Abstract

A low loss wideband active reflectarray element (ARE) is designed in this paper. One PIN diode has been loaded into microstrip metal patch, which alters an element resonant property when the PIN diode is ON or OFF. Thus a 1-bit unit cell is generated by controlling the working states of the PIN diode. Besides, two ingenious designs have been employed to reduce the insertion loss of ARE, one is loading a bridging capacitor in parallel with the PIN diode, the other is using an asymmetric design of the position of electronic device and slot. These technologies together enable the ARE to operate from 8.45 to 12.60 GHz with 180°±30° phase difference (the relative bandwidth is up to 40%). The losses of the ARE with ON and OFF states are less than 0.75 dB in aforementioned frequency range. The experimental results are in line with the simulated ones. Compared with other designs, the proposed ARE has advantages of low insertion loss and wide working band, which is very suitable to achieve high performance multifunctional metasurface.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of reflectarray antennas at terahertz frequencies

Tiaoming Niu, Withawat Withayachumnankul, Benjamin S.-Y. Ung, Hakan Menekse, Madhu Bhaskaran, Sharath Sriram, and Christophe Fumeaux
Opt. Express 21(3) 2875-2889 (2013)

Active metasurface for broadband radiation and integrated low radar cross section

Tong Li, Huanhuan Yang, Qi Li, Chen Zhang, Jiangfeng Han, Lili Cong, Xiangyu Cao, and Jun Gao
Opt. Mater. Express 9(3) 1161-1172 (2019)

Dynamically reconfigurable holographic metasurface aperture for a Mills-Cross monochromatic microwave camera

Okan Yurduseven, Daniel L. Marks, Thomas Fromenteze, and David R. Smith
Opt. Express 26(5) 5281-5291 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Huang and R. J. Pogorzelski, “A Ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Trans. Antennas Propag. 46(5), 650–656 (1998).
    [Crossref]
  2. S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review,” IEEE Trans. Antennas Propag. 62(1), 183–198 (2014).
    [Crossref]
  3. H. H. Yang, F. Yang, S. H. Xu, Y. L. Mao, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit 10×10 Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment,” IEEE Trans. Antennas Propag. 64(6), 2246–2254 (2016).
    [Crossref]
  4. H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, J. Gao, and Y. J. Zheng, “A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas,” Antennas Wirel. Propag. Lett. 16, 302–305 (2017).
    [Crossref]
  5. B. D. Nguyen and S. V. Tran, “Beam-steering reflectarray based on two-bit aperture-coupled reflectarray element,” J. Electromagnet. Wave. 32(1), 54–66 (2018).
    [Crossref]
  6. F. Venneri, S. Costanzo, and G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag. 61(2), 635–645 (2013).
    [Crossref]
  7. L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “1-bit reconfigurable unit cell for ka-band transmitarrays,” Antennas Wirel. Propag. Lett. 15, 560–563 (2016).
    [Crossref]
  8. E. Carrasco, M. Barba, J. A. Encinar, and M. Arrebola, “Sectored-beam reflectarray antenna with pattern reconfiguration by using RF-MEMS switches,” in European Conference on Antennas and Propagation, (Academic, 2012), pp. 3561–3564.
  9. F. Venneri, S. Costanzo, and G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag. 61(2), 635–645 (2013).
    [Crossref]
  10. S. V. Hum, M. Okoniewski, and R. J. Davies, “Modeling and design of electronically tunable reflectarrays,” IEEE Trans. Antennas Propag. 55(8), 2200–2210 (2007).
    [Crossref]
  11. C. Ma, H. Li, B. Zhang, D. Ye, J. Huangfu, Y. Sun, W. Zhu, C. Li, and L. Ran, “Reconfigurable diffractive antenna with three degrees of freedom,” Electron. Lett. 53(22), 1452–1454 (2017).
    [Crossref]
  12. V. Butylkin, Y. Kazantsev, G. Kraftmakher, and V. Mal’tsev, “Voltage-controlled unidirectional propagation of microwaves in metastructures ferrite/conductive elements with varactors,” Appl. Phys. A 123(1), 57 (2017).
    [Crossref]
  13. S. Gao, J. Yang, P. Wang, A. D. Zheng, H. B. Lu, G. S. Deng, W. E. Lai, and Z. P. Yin, “Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band,” Appl. Sci. 8(12), 2528 (2018).
    [Crossref]
  14. H. Cheng, S. Q. Chen, P. Yu, J. X. Li, L. Deng, and J. G. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
    [Crossref]
  15. P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and Ai-Q. Liu, “Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface,” Adv. Opt. Mater. 5(7), 1600938 (2017).
    [Crossref]
  16. H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
    [Crossref]
  17. S. Costanzo, F. Venneri, G. D. Massa, A. Borgia, and A. Raffo, “Bandwidth Performances of Reconfigurable Reflectarrays: State of Art and Future Challenges,” Radio Eng. 27(1), 1–9 (2018).
    [Crossref]
  18. A. Tayebi, J. Tang, P. R. Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, “Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna,” IEEE Trans. Antennas Propag. 63(10), 4534–4539 (2015).
    [Crossref]
  19. L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Experimental characterization of a circularly-polarized 1-bit unit-cell for beam steerable transmitarrays at Ka-band,” IEEE Trans. Antennas Propag. 67(2), 1300–1305 (2019).
    [Crossref]
  20. F. Yang, S. H. Xu, X. T. Pan, X. Yang, J. Luo, M. Wang, Y. Wang, and M. K. Li, “Reconfigurable Reflectarrays and Transmitarrays: From Antenna Designs to System Applications,” in 12th European Conference on Antennas and Propagation (EuCAP, 2018), pp. 2656–2661.
  21. D. M. Pozar, “Wideband reflectarrays using artificial impedance surfaces,” Electron. Lett. 43(3), 148–149 (2007).
    [Crossref]
  22. J. Ethier, M. R. Chaharmir, and J. Shaker, “Reflectarray designcomprised of sub-wavelength coupled-resonant square loopelements,” Electron. Lett. 47(22), 1215–1217 (2011).
    [Crossref]
  23. H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit Multi-Polarization Reflectarray Element for Reconfigurable Large Aperture Antennas,” Antennas Wirel. Propag. Lett. 16, 581–584 (2017).
    [Crossref]
  24. H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524–2531 (2011).
    [Crossref]
  25. P. Mousavi, M. Daneshmand, and H. Moghadas, “Compact beam-reconfigurable feed for large aperture antennas,” IET Microw. Antennas Propag. 10(11), 1159–1166 (2016).
    [Crossref]
  26. R. R. Romanofsky, “Advances in scanning reflectarray antennas based on ferroelectric thin-film phase shifters for deep-space communications,” Proc. IEEE 95(10), 1968–1975 (2007).
    [Crossref]
  27. X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, and S. Jiang, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antennas Propag. 65(8), 3959–3966 (2017).
    [Crossref]
  28. B. Chen, V. N. Sekhar, J. Cheng, Y. L. Ying, J. S. Toh, and S. Fernando, “Low-loss broadband package platform with surface passivation and tsv for wafer-level packaging of rf-mems devices,” IEEE Trans. Compon., Packag. Manufact. Technol. 3(9), 1443–1452 (2013).
    [Crossref]

