Abstract

We report on a one-dimensional photonic crystal (1DPhC) represented by a multilayer structure used for a surface plasmon-like sensing based on Bloch surface waves and radiation modes employing a structure comprising a glass substrate and four bilayers of TiO$_2$/SiO$_{2}$ with a termination layer of TiO$_2$. We model the reflectance responses in the Kretschmann configuration with a coupling prism made of BK7 glass and express the reflectances for both ($s$ and $p$) polarizations in the spectral domain for various angles of incidence to show that a sharp dip associated with the Bloch surface wave (BSW) excitation is obtained in $p$ polarization when an external medium (analyte) is air. For $s$-polarized wave BSW is not excited and a shallow dip associated with the guided mode excitation is obtained for a liquid analyte (water). For decreasing angle of incidence, the dip depth is substantially increased, and resonance thus obtained is comparable in magnitude with resonance commonly exhibited by SPR-based sensors. In addition, we revealed that the resonances in $s$-polarization are obtained for other analytes. The surface plasmon-like sensing concept was verified experimentally in the Kretschmann configuration for the guided mode transformed into the radiation mode with a negative and constant sensitivity of −169 nm/RIU, and a detection limit of 5.9 $\times 10^{-5}$ RIU.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing

Tianyu Tu, Fufei Pang, Shan Zhu, Jiajing Cheng, Huanhuan Liu, Jianxiang Wen, and Tingyun Wang
Opt. Express 25(8) 9019-9027 (2017)

Bloch surface wave resonance in photonic crystal fibers: towards ultra-wide range refractive index sensors

Esteban Gonzalez-Valencia, Rodrigo Acuna Herrera, and Pedro Torres
Opt. Express 27(6) 8236-8245 (2019)

Biosensors based on Bloch surface waves in one-dimensional photonic crystal with graphene nanolayers

H. Kaviani Baghbadorani, J. Barvestani, and S. Roshan Entezar
Appl. Opt. 56(3) 462-469 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
    [Crossref]
  2. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44(19), 10961–10964 (1991).
    [Crossref]
  3. E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
    [Crossref]
  4. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
    [Crossref]
  5. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1-2), 3–15 (1999).
    [Crossref]
  6. J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006).
  7. B. Liedberg, C. Nylander, and I. Lundström, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators, B 11(1-3), 63–72 (1993).
    [Crossref]
  8. A. Kabashin, S. Patskovsky, and A. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–212047 (2009).
    [Crossref]
  9. A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett. 37(7), 1175–1177 (2012).
    [Crossref]
  10. P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
    [Crossref]
  11. P. Hlubina and D. Ciprian, “Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment,” Plasmonics 12(4), 1071–1078 (2017).
    [Crossref]
  12. A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
    [Crossref]
  13. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
    [Crossref]
  14. X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
    [Crossref]
  15. B. Auguié, M. C. Fuertes, P. C. Angelomié, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
    [Crossref]
  16. C. Zhang, K. Wu, V. Giannini, and X. Li, “Planar hot-electron photodetection with Tamm plasmons,” ACS Nano 11(2), 1719–1727 (2017).
    [Crossref]
  17. J. Chen, D. Zhang, P. Wang, H. Ming, and J. R. Lakowicz, “Strong polarization transformation of Bloch surface waves,” Phys. Rev. Appl. 9(2), 024008 (2018).
    [Crossref]
  18. M. Liscidini and J. E. Sipe, “Analysis of Bloch-surface-wave assisted diffraction-based biosensors,” J. Opt. Soc. Am. B 26(2), 279–289 (2009).
    [Crossref]
  19. Y. Li, T. Yang, S. Song, Z. Pang, and G. Du, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
    [Crossref]
  20. A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
    [Crossref]
  21. Y. Li, T. Yang, Z. Pang, G. Du, and S. Song, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22(18), 21403–21410 (2014).
    [Crossref]
  22. Y. Wan, Z. Zheng, M. Cheng, W. Kong, and K. Liu, “Polarimetric-phase-enhanced intensity interrogation scheme for surface wave optical sensors with low optical loss,” Sensors 18(10), 3262 (2018).
    [Crossref]
  23. A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators, B 173, 79–84 (2012).
    [Crossref]
  24. W. Kong, Z. Zheng, Y. Wan, S. L. a, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
    [Crossref]
  25. X. B. Kanga, L. Wen, and Z. G. Wang, “Design of guided Bloch surface wave resonance bio-sensors with high sensitivity,” Opt. Commun. 383, 531–536 (2017).
    [Crossref]
  26. T. Kovalevich, D. Belharet, L. Robert, G. Ulliac, M.-S. Kim, H. P. Herzig, T. Grosjean, and M.-P. Bernal, “Bloch surface waves at the telecommunicationwavelength with Lithium Niobate as top layer forintegrated optics,” Appl. Opt. 58(7), 1757–1762 (2019).
    [Crossref]
  27. H. Qiao, B. Guan, J. J. Gooding, and P. J. Reece, “Protease detection using a porous silicon based Bloch surface wave optical biosensor,” Opt. Express 18(14), 15174–15182 (2010).
    [Crossref]
  28. G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surfacewave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
    [Crossref]
  29. T. Tu, F. Panf, S. Zhu, J. Cheng, H. Liu, J. Wen, and T. Wang, “Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing,” Opt. Express 25(8), 9019–9027 (2017).
    [Crossref]
  30. X.-J. Tan and X.-S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24(14), 16016–16026 (2016).
    [Crossref]
  31. M. Scaravilli, A. Micco, G. Castaldi, G. Coppola, M. Gioffre, M. Iodice, V. L. Ferrara, V. Galdi, and A. Cusano, “Excitation of Bloch surface waves on an optical fiber tip,” Adv. Opt. Mater. 6, 1800477 (2018).
    [Crossref]
  32. E. Gonzalez-Valencia, R. A. Herrera, and P. Torres, “Bloch surface wave resonance in photonic crystal fibers: towards ultra-wide range refractive index sensors,” Opt. Express 27(6), 8236–8545 (2019).
    [Crossref]
  33. http://refractiveindex.info .
  34. P. Yeh, Optical Waves in Layered Media (J. Wiley and Sons, Inc., 1988).
  35. M. Shinn and W. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators, B 105(2), 360–364 (2005).
    [Crossref]
  36. F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Ríos, “Photonic crystal sensor based on surface waves for thin-film characterization,” Opt. Lett. 27(8), 646–648 (2002).
    [Crossref]
  37. M. Gryga, D. Ciprian, and P. Hlubina, “Surface electromagnetic wave sensor utilizing a one-dimensional photonic crystal,” Proc. SPIE 11028, 110281P (2019).
    [Crossref]
  38. K. V. Popov, J. A. Dobrowolski, A. V. Tikhonravov, and B. T. Sullivan, “Broadband high-reflection multilayer coatings at oblique angles of incidence,” Appl. Opt. 36(10), 2139–2151 (1997).
    [Crossref]
  39. R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18(11), 3693 (2018).
    [Crossref]
  40. D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96(4), 045308 (2017).
    [Crossref]
  41. P. Hlubina, M. Lunackova, and D. Ciprian, “Phase sensitive measurement of the wavelength dependence of the complex permittivity of a thin gold film using surface plasmon resonance,” Opt. Mater. Express 9(3), 992–1001 (2019).
    [Crossref]

