Abstract

An axisymmetric model of 50 nm titanium thin film on glass substrate is proposed to study the mechanism of pulsed-laser-induced oxidation of titanium. The oxidation rate is determined by the oxygen ions migration rate, which is significantly influenced by the laser-induced Mott potential and temperature. The oxidation processes are calculated by finite-difference time-domain method. The simulation results are in good agreement with experiment results, which verify that the laser-induced Cabrera-Mott oxidation theory is the mechanism of laser-induced oxidation of titanium. This work is beneficial to study the improvements for fabricating TiO$_{2}$ nanostructured materials on the resolution and efficiency.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of the laser oxidation kinetics process of In-In2O3 MTMO photomasks by laser direct writing

Feng Xia, Xinzheng Zhang, Meng Wang, Qian Liu, and Jingjun Xu
Opt. Express 23(22) 29193-29201 (2015)

Stoichiometry and structure driven optical properties of carbon incorporated titanium oxide thin films

Chang Mook Lee and Jaewu Choi
Opt. Mater. Express 6(11) 3594-3608 (2016)

Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses

Xian-Feng Li, Cheng-Yun Zhang, Hui Li, Qiao-Feng Dai, Sheng Lan, and Shao-Long Tie
Opt. Express 22(23) 28086-28099 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu, “Recent progress in design, synthesis, and applications of one-dimensional tio2 nanostructured surface heterostructures: a review,” Chem. Soc. Rev. 43(20), 6920–6937 (2014).
    [Crossref]
  2. J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
    [Crossref]
  3. D. Zhou, Z. Chen, T. Gao, F. Niu, L. Qin, and Y. Huang, “Hydrogen generation from water splitting on TiO2 nanotube-array-based photocatalysts,” Energy Technol. 3(9), 888–895 (2015).
    [Crossref]
  4. T. Amna, M. S. Hassan, A. Yousef, A. Mishra, N. A. M. Barakat, M.-S. Khil, and H. Y. Kim, “Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: A novel biomaterial system,” Food Bioprocess Technol. 6(4), 988–996 (2013).
    [Crossref]
  5. J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, and G. Shao, “Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance,” Appl. Surf. Sci. 319, 75–82 (2014).
    [Crossref]
  6. J. Bai and B. Zhou, “Titanium dioxide nanomaterials for sensor applications,” Chem. Rev. 114(19), 10131–10176 (2014).
    [Crossref]
  7. A. Pérez del Pino, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surf. Coat. Technol. 187(1), 106–112 (2004).
    [Crossref]
  8. D. P. Adams, R. D. Murphy, D. J. Saiz, D. A. Hirschfeld, M. A. Rodriguez, P. G. Kotula, and B. H. Jared, “Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal,” Surf. Coat. Technol. 248, 38–45 (2014).
    [Crossref]
  9. A. J. Antończak, Ł. Skowroński, M. Trzcinski, V. V. Kinzhybalo, Ł. K. Łazarek, and K. M. Abramski, “Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers,” Appl. Surf. Sci. 325, 217–226 (2015).
    [Crossref]
  10. T. Jwad, S. Deng, H. Butt, and S. Dimov, “Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
    [Crossref]
  11. A. A. Gorbunov, H. Eichler, W. Pompe, and B. Huey, “Lateral self-limitation in the laser-induced oxidation of ultrathin metal films,” Appl. Phys. Lett. 69(19), 2816–2818 (1996).
    [Crossref]
  12. Y. Wang, J. Miao, Y. Tian, C. Guo, J. Zhang, T. Ren, and Q. Liu, “TiO$_2$2 micro-devices fabricated by laser direct writing,” Opt. Express 19(18), 17390–17395 (2011).
    [Crossref]
  13. Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2 nanoribbons,” Nanoscale 4(5), 1545–1548 (2012).
    [Crossref]
  14. L. Lavisse, D. Grevey, C. Langlade, and B. Vannes, “The early stage of the laser-induced oxidation of titanium substrates,” Appl. Surf. Sci. 186(1-4), 150–155 (2002).
    [Crossref]
  15. E. Shakhno, D. Sinev, and A. Kulazhkin, “Features of laser oxidation of thin films of titanium,” J. Opt. Technol. 81(5), 298–302 (2014).
    [Crossref]
  16. G. P. Burns, “Titanium dioxide dielectric films formed by rapid thermal oxidation,” J. Appl. Phys. 65(5), 2095–2097 (1989).
    [Crossref]
  17. F. Xia, X. Zhang, M. Wang, Q. Liu, and J. Xu, “Analysis of the laser oxidation kinetics process of In-In2O3 mtmo photomasks by laser direct writing,” Opt. Express 23(22), 29193–29201 (2015).
    [Crossref]
  18. N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12(1), 163–184 (1949).
    [Crossref]
  19. A. Atkinson, “Transport processes during the growth of oxide films at elevated temperature,” Rev. Mod. Phys. 57(2), 437–470 (1985).
    [Crossref]
  20. G. Wang, J. Li, K. Lv, W. Zhang, X. Ding, G. Yang, X. Liu, and X. Jiang, “Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration,” Sci. Rep. 6(1), 31769 (2016).
    [Crossref]
  21. M. Tsuchiya, S. K. Sankaranarayanan, and S. Ramanathan, “Photon-assisted oxidation and oxide thin film synthesis: A review,” Prog. Mater. Sci. 54(7), 981–1057 (2009).
    [Crossref]
  22. H. Iddir, S. Öğüt, P. Zapol, and N. D. Browning, “Diffusion mechanisms of native point defects in rutile TiO$_2$2: Ab initio total-energy calculations,” Phys. Rev. B 75(7), 073203 (2007).
    [Crossref]
  23. M. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, A. Selloni, and U. Diebold, “Reaction of O$_2$2 with subsurface oxygen vacancies on TiO$_2$2 anatase (101),” Science 341(6149), 988–991 (2013).
    [Crossref]
  24. H. B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys. 48(11), 4729–4733 (1977).
    [Crossref]
  25. S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of tio2,” Surfaces 1(1), 73–89 (2018).
    [Crossref]
  26. H. Peiman, W. C. David, and B. Harish, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
    [Crossref]
  27. J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahé, “Structure and composition of passive titanium oxide films,” Mater. Sci. Eng. B 47(3), 235–243 (1997).
    [Crossref]