2019 (1)

L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Experimental characterization of a circularly-polarized 1-bit unit-cell for beam steerable transmitarrays at Ka-band,” IEEE Trans. Antennas Propag. 67(2), 1300–1305 (2019).
[Crossref]

2018 (3)

S. Costanzo, F. Venneri, G. D. Massa, A. Borgia, and A. Raffo, “Bandwidth Performances of Reconfigurable Reflectarrays: State of Art and Future Challenges,” Radio Eng. 27(1), 1–9 (2018).
[Crossref]

S. Gao, J. Yang, P. Wang, A. D. Zheng, H. B. Lu, G. S. Deng, W. E. Lai, and Z. P. Yin, “Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band,” Appl. Sci. 8(12), 2528 (2018).
[Crossref]

B. D. Nguyen and S. V. Tran, “Beam-steering reflectarray based on two-bit aperture-coupled reflectarray element,” J. Electromagnet. Wave. 32(1), 54–66 (2018).
[Crossref]

2017 (7)

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, J. Gao, and Y. J. Zheng, “A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas,” Antennas Wirel. Propag. Lett. 16, 302–305 (2017).
[Crossref]

P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and Ai-Q. Liu, “Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface,” Adv. Opt. Mater. 5(7), 1600938 (2017).
[Crossref]

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

C. Ma, H. Li, B. Zhang, D. Ye, J. Huangfu, Y. Sun, W. Zhu, C. Li, and L. Ran, “Reconfigurable diffractive antenna with three degrees of freedom,” Electron. Lett. 53(22), 1452–1454 (2017).
[Crossref]

V. Butylkin, Y. Kazantsev, G. Kraftmakher, and V. Mal’tsev, “Voltage-controlled unidirectional propagation of microwaves in metastructures ferrite/conductive elements with varactors,” Appl. Phys. A 123(1), 57 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit Multi-Polarization Reflectarray Element for Reconfigurable Large Aperture Antennas,” Antennas Wirel. Propag. Lett. 16, 581–584 (2017).
[Crossref]

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, and S. Jiang, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antennas Propag. 65(8), 3959–3966 (2017).
[Crossref]

2016 (3)

P. Mousavi, M. Daneshmand, and H. Moghadas, “Compact beam-reconfigurable feed for large aperture antennas,” IET Microw. Antennas Propag. 10(11), 1159–1166 (2016).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, Y. L. Mao, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit 10×10 Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment,” IEEE Trans. Antennas Propag. 64(6), 2246–2254 (2016).
[Crossref]

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “1-bit reconfigurable unit cell for ka-band transmitarrays,” Antennas Wirel. Propag. Lett. 15, 560–563 (2016).
[Crossref]

2015 (1)

A. Tayebi, J. Tang, P. R. Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, “Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna,” IEEE Trans. Antennas Propag. 63(10), 4534–4539 (2015).
[Crossref]

2014 (1)

S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review,” IEEE Trans. Antennas Propag. 62(1), 183–198 (2014).
[Crossref]

2013 (4)

F. Venneri, S. Costanzo, and G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag. 61(2), 635–645 (2013).
[Crossref]

F. Venneri, S. Costanzo, and G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag. 61(2), 635–645 (2013).
[Crossref]

B. Chen, V. N. Sekhar, J. Cheng, Y. L. Ying, J. S. Toh, and S. Fernando, “Low-loss broadband package platform with surface passivation and tsv for wafer-level packaging of rf-mems devices,” IEEE Trans. Compon., Packag. Manufact. Technol. 3(9), 1443–1452 (2013).
[Crossref]

H. Cheng, S. Q. Chen, P. Yu, J. X. Li, L. Deng, and J. G. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref]

2011 (2)

J. Ethier, M. R. Chaharmir, and J. Shaker, “Reflectarray designcomprised of sub-wavelength coupled-resonant square loopelements,” Electron. Lett. 47(22), 1215–1217 (2011).
[Crossref]

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524–2531 (2011).
[Crossref]

2007 (3)

R. R. Romanofsky, “Advances in scanning reflectarray antennas based on ferroelectric thin-film phase shifters for deep-space communications,” Proc. IEEE 95(10), 1968–1975 (2007).
[Crossref]

S. V. Hum, M. Okoniewski, and R. J. Davies, “Modeling and design of electronically tunable reflectarrays,” IEEE Trans. Antennas Propag. 55(8), 2200–2210 (2007).
[Crossref]

D. M. Pozar, “Wideband reflectarrays using artificial impedance surfaces,” Electron. Lett. 43(3), 148–149 (2007).
[Crossref]

1998 (1)

J. Huang and R. J. Pogorzelski, “A Ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Trans. Antennas Propag. 46(5), 650–656 (1998).
[Crossref]

Arrebola, M.

