y. Zhong-Min, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Zhang, J.

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
[Crossref]

Zhang, L.

X. Fan, P. Kuan, K. Li, L. Zhang, W. Li, and L. Hu, “A 2 um continuous wave and passively Q-switched fiber laser in thulium-doped germinate glass fibers,” Laser Phys. 24(8), 085107 (2014).
[Crossref]

Zhang, Q.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 µm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref]

Zhong-Min, Y.

Q. Yang, X. Shan-Hui, L. Can, Y. Shang-Sheng, F. Zhou-Ming, X. Yu, H. Xiang, and Y. Zhong-Min, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Zhou-Ming, F.

Q. Yang, X. Shan-Hui, L. Can, Y. Shang-Sheng, F. Zhou-Ming, X. Yu, H. Xiang, and Y. Zhong-Min, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Zong, J.

Appl. Phys. B (1)

B. M. Walsh and N. P. Barnes, “Comparison of Tm: ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 µm,” Appl. Phys. B 78(3-4), 325–333 (2004).
[Crossref]

Appl. Phys. Express (1)

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Chin. Phys. Lett. (1)

Q. Yang, X. Shan-Hui, L. Can, Y. Shang-Sheng, F. Zhou-Ming, X. Yu, H. Xiang, and Y. Zhong-Min, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

IEEE Photon. Tech. Letters (1)

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Tech. Letters 18, 334–346 (2006).
[Crossref]

J. Appl. Phys. (1)

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate silica and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Lumin. (3)

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

J. Phys. Chem. A (1)

R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
[Crossref]

Laser Phys. (1)

X. Fan, P. Kuan, K. Li, L. Zhang, W. Li, and L. Hu, “A 2 um continuous wave and passively Q-switched fiber laser in thulium-doped germinate glass fibers,” Laser Phys. 24(8), 085107 (2014).
[Crossref]

Laser Phys. Lett. (1)

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho: LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[Crossref]

Lasers Surg. Med. (1)

S. D. Jackson and A. Lauto, “Diode pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref]

Mater. Lett. (1)

X. Liu, X. Wang, L. Wang, P. W. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+ doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (2)

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montage, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 µm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (3)

P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, and M. C. Richardson, “Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns,” Proc. SPIE 7924, 79240L (2001).
[Crossref]

R. Tumminelli, V. Petit, A. Carter, A. Hemming, N. Simakov, and J. Hob, “Highly doped and highly efficient Tm doped fiber laser,” Proc. SPIE 10512, 105120M (2018).
[Crossref]

C. Jollivet, K. Farley, M. Conroy, H. Dabhi, J. Edgecumbe, A. Carter, and K. Tankala, “Deseign optimization of Tm-doped large-mode area fibers for power scaling of 2 µm lasers and Amplifiers,” Proc. SPIE 10083, 100830I (2017).
[Crossref]

Sci. Rep. (2)

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 µm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref]

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 µm emission of high thermally and chemically durable glasses based on AlF,” Sci. Rep. 4(1), 3607 (2015).
[Crossref]

Other (1)

M. Pollnau and M. Eichhorn, “Emission cross section, Fuchtbauer-Ladenburg Equation, and Purcell Factor,” in Nano-Optics: Principles Enabling Basic Research and Applications, NATO Science for Peace and Security Series B: Physics and Biophysics (Springer Dordrecht, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Absorption cross section spectrum of core glass.
Fig. 2.
Fig. 2. (a) Absorption, emission cross-section, and (b) calculated gain coefficient of the core glass
Fig. 3.
Fig. 3. Measured fluorescence lifetime of the core glass using a modulated 793 nm pump LD.
Fig. 4.
Fig. 4. Optical microscope image of the fabricated Tm doped Germanate LMA single mode fiber.
Fig. 5.
Fig. 5. Loss superposition curves of the core bulk glass (UV-Visible NIR spectrometer) and the thulium-doped germanate fiber (WLS+OSA). The inset shows a cutback over a very short piece of fiber using a supercontinuum source to infer the pump absorption at 1700 nm.
Fig. 6.
Fig. 6. Schematic diagram of the Tm-doped germanate fiber laser.
Fig. 7.
Fig. 7. (a) The laser output power at 1952 nm versus absorbed pump power; the inset shows the laser spectrum. (b) Simulation result of the maximum output power as a function of Tm3+ doped germinate fiber length from 0 to 1 m.
Fig. 8.
Fig. 8. Measured beam quality of the output beam. The far field beam profile is shown in the inset.

Tables (1)

Tables Icon

Table 1. Properties of the glasses used in this work

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ e F L ( λ ) = A i j λ 5 I ( λ ) 8 π n 2 c λ I ( λ ) d ( λ )
G ( λ ) = N [ p σ e ( λ ) ( 1 p ) σ a ( λ ) ]