2018 (1)

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of tio2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

2016 (2)

G. Wang, J. Li, K. Lv, W. Zhang, X. Ding, G. Yang, X. Liu, and X. Jiang, “Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration,” Sci. Rep. 6(1), 31769 (2016).
[Crossref]

T. Jwad, S. Deng, H. Butt, and S. Dimov, “Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
[Crossref]

2015 (3)

F. Xia, X. Zhang, M. Wang, Q. Liu, and J. Xu, “Analysis of the laser oxidation kinetics process of In-In2O3 mtmo photomasks by laser direct writing,” Opt. Express 23(22), 29193–29201 (2015).
[Crossref]

D. Zhou, Z. Chen, T. Gao, F. Niu, L. Qin, and Y. Huang, “Hydrogen generation from water splitting on TiO2 nanotube-array-based photocatalysts,” Energy Technol. 3(9), 888–895 (2015).
[Crossref]

A. J. Antończak, Ł. Skowroński, M. Trzcinski, V. V. Kinzhybalo, Ł. K. Łazarek, and K. M. Abramski, “Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers,” Appl. Surf. Sci. 325, 217–226 (2015).
[Crossref]

2014 (6)

D. P. Adams, R. D. Murphy, D. J. Saiz, D. A. Hirschfeld, M. A. Rodriguez, P. G. Kotula, and B. H. Jared, “Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal,” Surf. Coat. Technol. 248, 38–45 (2014).
[Crossref]

J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, and G. Shao, “Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance,” Appl. Surf. Sci. 319, 75–82 (2014).
[Crossref]

J. Bai and B. Zhou, “Titanium dioxide nanomaterials for sensor applications,” Chem. Rev. 114(19), 10131–10176 (2014).
[Crossref]

J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu, “Recent progress in design, synthesis, and applications of one-dimensional tio2 nanostructured surface heterostructures: a review,” Chem. Soc. Rev. 43(20), 6920–6937 (2014).
[Crossref]

E. Shakhno, D. Sinev, and A. Kulazhkin, “Features of laser oxidation of thin films of titanium,” J. Opt. Technol. 81(5), 298–302 (2014).
[Crossref]

H. Peiman, W. C. David, and B. Harish, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref]

2013 (3)

M. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, A. Selloni, and U. Diebold, “Reaction of O$_2$2 with subsurface oxygen vacancies on TiO$_2$2 anatase (101),” Science 341(6149), 988–991 (2013).
[Crossref]

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

T. Amna, M. S. Hassan, A. Yousef, A. Mishra, N. A. M. Barakat, M.-S. Khil, and H. Y. Kim, “Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: A novel biomaterial system,” Food Bioprocess Technol. 6(4), 988–996 (2013).
[Crossref]

2012 (1)

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2 nanoribbons,” Nanoscale 4(5), 1545–1548 (2012).
[Crossref]

2011 (1)

2009 (1)

M. Tsuchiya, S. K. Sankaranarayanan, and S. Ramanathan, “Photon-assisted oxidation and oxide thin film synthesis: A review,” Prog. Mater. Sci. 54(7), 981–1057 (2009).
[Crossref]

2007 (1)

H. Iddir, S. Öğüt, P. Zapol, and N. D. Browning, “Diffusion mechanisms of native point defects in rutile TiO$_2$2: Ab initio total-energy calculations,” Phys. Rev. B 75(7), 073203 (2007).
[Crossref]

2004 (1)

A. Pérez del Pino, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surf. Coat. Technol. 187(1), 106–112 (2004).
[Crossref]

2002 (1)

L. Lavisse, D. Grevey, C. Langlade, and B. Vannes, “The early stage of the laser-induced oxidation of titanium substrates,” Appl. Surf. Sci. 186(1-4), 150–155 (2002).
[Crossref]