E. Carrasco, M. Barba, J. A. Encinar, and M. Arrebola, “Sectored-beam reflectarray antenna with pattern reconfiguration by using RF-MEMS switches,” in European Conference on Antennas and Propagation, (Academic, 2012), pp. 3561–3564.

Barba, M.

E. Carrasco, M. Barba, J. A. Encinar, and M. Arrebola, “Sectored-beam reflectarray antenna with pattern reconfiguration by using RF-MEMS switches,” in European Conference on Antennas and Propagation, (Academic, 2012), pp. 3561–3564.

Borgia, A.

S. Costanzo, F. Venneri, G. D. Massa, A. Borgia, and A. Raffo, “Bandwidth Performances of Reconfigurable Reflectarrays: State of Art and Future Challenges,” Radio Eng. 27(1), 1–9 (2018).
[Crossref]

Butylkin, V.

V. Butylkin, Y. Kazantsev, G. Kraftmakher, and V. Mal’tsev, “Voltage-controlled unidirectional propagation of microwaves in metastructures ferrite/conductive elements with varactors,” Appl. Phys. A 123(1), 57 (2017).
[Crossref]

Cao, X.

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Cao, X. Y.

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit Multi-Polarization Reflectarray Element for Reconfigurable Large Aperture Antennas,” Antennas Wirel. Propag. Lett. 16, 581–584 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, J. Gao, and Y. J. Zheng, “A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas,” Antennas Wirel. Propag. Lett. 16, 302–305 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, Y. L. Mao, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit 10×10 Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment,” IEEE Trans. Antennas Propag. 64(6), 2246–2254 (2016).
[Crossref]

Carrasco, E.

E. Carrasco, M. Barba, J. A. Encinar, and M. Arrebola, “Sectored-beam reflectarray antenna with pattern reconfiguration by using RF-MEMS switches,” in European Conference on Antennas and Propagation, (Academic, 2012), pp. 3561–3564.

Chaharmir, M. R.

J. Ethier, M. R. Chaharmir, and J. Shaker, “Reflectarray designcomprised of sub-wavelength coupled-resonant square loopelements,” Electron. Lett. 47(22), 1215–1217 (2011).
[Crossref]

Chen, B.

B. Chen, V. N. Sekhar, J. Cheng, Y. L. Ying, J. S. Toh, and S. Fernando, “Low-loss broadband package platform with surface passivation and tsv for wafer-level packaging of rf-mems devices,” IEEE Trans. Compon., Packag. Manufact. Technol. 3(9), 1443–1452 (2013).
[Crossref]

Chen, S. Q.

Chen, X.

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Cheng, H.

Cheng, J.

B. Chen, V. N. Sekhar, J. Cheng, Y. L. Ying, J. S. Toh, and S. Fernando, “Low-loss broadband package platform with surface passivation and tsv for wafer-level packaging of rf-mems devices,” IEEE Trans. Compon., Packag. Manufact. Technol. 3(9), 1443–1452 (2013).
[Crossref]

Chong, P. H. J.

P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and Ai-Q. Liu, “Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface,” Adv. Opt. Mater. 5(7), 1600938 (2017).
[Crossref]

Clemente, A.

L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Experimental characterization of a circularly-polarized 1-bit unit-cell for beam steerable transmitarrays at Ka-band,” IEEE Trans. Antennas Propag. 67(2), 1300–1305 (2019).
[Crossref]

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “1-bit reconfigurable unit cell for ka-band transmitarrays,” Antennas Wirel. Propag. Lett. 15, 560–563 (2016).
[Crossref]

Costanzo, S.

S. Costanzo, F. Venneri, G. D. Massa, A. Borgia, and A. Raffo, “Bandwidth Performances of Reconfigurable Reflectarrays: State of Art and Future Challenges,” Radio Eng. 27(1), 1–9 (2018).
[Crossref]

F. Venneri, S. Costanzo, and G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag. 61(2), 635–645 (2013).
[Crossref]

F. Venneri, S. Costanzo, and G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag. 61(2), 635–645 (2013).
[Crossref]

Daneshmand, M.

P. Mousavi, M. Daneshmand, and H. Moghadas, “Compact beam-reconfigurable feed for large aperture antennas,” IET Microw. Antennas Propag. 10(11), 1159–1166 (2016).
[Crossref]

Davies, R. J.

S. V. Hum, M. Okoniewski, and R. J. Davies, “Modeling and design of electronically tunable reflectarrays,” IEEE Trans. Antennas Propag. 55(8), 2200–2210 (2007).
[Crossref]

Deng, G. S.

S. Gao, J. Yang, P. Wang, A. D. Zheng, H. B. Lu, G. S. Deng, W. E. Lai, and Z. P. Yin, “Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band,” Appl. Sci. 8(12), 2528 (2018).
[Crossref]

Deng, L.

Di Massa, G.

F. Venneri, S. Costanzo, and G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag. 61(2), 635–645 (2013).
[Crossref]

F. Venneri, S. Costanzo, and G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag. 61(2), 635–645 (2013).
[Crossref]

Di Palma, L.

L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Experimental characterization of a circularly-polarized 1-bit unit-cell for beam steerable transmitarrays at Ka-band,” IEEE Trans. Antennas Propag. 67(2), 1300–1305 (2019).
[Crossref]

Dussopt, L.

L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Experimental characterization of a circularly-polarized 1-bit unit-cell for beam steerable transmitarrays at Ka-band,” IEEE Trans. Antennas Propag. 67(2), 1300–1305 (2019).
[Crossref]

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “1-bit reconfigurable unit cell for ka-band transmitarrays,” Antennas Wirel. Propag. Lett. 15, 560–563 (2016).
[Crossref]

Encinar, J. A.