1997 (1)

J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahé, “Structure and composition of passive titanium oxide films,” Mater. Sci. Eng. B 47(3), 235–243 (1997).
[Crossref]

1996 (1)

A. A. Gorbunov, H. Eichler, W. Pompe, and B. Huey, “Lateral self-limitation in the laser-induced oxidation of ultrathin metal films,” Appl. Phys. Lett. 69(19), 2816–2818 (1996).
[Crossref]

1989 (1)

G. P. Burns, “Titanium dioxide dielectric films formed by rapid thermal oxidation,” J. Appl. Phys. 65(5), 2095–2097 (1989).
[Crossref]

1985 (1)

A. Atkinson, “Transport processes during the growth of oxide films at elevated temperature,” Rev. Mod. Phys. 57(2), 437–470 (1985).
[Crossref]

1977 (1)

H. B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys. 48(11), 4729–4733 (1977).
[Crossref]

1949 (1)

N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12(1), 163–184 (1949).
[Crossref]

Abramski, K. M.

A. J. Antończak, Ł. Skowroński, M. Trzcinski, V. V. Kinzhybalo, Ł. K. Łazarek, and K. M. Abramski, “Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers,” Appl. Surf. Sci. 325, 217–226 (2015).
[Crossref]

Adams, D. P.

D. P. Adams, R. D. Murphy, D. J. Saiz, D. A. Hirschfeld, M. A. Rodriguez, P. G. Kotula, and B. H. Jared, “Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal,” Surf. Coat. Technol. 248, 38–45 (2014).
[Crossref]

Amna, T.

T. Amna, M. S. Hassan, A. Yousef, A. Mishra, N. A. M. Barakat, M.-S. Khil, and H. Y. Kim, “Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: A novel biomaterial system,” Food Bioprocess Technol. 6(4), 988–996 (2013).
[Crossref]

Antonczak, A. J.

A. J. Antończak, Ł. Skowroński, M. Trzcinski, V. V. Kinzhybalo, Ł. K. Łazarek, and K. M. Abramski, “Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers,” Appl. Surf. Sci. 325, 217–226 (2015).
[Crossref]

Aschauer, U.

M. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, A. Selloni, and U. Diebold, “Reaction of O$_2$2 with subsurface oxygen vacancies on TiO$_2$2 anatase (101),” Science 341(6149), 988–991 (2013).
[Crossref]

Atkinson, A.

A. Atkinson, “Transport processes during the growth of oxide films at elevated temperature,” Rev. Mod. Phys. 57(2), 437–470 (1985).
[Crossref]

Bai, J.

J. Bai and B. Zhou, “Titanium dioxide nanomaterials for sensor applications,” Chem. Rev. 114(19), 10131–10176 (2014).
[Crossref]

Barakat, N. A. M.

T. Amna, M. S. Hassan, A. Yousef, A. Mishra, N. A. M. Barakat, M.-S. Khil, and H. Y. Kim, “Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: A novel biomaterial system,” Food Bioprocess Technol. 6(4), 988–996 (2013).
[Crossref]

Boughton, R. I.

J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu, “Recent progress in design, synthesis, and applications of one-dimensional tio2 nanostructured surface heterostructures: a review,” Chem. Soc. Rev. 43(20), 6920–6937 (2014).
[Crossref]

Browning, N. D.

H. Iddir, S. Öğüt, P. Zapol, and N. D. Browning, “Diffusion mechanisms of native point defects in rutile TiO$_2$2: Ab initio total-energy calculations,” Phys. Rev. B 75(7), 073203 (2007).
[Crossref]

Burns, G. P.

G. P. Burns, “Titanium dioxide dielectric films formed by rapid thermal oxidation,” J. Appl. Phys. 65(5), 2095–2097 (1989).
[Crossref]

Butt, H.

T. Jwad, S. Deng, H. Butt, and S. Dimov, “Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
[Crossref]

Cabrera, N.

N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12(1), 163–184 (1949).
[Crossref]

Cai, H.

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

Chen, S.

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

Chen, Z.

D. Zhou, Z. Chen, T. Gao, F. Niu, L. Qin, and Y. Huang, “Hydrogen generation from water splitting on TiO2 nanotube-array-based photocatalysts,” Energy Technol. 3(9), 888–895 (2015).
[Crossref]

David, W. C.

H. Peiman, W. C. David, and B. Harish, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref]

Deng, S.

T. Jwad, S. Deng, H. Butt, and S. Dimov, “Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
[Crossref]

Devilliers, D.

J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahé, “Structure and composition of passive titanium oxide films,” Mater. Sci. Eng. B 47(3), 235–243 (1997).
[Crossref]

Diebold, U.

M. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, A. Selloni, and U. Diebold, “Reaction of O$_2$2 with subsurface oxygen vacancies on TiO$_2$2 anatase (101),” Science 341(6149), 988–991 (2013).
[Crossref]

Dimov, S.

T. Jwad, S. Deng, H. Butt, and S. Dimov, “Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
[Crossref]

Ding, X.