E. Carrasco, M. Barba, J. A. Encinar, and M. Arrebola, “Sectored-beam reflectarray antenna with pattern reconfiguration by using RF-MEMS switches,” in European Conference on Antennas and Propagation, (Academic, 2012), pp. 3561–3564.

Ethier, J.

J. Ethier, M. R. Chaharmir, and J. Shaker, “Reflectarray designcomprised of sub-wavelength coupled-resonant square loopelements,” Electron. Lett. 47(22), 1215–1217 (2011).
[Crossref]

Fernando, S.

B. Chen, V. N. Sekhar, J. Cheng, Y. L. Ying, J. S. Toh, and S. Fernando, “Low-loss broadband package platform with surface passivation and tsv for wafer-level packaging of rf-mems devices,” IEEE Trans. Compon., Packag. Manufact. Technol. 3(9), 1443–1452 (2013).
[Crossref]

Gao, J.

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit Multi-Polarization Reflectarray Element for Reconfigurable Large Aperture Antennas,” Antennas Wirel. Propag. Lett. 16, 581–584 (2017).
[Crossref]

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, J. Gao, and Y. J. Zheng, “A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas,” Antennas Wirel. Propag. Lett. 16, 302–305 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, Y. L. Mao, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit 10×10 Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment,” IEEE Trans. Antennas Propag. 64(6), 2246–2254 (2016).
[Crossref]

Gao, S.

S. Gao, J. Yang, P. Wang, A. D. Zheng, H. B. Lu, G. S. Deng, W. E. Lai, and Z. P. Yin, “Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band,” Appl. Sci. 8(12), 2528 (2018).
[Crossref]

Hashimoto, O.

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524–2531 (2011).
[Crossref]

Hou, Y.

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, and S. Jiang, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antennas Propag. 65(8), 3959–3966 (2017).
[Crossref]

Huang, J.

J. Huang and R. J. Pogorzelski, “A Ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Trans. Antennas Propag. 46(5), 650–656 (1998).
[Crossref]

Huangfu, J.

C. Ma, H. Li, B. Zhang, D. Ye, J. Huangfu, Y. Sun, W. Zhu, C. Li, and L. Ran, “Reconfigurable diffractive antenna with three degrees of freedom,” Electron. Lett. 53(22), 1452–1454 (2017).
[Crossref]

Hum, S. V.

S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review,” IEEE Trans. Antennas Propag. 62(1), 183–198 (2014).
[Crossref]

S. V. Hum, M. Okoniewski, and R. J. Davies, “Modeling and design of electronically tunable reflectarrays,” IEEE Trans. Antennas Propag. 55(8), 2200–2210 (2007).
[Crossref]

Iwasaki, T.

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524–2531 (2011).
[Crossref]

Jiang, S.

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, and S. Jiang, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antennas Propag. 65(8), 3959–3966 (2017).
[Crossref]

Kamoda, H.

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524–2531 (2011).
[Crossref]

Kazantsev, Y.

V. Butylkin, Y. Kazantsev, G. Kraftmakher, and V. Mal’tsev, “Voltage-controlled unidirectional propagation of microwaves in metastructures ferrite/conductive elements with varactors,” Appl. Phys. A 123(1), 57 (2017).
[Crossref]

Kraftmakher, G.

V. Butylkin, Y. Kazantsev, G. Kraftmakher, and V. Mal’tsev, “Voltage-controlled unidirectional propagation of microwaves in metastructures ferrite/conductive elements with varactors,” Appl. Phys. A 123(1), 57 (2017).
[Crossref]

Kuki, T.

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524–2531 (2011).
[Crossref]

Lai, W. E.

S. Gao, J. Yang, P. Wang, A. D. Zheng, H. B. Lu, G. S. Deng, W. E. Lai, and Z. P. Yin, “Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band,” Appl. Sci. 8(12), 2528 (2018).
[Crossref]

Li, C.

C. Ma, H. Li, B. Zhang, D. Ye, J. Huangfu, Y. Sun, W. Zhu, C. Li, and L. Ran, “Reconfigurable diffractive antenna with three degrees of freedom,” Electron. Lett. 53(22), 1452–1454 (2017).
[Crossref]

Li, H.

C. Ma, H. Li, B. Zhang, D. Ye, J. Huangfu, Y. Sun, W. Zhu, C. Li, and L. Ran, “Reconfigurable diffractive antenna with three degrees of freedom,” Electron. Lett. 53(22), 1452–1454 (2017).
[Crossref]

Li, J. X.

Li, M.

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, and S. Jiang, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antennas Propag. 65(8), 3959–3966 (2017).
[Crossref]

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Li, M. K.

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, J. Gao, and Y. J. Zheng, “A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas,” Antennas Wirel. Propag. Lett. 16, 302–305 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit Multi-Polarization Reflectarray Element for Reconfigurable Large Aperture Antennas,” Antennas Wirel. Propag. Lett. 16, 581–584 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, Y. L. Mao, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit 10×10 Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment,” IEEE Trans. Antennas Propag. 64(6), 2246–2254 (2016).
[Crossref]

F. Yang, S. H. Xu, X. T. Pan, X. Yang, J. Luo, M. Wang, Y. Wang, and M. K. Li, “Reconfigurable Reflectarrays and Transmitarrays: From Antenna Designs to System Applications,” in 12th European Conference on Antennas and Propagation (EuCAP, 2018), pp. 2656–2661.

Li, T.

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Liu, Ai-Q.

P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and Ai-Q. Liu, “Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface,” Adv. Opt. Mater. 5(7), 1600938 (2017).
[Crossref]

Lu, H. B.

S. Gao, J. Yang, P. Wang, A. D. Zheng, H. B. Lu, G. S. Deng, W. E. Lai, and Z. P. Yin, “Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band,” Appl. Sci. 8(12), 2528 (2018).
[Crossref]

Luo, J.

F. Yang, S. H. Xu, X. T. Pan, X. Yang, J. Luo, M. Wang, Y. Wang, and M. K. Li, “Reconfigurable Reflectarrays and Transmitarrays: From Antenna Designs to System Applications,” in 12th European Conference on Antennas and Propagation (EuCAP, 2018), pp. 2656–2661.

Ma, C.

C. Ma, H. Li, B. Zhang, D. Ye, J. Huangfu, Y. Sun, W. Zhu, C. Li, and L. Ran, “Reconfigurable diffractive antenna with three degrees of freedom,” Electron. Lett. 53(22), 1452–1454 (2017).
[Crossref]

Mal’tsev, V.

V. Butylkin, Y. Kazantsev, G. Kraftmakher, and V. Mal’tsev, “Voltage-controlled unidirectional propagation of microwaves in metastructures ferrite/conductive elements with varactors,” Appl. Phys. A 123(1), 57 (2017).
[Crossref]

Mao, Y. L.

H. H. Yang, F. Yang, S. H. Xu, Y. L. Mao, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit 10×10 Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment,” IEEE Trans. Antennas Propag. 64(6), 2246–2254 (2016).
[Crossref]

Massa, G. D.

S. Costanzo, F. Venneri, G. D. Massa, A. Borgia, and A. Raffo, “Bandwidth Performances of Reconfigurable Reflectarrays: State of Art and Future Challenges,” Radio Eng. 27(1), 1–9 (2018).
[Crossref]

Moghadas, H.

P. Mousavi, M. Daneshmand, and H. Moghadas, “Compact beam-reconfigurable feed for large aperture antennas,” IET Microw. Antennas Propag. 10(11), 1159–1166 (2016).
[Crossref]

Mousavi, P.

P. Mousavi, M. Daneshmand, and H. Moghadas, “Compact beam-reconfigurable feed for large aperture antennas,” IET Microw. Antennas Propag. 10(11), 1159–1166 (2016).
[Crossref]

Nguyen, B. D.

B. D. Nguyen and S. V. Tran, “Beam-steering reflectarray based on two-bit aperture-coupled reflectarray element,” J. Electromagnet. Wave. 32(1), 54–66 (2018).
[Crossref]

Okoniewski, M.

S. V. Hum, M. Okoniewski, and R. J. Davies, “Modeling and design of electronically tunable reflectarrays,” IEEE Trans. Antennas Propag. 55(8), 2200–2210 (2007).
[Crossref]

Paladhi, P. R.

A. Tayebi, J. Tang, P. R. Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, “Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna,” IEEE Trans. Antennas Propag. 63(10), 4534–4539 (2015).
[Crossref]

Palma, L. D.

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “1-bit reconfigurable unit cell for ka-band transmitarrays,” Antennas Wirel. Propag. Lett. 15, 560–563 (2016).
[Crossref]

Pan, X. T.

F. Yang, S. H. Xu, X. T. Pan, X. Yang, J. Luo, M. Wang, Y. Wang, and M. K. Li, “Reconfigurable Reflectarrays and Transmitarrays: From Antenna Designs to System Applications,” in 12th European Conference on Antennas and Propagation (EuCAP, 2018), pp. 2656–2661.

Perruisseau-Carrier, J.

S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review,” IEEE Trans. Antennas Propag. 62(1), 183–198 (2014).
[Crossref]

Pogorzelski, R. J.

J. Huang and R. J. Pogorzelski, “A Ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Trans. Antennas Propag. 46(5), 650–656 (1998).
[Crossref]

Potier, P.

L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Experimental characterization of a circularly-polarized 1-bit unit-cell for beam steerable transmitarrays at Ka-band,” IEEE Trans. Antennas Propag. 67(2), 1300–1305 (2019).
[Crossref]

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “1-bit reconfigurable unit cell for ka-band transmitarrays,” Antennas Wirel. Propag. Lett. 15, 560–563 (2016).
[Crossref]

Pouliguen, P.

L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Experimental characterization of a circularly-polarized 1-bit unit-cell for beam steerable transmitarrays at Ka-band,” IEEE Trans. Antennas Propag. 67(2), 1300–1305 (2019).
[Crossref]

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “1-bit reconfigurable unit cell for ka-band transmitarrays,” Antennas Wirel. Propag. Lett. 15, 560–563 (2016).
[Crossref]

Pozar, D. M.

D. M. Pozar, “Wideband reflectarrays using artificial impedance surfaces,” Electron. Lett. 43(3), 148–149 (2007).
[Crossref]

Raffo, A.

S. Costanzo, F. Venneri, G. D. Massa, A. Borgia, and A. Raffo, “Bandwidth Performances of Reconfigurable Reflectarrays: State of Art and Future Challenges,” Radio Eng. 27(1), 1–9 (2018).
[Crossref]

Ran, L.

C. Ma, H. Li, B. Zhang, D. Ye, J. Huangfu, Y. Sun, W. Zhu, C. Li, and L. Ran, “Reconfigurable diffractive antenna with three degrees of freedom,” Electron. Lett. 53(22), 1452–1454 (2017).
[Crossref]

Romanofsky, R. R.

R. R. Romanofsky, “Advances in scanning reflectarray antennas based on ferroelectric thin-film phase shifters for deep-space communications,” Proc. IEEE 95(10), 1968–1975 (2007).
[Crossref]

Rothwell, E. J.

A. Tayebi, J. Tang, P. R. Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, “Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna,” IEEE Trans. Antennas Propag. 63(10), 4534–4539 (2015).
[Crossref]

Sauleau, R.

L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Experimental characterization of a circularly-polarized 1-bit unit-cell for beam steerable transmitarrays at Ka-band,” IEEE Trans. Antennas Propag. 67(2), 1300–1305 (2019).
[Crossref]

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “1-bit reconfigurable unit cell for ka-band transmitarrays,” Antennas Wirel. Propag. Lett. 15, 560–563 (2016).
[Crossref]

Sekhar, V. N.