G. Wang, J. Li, K. Lv, W. Zhang, X. Ding, G. Yang, X. Liu, and X. Jiang, “Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration,” Sci. Rep. 6(1), 31769 (2016).
[Crossref]

Durand-Vidal, S.

J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahé, “Structure and composition of passive titanium oxide films,” Mater. Sci. Eng. B 47(3), 235–243 (1997).
[Crossref]

Eichler, H.

A. A. Gorbunov, H. Eichler, W. Pompe, and B. Huey, “Lateral self-limitation in the laser-induced oxidation of ultrathin metal films,” Appl. Phys. Lett. 69(19), 2816–2818 (1996).
[Crossref]

Fan, J.

J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, and G. Shao, “Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance,” Appl. Surf. Sci. 319, 75–82 (2014).
[Crossref]

Fernández-Pradas, J. M.

A. Pérez del Pino, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surf. Coat. Technol. 187(1), 106–112 (2004).
[Crossref]

Gao, T.

D. Zhou, Z. Chen, T. Gao, F. Niu, L. Qin, and Y. Huang, “Hydrogen generation from water splitting on TiO2 nanotube-array-based photocatalysts,” Energy Technol. 3(9), 888–895 (2015).
[Crossref]

Garrido, F.

J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahé, “Structure and composition of passive titanium oxide films,” Mater. Sci. Eng. B 47(3), 235–243 (1997).
[Crossref]

Gorbunov, A. A.

A. A. Gorbunov, H. Eichler, W. Pompe, and B. Huey, “Lateral self-limitation in the laser-induced oxidation of ultrathin metal films,” Appl. Phys. Lett. 69(19), 2816–2818 (1996).
[Crossref]

Grevey, D.

L. Lavisse, D. Grevey, C. Langlade, and B. Vannes, “The early stage of the laser-induced oxidation of titanium substrates,” Appl. Surf. Sci. 186(1-4), 150–155 (2002).
[Crossref]

Guo, C.

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2 nanoribbons,” Nanoscale 4(5), 1545–1548 (2012).
[Crossref]

Y. Wang, J. Miao, Y. Tian, C. Guo, J. Zhang, T. Ren, and Q. Liu, “TiO$_2$2 micro-devices fabricated by laser direct writing,” Opt. Express 19(18), 17390–17395 (2011).
[Crossref]

Harish, B.

H. Peiman, W. C. David, and B. Harish, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref]

Hassan, M. S.

T. Amna, M. S. Hassan, A. Yousef, A. Mishra, N. A. M. Barakat, M.-S. Khil, and H. Y. Kim, “Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: A novel biomaterial system,” Food Bioprocess Technol. 6(4), 988–996 (2013).
[Crossref]

Hirschfeld, D. A.

D. P. Adams, R. D. Murphy, D. J. Saiz, D. A. Hirschfeld, M. A. Rodriguez, P. G. Kotula, and B. H. Jared, “Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal,” Surf. Coat. Technol. 248, 38–45 (2014).
[Crossref]

Hou, W.

M. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, A. Selloni, and U. Diebold, “Reaction of O$_2$2 with subsurface oxygen vacancies on TiO$_2$2 anatase (101),” Science 341(6149), 988–991 (2013).
[Crossref]

Hu, J.

J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, and G. Shao, “Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance,” Appl. Surf. Sci. 319, 75–82 (2014).
[Crossref]

Huang, H.

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

Huang, Y.

D. Zhou, Z. Chen, T. Gao, F. Niu, L. Qin, and Y. Huang, “Hydrogen generation from water splitting on TiO2 nanotube-array-based photocatalysts,” Energy Technol. 3(9), 888–895 (2015).
[Crossref]

Huey, B.

A. A. Gorbunov, H. Eichler, W. Pompe, and B. Huey, “Lateral self-limitation in the laser-induced oxidation of ultrathin metal films,” Appl. Phys. Lett. 69(19), 2816–2818 (1996).
[Crossref]

Iddir, H.

H. Iddir, S. Öğüt, P. Zapol, and N. D. Browning, “Diffusion mechanisms of native point defects in rutile TiO$_2$2: Ab initio total-energy calculations,” Phys. Rev. B 75(7), 073203 (2007).
[Crossref]

Jaegermann, W.

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of tio2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Jared, B. H.

D. P. Adams, R. D. Murphy, D. J. Saiz, D. A. Hirschfeld, M. A. Rodriguez, P. G. Kotula, and B. H. Jared, “Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal,” Surf. Coat. Technol. 248, 38–45 (2014).
[Crossref]

Jiang, X.

G. Wang, J. Li, K. Lv, W. Zhang, X. Ding, G. Yang, X. Liu, and X. Jiang, “Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration,” Sci. Rep. 6(1), 31769 (2016).
[Crossref]

Jwad, T.

T. Jwad, S. Deng, H. Butt, and S. Dimov, “Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
[Crossref]

Kang, X.

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

Kashiwaya, S.

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of tio2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Khil, M.-S.