B. Chen, V. N. Sekhar, J. Cheng, Y. L. Ying, J. S. Toh, and S. Fernando, “Low-loss broadband package platform with surface passivation and tsv for wafer-level packaging of rf-mems devices,” IEEE Trans. Compon., Packag. Manufact. Technol. 3(9), 1443–1452 (2013).
[Crossref]

Ser, W.

P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and Ai-Q. Liu, “Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface,” Adv. Opt. Mater. 5(7), 1600938 (2017).
[Crossref]

Shaker, J.

J. Ethier, M. R. Chaharmir, and J. Shaker, “Reflectarray designcomprised of sub-wavelength coupled-resonant square loopelements,” Electron. Lett. 47(22), 1215–1217 (2011).
[Crossref]

Shen, Z. X.

P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and Ai-Q. Liu, “Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface,” Adv. Opt. Mater. 5(7), 1600938 (2017).
[Crossref]

Sun, Y.

C. Ma, H. Li, B. Zhang, D. Ye, J. Huangfu, Y. Sun, W. Zhu, C. Li, and L. Ran, “Reconfigurable diffractive antenna with three degrees of freedom,” Electron. Lett. 53(22), 1452–1454 (2017).
[Crossref]

Tang, J.

A. Tayebi, J. Tang, P. R. Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, “Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna,” IEEE Trans. Antennas Propag. 63(10), 4534–4539 (2015).
[Crossref]

Tayebi, A.

A. Tayebi, J. Tang, P. R. Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, “Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna,” IEEE Trans. Antennas Propag. 63(10), 4534–4539 (2015).
[Crossref]

Tian, J. G.

Toh, J. S.

B. Chen, V. N. Sekhar, J. Cheng, Y. L. Ying, J. S. Toh, and S. Fernando, “Low-loss broadband package platform with surface passivation and tsv for wafer-level packaging of rf-mems devices,” IEEE Trans. Compon., Packag. Manufact. Technol. 3(9), 1443–1452 (2013).
[Crossref]

Tran, S. V.

B. D. Nguyen and S. V. Tran, “Beam-steering reflectarray based on two-bit aperture-coupled reflectarray element,” J. Electromagnet. Wave. 32(1), 54–66 (2018).
[Crossref]

Tsai, D. P.

P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and Ai-Q. Liu, “Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface,” Adv. Opt. Mater. 5(7), 1600938 (2017).
[Crossref]

Tsumochi, J.

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524–2531 (2011).
[Crossref]

Udpa, L.

A. Tayebi, J. Tang, P. R. Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, “Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna,” IEEE Trans. Antennas Propag. 63(10), 4534–4539 (2015).
[Crossref]

Udpa, S. S.

A. Tayebi, J. Tang, P. R. Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, “Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna,” IEEE Trans. Antennas Propag. 63(10), 4534–4539 (2015).
[Crossref]

Venneri, F.

S. Costanzo, F. Venneri, G. D. Massa, A. Borgia, and A. Raffo, “Bandwidth Performances of Reconfigurable Reflectarrays: State of Art and Future Challenges,” Radio Eng. 27(1), 1–9 (2018).
[Crossref]

F. Venneri, S. Costanzo, and G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag. 61(2), 635–645 (2013).
[Crossref]

F. Venneri, S. Costanzo, and G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag. 61(2), 635–645 (2013).
[Crossref]

Wang, M.

F. Yang, S. H. Xu, X. T. Pan, X. Yang, J. Luo, M. Wang, Y. Wang, and M. K. Li, “Reconfigurable Reflectarrays and Transmitarrays: From Antenna Designs to System Applications,” in 12th European Conference on Antennas and Propagation (EuCAP, 2018), pp. 2656–2661.

Wang, P.

S. Gao, J. Yang, P. Wang, A. D. Zheng, H. B. Lu, G. S. Deng, W. E. Lai, and Z. P. Yin, “Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band,” Appl. Sci. 8(12), 2528 (2018).
[Crossref]

Wang, Y.

F. Yang, S. H. Xu, X. T. Pan, X. Yang, J. Luo, M. Wang, Y. Wang, and M. K. Li, “Reconfigurable Reflectarrays and Transmitarrays: From Antenna Designs to System Applications,” in 12th European Conference on Antennas and Propagation (EuCAP, 2018), pp. 2656–2661.

Wu, P. C.

P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and Ai-Q. Liu, “Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface,” Adv. Opt. Mater. 5(7), 1600938 (2017).
[Crossref]

Xu, S.

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, and S. Jiang, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antennas Propag. 65(8), 3959–3966 (2017).
[Crossref]

Xu, S. H.

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit Multi-Polarization Reflectarray Element for Reconfigurable Large Aperture Antennas,” Antennas Wirel. Propag. Lett. 16, 581–584 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, J. Gao, and Y. J. Zheng, “A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas,” Antennas Wirel. Propag. Lett. 16, 302–305 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, Y. L. Mao, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit 10×10 Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment,” IEEE Trans. Antennas Propag. 64(6), 2246–2254 (2016).
[Crossref]

F. Yang, S. H. Xu, X. T. Pan, X. Yang, J. Luo, M. Wang, Y. Wang, and M. K. Li, “Reconfigurable Reflectarrays and Transmitarrays: From Antenna Designs to System Applications,” in 12th European Conference on Antennas and Propagation (EuCAP, 2018), pp. 2656–2661.

Yang, F.

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit Multi-Polarization Reflectarray Element for Reconfigurable Large Aperture Antennas,” Antennas Wirel. Propag. Lett. 16, 581–584 (2017).
[Crossref]

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, and S. Jiang, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antennas Propag. 65(8), 3959–3966 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, J. Gao, and Y. J. Zheng, “A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas,” Antennas Wirel. Propag. Lett. 16, 302–305 (2017).
[Crossref]

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, Y. L. Mao, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit 10×10 Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment,” IEEE Trans. Antennas Propag. 64(6), 2246–2254 (2016).
[Crossref]

F. Yang, S. H. Xu, X. T. Pan, X. Yang, J. Luo, M. Wang, Y. Wang, and M. K. Li, “Reconfigurable Reflectarrays and Transmitarrays: From Antenna Designs to System Applications,” in 12th European Conference on Antennas and Propagation (EuCAP, 2018), pp. 2656–2661.