T. Amna, M. S. Hassan, A. Yousef, A. Mishra, N. A. M. Barakat, M.-S. Khil, and H. Y. Kim, “Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: A novel biomaterial system,” Food Bioprocess Technol. 6(4), 988–996 (2013).
[Crossref]

Kim, H. Y.

T. Amna, M. S. Hassan, A. Yousef, A. Mishra, N. A. M. Barakat, M.-S. Khil, and H. Y. Kim, “Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: A novel biomaterial system,” Food Bioprocess Technol. 6(4), 988–996 (2013).
[Crossref]

Kinzhybalo, V. V.

A. J. Antończak, Ł. Skowroński, M. Trzcinski, V. V. Kinzhybalo, Ł. K. Łazarek, and K. M. Abramski, “Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers,” Appl. Surf. Sci. 325, 217–226 (2015).
[Crossref]

Klein, A.

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of tio2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Kotula, P. G.

D. P. Adams, R. D. Murphy, D. J. Saiz, D. A. Hirschfeld, M. A. Rodriguez, P. G. Kotula, and B. H. Jared, “Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal,” Surf. Coat. Technol. 248, 38–45 (2014).
[Crossref]

Kulazhkin, A.

Kumar, A.

J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu, “Recent progress in design, synthesis, and applications of one-dimensional tio2 nanostructured surface heterostructures: a review,” Chem. Soc. Rev. 43(20), 6920–6937 (2014).
[Crossref]

Langlade, C.

L. Lavisse, D. Grevey, C. Langlade, and B. Vannes, “The early stage of the laser-induced oxidation of titanium substrates,” Appl. Surf. Sci. 186(1-4), 150–155 (2002).
[Crossref]

Lavisse, L.

L. Lavisse, D. Grevey, C. Langlade, and B. Vannes, “The early stage of the laser-induced oxidation of titanium substrates,” Appl. Surf. Sci. 186(1-4), 150–155 (2002).
[Crossref]

Lazarek, L. K.

A. J. Antończak, Ł. Skowroński, M. Trzcinski, V. V. Kinzhybalo, Ł. K. Łazarek, and K. M. Abramski, “Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers,” Appl. Surf. Sci. 325, 217–226 (2015).
[Crossref]

Li, J.

G. Wang, J. Li, K. Lv, W. Zhang, X. Ding, G. Yang, X. Liu, and X. Jiang, “Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration,” Sci. Rep. 6(1), 31769 (2016).
[Crossref]

Li, Y.-F.

M. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, A. Selloni, and U. Diebold, “Reaction of O$_2$2 with subsurface oxygen vacancies on TiO$_2$2 anatase (101),” Science 341(6149), 988–991 (2013).
[Crossref]

Li, Z.

J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, and G. Shao, “Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance,” Appl. Surf. Sci. 319, 75–82 (2014).
[Crossref]

Liu, H.

J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu, “Recent progress in design, synthesis, and applications of one-dimensional tio2 nanostructured surface heterostructures: a review,” Chem. Soc. Rev. 43(20), 6920–6937 (2014).
[Crossref]

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

Liu, Q.

Liu, X.

G. Wang, J. Li, K. Lv, W. Zhang, X. Ding, G. Yang, X. Liu, and X. Jiang, “Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration,” Sci. Rep. 6(1), 31769 (2016).
[Crossref]

Lv, K.

G. Wang, J. Li, K. Lv, W. Zhang, X. Ding, G. Yang, X. Liu, and X. Jiang, “Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration,” Sci. Rep. 6(1), 31769 (2016).
[Crossref]

Mahé, E.

J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahé, “Structure and composition of passive titanium oxide films,” Mater. Sci. Eng. B 47(3), 235–243 (1997).
[Crossref]

Miao, J.

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2 nanoribbons,” Nanoscale 4(5), 1545–1548 (2012).
[Crossref]

Y. Wang, J. Miao, Y. Tian, C. Guo, J. Zhang, T. Ren, and Q. Liu, “TiO$_2$2 micro-devices fabricated by laser direct writing,” Opt. Express 19(18), 17390–17395 (2011).
[Crossref]

Miao, Y.

J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, and G. Shao, “Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance,” Appl. Surf. Sci. 319, 75–82 (2014).
[Crossref]

Michaelson, H. B.

H. B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys. 48(11), 4729–4733 (1977).
[Crossref]

Mishra, A.

T. Amna, M. S. Hassan, A. Yousef, A. Mishra, N. A. M. Barakat, M.-S. Khil, and H. Y. Kim, “Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: A novel biomaterial system,” Food Bioprocess Technol. 6(4), 988–996 (2013).
[Crossref]

Morasch, J.

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of tio2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Morenza, J. L.

A. Pérez del Pino, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surf. Coat. Technol. 187(1), 106–112 (2004).
[Crossref]

Mott, N. F.

N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12(1), 163–184 (1949).
[Crossref]

Murphy, R. D.

D. P. Adams, R. D. Murphy, D. J. Saiz, D. A. Hirschfeld, M. A. Rodriguez, P. G. Kotula, and B. H. Jared, “Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal,” Surf. Coat. Technol. 248, 38–45 (2014).
[Crossref]

Niu, F.