Yang, H.

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Yang, H. H.

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, J. Gao, and Y. J. Zheng, “A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas,” Antennas Wirel. Propag. Lett. 16, 302–305 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit Multi-Polarization Reflectarray Element for Reconfigurable Large Aperture Antennas,” Antennas Wirel. Propag. Lett. 16, 581–584 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, Y. L. Mao, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit 10×10 Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment,” IEEE Trans. Antennas Propag. 64(6), 2246–2254 (2016).
[Crossref]

Yang, J.

S. Gao, J. Yang, P. Wang, A. D. Zheng, H. B. Lu, G. S. Deng, W. E. Lai, and Z. P. Yin, “Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band,” Appl. Sci. 8(12), 2528 (2018).
[Crossref]

Yang, X.

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, and S. Jiang, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antennas Propag. 65(8), 3959–3966 (2017).
[Crossref]

F. Yang, S. H. Xu, X. T. Pan, X. Yang, J. Luo, M. Wang, Y. Wang, and M. K. Li, “Reconfigurable Reflectarrays and Transmitarrays: From Antenna Designs to System Applications,” in 12th European Conference on Antennas and Propagation (EuCAP, 2018), pp. 2656–2661.

Ye, D.

C. Ma, H. Li, B. Zhang, D. Ye, J. Huangfu, Y. Sun, W. Zhu, C. Li, and L. Ran, “Reconfigurable diffractive antenna with three degrees of freedom,” Electron. Lett. 53(22), 1452–1454 (2017).
[Crossref]

Yin, Z. P.

S. Gao, J. Yang, P. Wang, A. D. Zheng, H. B. Lu, G. S. Deng, W. E. Lai, and Z. P. Yin, “Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band,” Appl. Sci. 8(12), 2528 (2018).
[Crossref]

Ying, Y. L.

B. Chen, V. N. Sekhar, J. Cheng, Y. L. Ying, J. S. Toh, and S. Fernando, “Low-loss broadband package platform with surface passivation and tsv for wafer-level packaging of rf-mems devices,” IEEE Trans. Compon., Packag. Manufact. Technol. 3(9), 1443–1452 (2013).
[Crossref]

Yu, P.

Zhang, B.

C. Ma, H. Li, B. Zhang, D. Ye, J. Huangfu, Y. Sun, W. Zhu, C. Li, and L. Ran, “Reconfigurable diffractive antenna with three degrees of freedom,” Electron. Lett. 53(22), 1452–1454 (2017).
[Crossref]

Zheng, A. D.

S. Gao, J. Yang, P. Wang, A. D. Zheng, H. B. Lu, G. S. Deng, W. E. Lai, and Z. P. Yin, “Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band,” Appl. Sci. 8(12), 2528 (2018).
[Crossref]

Zheng, Y. J.

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, J. Gao, and Y. J. Zheng, “A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas,” Antennas Wirel. Propag. Lett. 16, 302–305 (2017).
[Crossref]

Zhu, W.

C. Ma, H. Li, B. Zhang, D. Ye, J. Huangfu, Y. Sun, W. Zhu, C. Li, and L. Ran, “Reconfigurable diffractive antenna with three degrees of freedom,” Electron. Lett. 53(22), 1452–1454 (2017).
[Crossref]

P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and Ai-Q. Liu, “Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface,” Adv. Opt. Mater. 5(7), 1600938 (2017).
[Crossref]

Adv. Opt. Mater. (1)

P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and Ai-Q. Liu, “Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface,” Adv. Opt. Mater. 5(7), 1600938 (2017).
[Crossref]

Antennas Wirel. Propag. Lett. (3)

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, J. Gao, and Y. J. Zheng, “A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas,” Antennas Wirel. Propag. Lett. 16, 302–305 (2017).
[Crossref]

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “1-bit reconfigurable unit cell for ka-band transmitarrays,” Antennas Wirel. Propag. Lett. 15, 560–563 (2016).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit Multi-Polarization Reflectarray Element for Reconfigurable Large Aperture Antennas,” Antennas Wirel. Propag. Lett. 16, 581–584 (2017).
[Crossref]

Appl. Phys. A (1)

V. Butylkin, Y. Kazantsev, G. Kraftmakher, and V. Mal’tsev, “Voltage-controlled unidirectional propagation of microwaves in metastructures ferrite/conductive elements with varactors,” Appl. Phys. A 123(1), 57 (2017).
[Crossref]

Appl. Sci. (1)

S. Gao, J. Yang, P. Wang, A. D. Zheng, H. B. Lu, G. S. Deng, W. E. Lai, and Z. P. Yin, “Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band,” Appl. Sci. 8(12), 2528 (2018).
[Crossref]

Electron. Lett. (3)

C. Ma, H. Li, B. Zhang, D. Ye, J. Huangfu, Y. Sun, W. Zhu, C. Li, and L. Ran, “Reconfigurable diffractive antenna with three degrees of freedom,” Electron. Lett. 53(22), 1452–1454 (2017).
[Crossref]

D. M. Pozar, “Wideband reflectarrays using artificial impedance surfaces,” Electron. Lett. 43(3), 148–149 (2007).
[Crossref]

J. Ethier, M. R. Chaharmir, and J. Shaker, “Reflectarray designcomprised of sub-wavelength coupled-resonant square loopelements,” Electron. Lett. 47(22), 1215–1217 (2011).
[Crossref]

IEEE Trans. Antennas Propag. (11)

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, and S. Jiang, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antennas Propag. 65(8), 3959–3966 (2017).
[Crossref]