D. Zhou, Z. Chen, T. Gao, F. Niu, L. Qin, and Y. Huang, “Hydrogen generation from water splitting on TiO2 nanotube-array-based photocatalysts,” Energy Technol. 3(9), 888–895 (2015).
[Crossref]

Ögüt, S.

H. Iddir, S. Öğüt, P. Zapol, and N. D. Browning, “Diffusion mechanisms of native point defects in rutile TiO$_2$2: Ab initio total-energy calculations,” Phys. Rev. B 75(7), 073203 (2007).
[Crossref]

Peiman, H.

H. Peiman, W. C. David, and B. Harish, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref]

Pérez del Pino, A.

A. Pérez del Pino, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surf. Coat. Technol. 187(1), 106–112 (2004).
[Crossref]

Pompe, W.

A. A. Gorbunov, H. Eichler, W. Pompe, and B. Huey, “Lateral self-limitation in the laser-induced oxidation of ultrathin metal films,” Appl. Phys. Lett. 69(19), 2816–2818 (1996).
[Crossref]

Pouilleau, J.

J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahé, “Structure and composition of passive titanium oxide films,” Mater. Sci. Eng. B 47(3), 235–243 (1997).
[Crossref]

Qin, L.

D. Zhou, Z. Chen, T. Gao, F. Niu, L. Qin, and Y. Huang, “Hydrogen generation from water splitting on TiO2 nanotube-array-based photocatalysts,” Energy Technol. 3(9), 888–895 (2015).
[Crossref]

Ramanathan, S.

M. Tsuchiya, S. K. Sankaranarayanan, and S. Ramanathan, “Photon-assisted oxidation and oxide thin film synthesis: A review,” Prog. Mater. Sci. 54(7), 981–1057 (2009).
[Crossref]

Ren, T.

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2 nanoribbons,” Nanoscale 4(5), 1545–1548 (2012).
[Crossref]

Y. Wang, J. Miao, Y. Tian, C. Guo, J. Zhang, T. Ren, and Q. Liu, “TiO$_2$2 micro-devices fabricated by laser direct writing,” Opt. Express 19(18), 17390–17395 (2011).
[Crossref]

Rodriguez, M. A.

D. P. Adams, R. D. Murphy, D. J. Saiz, D. A. Hirschfeld, M. A. Rodriguez, P. G. Kotula, and B. H. Jared, “Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal,” Surf. Coat. Technol. 248, 38–45 (2014).
[Crossref]

Saiz, D. J.

D. P. Adams, R. D. Murphy, D. J. Saiz, D. A. Hirschfeld, M. A. Rodriguez, P. G. Kotula, and B. H. Jared, “Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal,” Surf. Coat. Technol. 248, 38–45 (2014).
[Crossref]

Sang, Y.

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

Sankaranarayanan, S. K.

M. Tsuchiya, S. K. Sankaranarayanan, and S. Ramanathan, “Photon-assisted oxidation and oxide thin film synthesis: A review,” Prog. Mater. Sci. 54(7), 981–1057 (2009).
[Crossref]

Scheiber, P.

M. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, A. Selloni, and U. Diebold, “Reaction of O$_2$2 with subsurface oxygen vacancies on TiO$_2$2 anatase (101),” Science 341(6149), 988–991 (2013).
[Crossref]

Schmid, M.

M. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, A. Selloni, and U. Diebold, “Reaction of O$_2$2 with subsurface oxygen vacancies on TiO$_2$2 anatase (101),” Science 341(6149), 988–991 (2013).
[Crossref]

Selloni, A.

M. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, A. Selloni, and U. Diebold, “Reaction of O$_2$2 with subsurface oxygen vacancies on TiO$_2$2 anatase (101),” Science 341(6149), 988–991 (2013).
[Crossref]

Serra, P.

A. Pérez del Pino, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surf. Coat. Technol. 187(1), 106–112 (2004).
[Crossref]

Setvín, M.

M. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, A. Selloni, and U. Diebold, “Reaction of O$_2$2 with subsurface oxygen vacancies on TiO$_2$2 anatase (101),” Science 341(6149), 988–991 (2013).
[Crossref]

Shakhno, E.

Shao, G.

J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, and G. Shao, “Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance,” Appl. Surf. Sci. 319, 75–82 (2014).
[Crossref]

Sinev, D.

Skowronski, L.

A. J. Antończak, Ł. Skowroński, M. Trzcinski, V. V. Kinzhybalo, Ł. K. Łazarek, and K. M. Abramski, “Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers,” Appl. Surf. Sci. 325, 217–226 (2015).
[Crossref]

Streibel, V.

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of tio2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Tian, J.

J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu, “Recent progress in design, synthesis, and applications of one-dimensional tio2 nanostructured surface heterostructures: a review,” Chem. Soc. Rev. 43(20), 6920–6937 (2014).
[Crossref]

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

Tian, Y.

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2 nanoribbons,” Nanoscale 4(5), 1545–1548 (2012).
[Crossref]

Y. Wang, J. Miao, Y. Tian, C. Guo, J. Zhang, T. Ren, and Q. Liu, “TiO$_2$2 micro-devices fabricated by laser direct writing,” Opt. Express 19(18), 17390–17395 (2011).
[Crossref]

Toupance, T.

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of tio2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Trzcinski, M.

A. J. Antończak, Ł. Skowroński, M. Trzcinski, V. V. Kinzhybalo, Ł. K. Łazarek, and K. M. Abramski, “Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers,” Appl. Surf. Sci. 325, 217–226 (2015).
[Crossref]

Tsuchiya, M.

M. Tsuchiya, S. K. Sankaranarayanan, and S. Ramanathan, “Photon-assisted oxidation and oxide thin film synthesis: A review,” Prog. Mater. Sci. 54(7), 981–1057 (2009).
[Crossref]

Vannes, B.

L. Lavisse, D. Grevey, C. Langlade, and B. Vannes, “The early stage of the laser-induced oxidation of titanium substrates,” Appl. Surf. Sci. 186(1-4), 150–155 (2002).
[Crossref]

Wang, D.

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

Wang, G.

G. Wang, J. Li, K. Lv, W. Zhang, X. Ding, G. Yang, X. Liu, and X. Jiang, “Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration,” Sci. Rep. 6(1), 31769 (2016).
[Crossref]

Wang, J.

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

Wang, M.

Wang, R.

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2 nanoribbons,” Nanoscale 4(5), 1545–1548 (2012).
[Crossref]

Wang, Y.

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2 nanoribbons,” Nanoscale 4(5), 1545–1548 (2012).
[Crossref]

Y. Wang, J. Miao, Y. Tian, C. Guo, J. Zhang, T. Ren, and Q. Liu, “TiO$_2$2 micro-devices fabricated by laser direct writing,” Opt. Express 19(18), 17390–17395 (2011).
[Crossref]

Xia, F.

Xu, J.

Yang, G.

G. Wang, J. Li, K. Lv, W. Zhang, X. Ding, G. Yang, X. Liu, and X. Jiang, “Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration,” Sci. Rep. 6(1), 31769 (2016).
[Crossref]

Yousef, A.

T. Amna, M. S. Hassan, A. Yousef, A. Mishra, N. A. M. Barakat, M.-S. Khil, and H. Y. Kim, “Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: A novel biomaterial system,” Food Bioprocess Technol. 6(4), 988–996 (2013).
[Crossref]

Zapol, P.

H. Iddir, S. Öğüt, P. Zapol, and N. D. Browning, “Diffusion mechanisms of native point defects in rutile TiO$_2$2: Ab initio total-energy calculations,” Phys. Rev. B 75(7), 073203 (2007).
[Crossref]

Zhang, J.

Zhang, W.

G. Wang, J. Li, K. Lv, W. Zhang, X. Ding, G. Yang, X. Liu, and X. Jiang, “Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration,” Sci. Rep. 6(1), 31769 (2016).
[Crossref]

Zhang, X.

Zhang, Y.

J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, and G. Shao, “Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance,” Appl. Surf. Sci. 319, 75–82 (2014).
[Crossref]

Zhao, Z.

J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu, “Recent progress in design, synthesis, and applications of one-dimensional tio2 nanostructured surface heterostructures: a review,” Chem. Soc. Rev. 43(20), 6920–6937 (2014).
[Crossref]

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

Zhou, B.

J. Bai and B. Zhou, “Titanium dioxide nanomaterials for sensor applications,” Chem. Rev. 114(19), 10131–10176 (2014).
[Crossref]

Zhou, D.

D. Zhou, Z. Chen, T. Gao, F. Niu, L. Qin, and Y. Huang, “Hydrogen generation from water splitting on TiO2 nanotube-array-based photocatalysts,” Energy Technol. 3(9), 888–895 (2015).
[Crossref]

Zhou, W.

J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, and G. Shao, “Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance,” Appl. Surf. Sci. 319, 75–82 (2014).
[Crossref]

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

Appl. Phys. Lett. (1)

A. A. Gorbunov, H. Eichler, W. Pompe, and B. Huey, “Lateral self-limitation in the laser-induced oxidation of ultrathin metal films,” Appl. Phys. Lett. 69(19), 2816–2818 (1996).
[Crossref]

Appl. Surf. Sci. (4)

A. J. Antończak, Ł. Skowroński, M. Trzcinski, V. V. Kinzhybalo, Ł. K. Łazarek, and K. M. Abramski, “Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers,” Appl. Surf. Sci. 325, 217–226 (2015).
[Crossref]

T. Jwad, S. Deng, H. Butt, and S. Dimov, “Laser induced single spot oxidation of titanium,” Appl. Surf. Sci. 387, 617–624 (2016).
[Crossref]

J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, and G. Shao, “Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance,” Appl. Surf. Sci. 319, 75–82 (2014).
[Crossref]

L. Lavisse, D. Grevey, C. Langlade, and B. Vannes, “The early stage of the laser-induced oxidation of titanium substrates,” Appl. Surf. Sci. 186(1-4), 150–155 (2002).
[Crossref]

Chem. Rev. (1)