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524–2531 (2011).
[Crossref]

F. Venneri, S. Costanzo, and G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag. 61(2), 635–645 (2013).
[Crossref]

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

A. Tayebi, J. Tang, P. R. Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, “Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna,” IEEE Trans. Antennas Propag. 63(10), 4534–4539 (2015).
[Crossref]

L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Experimental characterization of a circularly-polarized 1-bit unit-cell for beam steerable transmitarrays at Ka-band,” IEEE Trans. Antennas Propag. 67(2), 1300–1305 (2019).
[Crossref]

F. Venneri, S. Costanzo, and G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag. 61(2), 635–645 (2013).
[Crossref]

S. V. Hum, M. Okoniewski, and R. J. Davies, “Modeling and design of electronically tunable reflectarrays,” IEEE Trans. Antennas Propag. 55(8), 2200–2210 (2007).
[Crossref]

J. Huang and R. J. Pogorzelski, “A Ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Trans. Antennas Propag. 46(5), 650–656 (1998).
[Crossref]

S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review,” IEEE Trans. Antennas Propag. 62(1), 183–198 (2014).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, Y. L. Mao, M. K. Li, X. Y. Cao, and J. Gao, “A 1-Bit 10×10 Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment,” IEEE Trans. Antennas Propag. 64(6), 2246–2254 (2016).
[Crossref]

IEEE Trans. Compon., Packag. Manufact. Technol. (1)

B. Chen, V. N. Sekhar, J. Cheng, Y. L. Ying, J. S. Toh, and S. Fernando, “Low-loss broadband package platform with surface passivation and tsv for wafer-level packaging of rf-mems devices,” IEEE Trans. Compon., Packag. Manufact. Technol. 3(9), 1443–1452 (2013).
[Crossref]

IET Microw. Antennas Propag. (1)

P. Mousavi, M. Daneshmand, and H. Moghadas, “Compact beam-reconfigurable feed for large aperture antennas,” IET Microw. Antennas Propag. 10(11), 1159–1166 (2016).
[Crossref]

J. Electromagnet. Wave. (1)

B. D. Nguyen and S. V. Tran, “Beam-steering reflectarray based on two-bit aperture-coupled reflectarray element,” J. Electromagnet. Wave. 32(1), 54–66 (2018).
[Crossref]

Opt. Lett. (1)

Proc. IEEE (1)

R. R. Romanofsky, “Advances in scanning reflectarray antennas based on ferroelectric thin-film phase shifters for deep-space communications,” Proc. IEEE 95(10), 1968–1975 (2007).
[Crossref]

Radio Eng. (1)

S. Costanzo, F. Venneri, G. D. Massa, A. Borgia, and A. Raffo, “Bandwidth Performances of Reconfigurable Reflectarrays: State of Art and Future Challenges,” Radio Eng. 27(1), 1–9 (2018).
[Crossref]

Other (2)

F. Yang, S. H. Xu, X. T. Pan, X. Yang, J. Luo, M. Wang, Y. Wang, and M. K. Li, “Reconfigurable Reflectarrays and Transmitarrays: From Antenna Designs to System Applications,” in 12th European Conference on Antennas and Propagation (EuCAP, 2018), pp. 2656–2661.

E. Carrasco, M. Barba, J. A. Encinar, and M. Arrebola, “Sectored-beam reflectarray antenna with pattern reconfiguration by using RF-MEMS switches,” in European Conference on Antennas and Propagation, (Academic, 2012), pp. 3561–3564.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. The ARE structure.(a) three-dimensional view; (b) top view; (c) front view.
Fig. 2.
Fig. 2. The reflection characteristics of ARE (the meaning of the shaded area is to indicate the bandwidth of operation): (a) reflection amplitude; (b) reflection phase.
Fig. 3.
Fig. 3. (a) The ARE-OLP structure; (b) the induced current distribution in on-state; (c) the induced current in off-state; (d) the ARE loading PIN diode and capacitor (ARE-LPC); (e) the induced current of ARE-LPC in on-state; (f) the induced current of ARE-LPC in off-state.
Fig. 4.
Fig. 4. The 2-D reflection characteristics of ARE-OLP vary with the size of the patch.(the reflection amplitudes with (a) off-state, (b) on-state, and (c) phase difference).
Fig. 5.
Fig. 5. The reflection (a) amplitude and (b) phase of ARE-OLP with px = 6, py = 7.3.
Fig. 6.
Fig. 6. The reflection amplitudes of ARE-LPC at different capacitances in (a) off-state and (b) on-state. (c) The phase differences of ARE-LPC at different capacitances.
Fig. 7.
Fig. 7. (a) The electronic devices position in coordinate system. (b) Four length parameters (s1, s2, s3, s4) of A-ARE
Fig. 8.
Fig. 8. (a) The phase differences of PIN diode at the different potions. The reflected amplitude varies with capacitor potions of (b) off-state and (c) on-state.
Fig. 9.
Fig. 9. The surface current distributions at ((x1=−1.5, y1=−3)(x2=1.8, y2=2.5))in (a) off-state and (b) on-state, ((x1=−0.5, y1=−0.5)(x2=0.7, y2=0.7)) in (c) off-state and (d) on-state, ((x1=−0.2, y1=−0.4)(x2=1.4, y2=2)) in (e) off-state and (f) on-state.
Fig. 10.
Fig. 10. The phase differences vary with (a)s1 and(b)s3. The amplitudes vary with (c)s2 and(d)s4.
Fig. 11.
Fig. 11. (a) The phase differences vary with incident angle. (b) The amplitudes of on-state vary with incident angle. (c) The amplitudes of off-state vary with incident angle.
Fig. 12.
Fig. 12. (a) and (b) show the fabricated physical model. (c) the schematic illustration of the measurement setup. (d) the detail of element model.
Fig. 13.
Fig. 13. Simulated and measured element performance.