J. Bai and B. Zhou, “Titanium dioxide nanomaterials for sensor applications,” Chem. Rev. 114(19), 10131–10176 (2014).
[Crossref]

Chem. Soc. Rev. (1)

J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu, “Recent progress in design, synthesis, and applications of one-dimensional tio2 nanostructured surface heterostructures: a review,” Chem. Soc. Rev. 43(20), 6920–6937 (2014).
[Crossref]

Energy Technol. (1)

D. Zhou, Z. Chen, T. Gao, F. Niu, L. Qin, and Y. Huang, “Hydrogen generation from water splitting on TiO2 nanotube-array-based photocatalysts,” Energy Technol. 3(9), 888–895 (2015).
[Crossref]

Food Bioprocess Technol. (1)

T. Amna, M. S. Hassan, A. Yousef, A. Mishra, N. A. M. Barakat, M.-S. Khil, and H. Y. Kim, “Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: A novel biomaterial system,” Food Bioprocess Technol. 6(4), 988–996 (2013).
[Crossref]

J. Appl. Phys. (2)

G. P. Burns, “Titanium dioxide dielectric films formed by rapid thermal oxidation,” J. Appl. Phys. 65(5), 2095–2097 (1989).
[Crossref]

H. B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys. 48(11), 4729–4733 (1977).
[Crossref]

J. Opt. Technol. (1)

Mater. Sci. Eng. B (1)

J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahé, “Structure and composition of passive titanium oxide films,” Mater. Sci. Eng. B 47(3), 235–243 (1997).
[Crossref]

Nanoscale (1)

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2 nanoribbons,” Nanoscale 4(5), 1545–1548 (2012).
[Crossref]

Nature (1)

H. Peiman, W. C. David, and B. Harish, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

H. Iddir, S. Öğüt, P. Zapol, and N. D. Browning, “Diffusion mechanisms of native point defects in rutile TiO$_2$2: Ab initio total-energy calculations,” Phys. Rev. B 75(7), 073203 (2007).
[Crossref]

Prog. Mater. Sci. (1)

M. Tsuchiya, S. K. Sankaranarayanan, and S. Ramanathan, “Photon-assisted oxidation and oxide thin film synthesis: A review,” Prog. Mater. Sci. 54(7), 981–1057 (2009).
[Crossref]

Rep. Prog. Phys. (1)

N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12(1), 163–184 (1949).
[Crossref]

Rev. Mod. Phys. (1)

A. Atkinson, “Transport processes during the growth of oxide films at elevated temperature,” Rev. Mod. Phys. 57(2), 437–470 (1985).
[Crossref]

Sci. Rep. (1)

G. Wang, J. Li, K. Lv, W. Zhang, X. Ding, G. Yang, X. Liu, and X. Jiang, “Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration,” Sci. Rep. 6(1), 31769 (2016).
[Crossref]

Science (1)

M. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, A. Selloni, and U. Diebold, “Reaction of O$_2$2 with subsurface oxygen vacancies on TiO$_2$2 anatase (101),” Science 341(6149), 988–991 (2013).
[Crossref]

Small (1)

J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures,” Small 9(22), 3864–3872 (2013).
[Crossref]

Surf. Coat. Technol. (2)

A. Pérez del Pino, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surf. Coat. Technol. 187(1), 106–112 (2004).
[Crossref]

D. P. Adams, R. D. Murphy, D. J. Saiz, D. A. Hirschfeld, M. A. Rodriguez, P. G. Kotula, and B. H. Jared, “Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal,” Surf. Coat. Technol. 248, 38–45 (2014).
[Crossref]

Surfaces (1)

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of tio2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic view of the simulation model of the laser induced oxidation of titanium. The laser beam is normal incidence on the titanium film surface. The oxide layer and titanium layer are assumed to be isotropic.
Fig. 2.
Fig. 2. (a) The electron energy-level diagrams of the Ti/TiO$_{2}$/TiO$_{2}$ surface; (b) An equilibrium energy-level diagrams with the natural Mott potential by the electrons jump from titanium to the TiO$_{2}$ surface by tunneling and thermionic emission effects; (c) An equilibrium energy-level diagrams with laser-induced Mott potential under the laser irradiation.
Fig. 3.
Fig. 3. The simulation results of laser-induced oxidation degrees of titanium films with the laser power changes from 2 mW to 15 mW at the time of 1 ms. The simulation applied the cylindrical coordinate system. The colors refer to the values of temperature fields. The oxidation region grows as the laser power increases.
Fig. 4.
Fig. 4. The widths (hollow blue) and heights (solid red) of the lines written by laser-induced oxidation for the simulation results (square) and experiment results (circle) in Ref. [12]. The simulation results are in agreement with the experiment results.

Tables (1)

Tables Icon

Table 1. Thermal properties of materials adopted in model$^a$

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

υ = a ν exp ( W k T ) exp ( q a V M 2 k T L ) ,
σ I ( r ) = 2 P π ω 2 exp ( 2 r 2 ω 2 ) ,
ρ c T t = ( k T ) + Q ,