2019 (4)

2018 (5)

M. Scaravilli, A. Micco, G. Castaldi, G. Coppola, M. Gioffre, M. Iodice, V. L. Ferrara, V. Galdi, and A. Cusano, “Excitation of Bloch surface waves on an optical fiber tip,” Adv. Opt. Mater. 6, 1800477 (2018).
[Crossref]

R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18(11), 3693 (2018).
[Crossref]

Y. Wan, Z. Zheng, M. Cheng, W. Kong, and K. Liu, “Polarimetric-phase-enhanced intensity interrogation scheme for surface wave optical sensors with low optical loss,” Sensors 18(10), 3262 (2018).
[Crossref]

A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
[Crossref]

J. Chen, D. Zhang, P. Wang, H. Ming, and J. R. Lakowicz, “Strong polarization transformation of Bloch surface waves,” Phys. Rev. Appl. 9(2), 024008 (2018).
[Crossref]

2017 (5)

C. Zhang, K. Wu, V. Giannini, and X. Li, “Planar hot-electron photodetection with Tamm plasmons,” ACS Nano 11(2), 1719–1727 (2017).
[Crossref]

P. Hlubina and D. Ciprian, “Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment,” Plasmonics 12(4), 1071–1078 (2017).
[Crossref]

X. B. Kanga, L. Wen, and Z. G. Wang, “Design of guided Bloch surface wave resonance bio-sensors with high sensitivity,” Opt. Commun. 383, 531–536 (2017).
[Crossref]

T. Tu, F. Panf, S. Zhu, J. Cheng, H. Liu, J. Wen, and T. Wang, “Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing,” Opt. Express 25(8), 9019–9027 (2017).
[Crossref]

D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96(4), 045308 (2017).
[Crossref]

2016 (1)

2015 (1)

P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
[Crossref]

2014 (4)

B. Auguié, M. C. Fuertes, P. C. Angelomié, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surfacewave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref]

Y. Li, T. Yang, Z. Pang, G. Du, and S. Song, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22(18), 21403–21410 (2014).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. L. a, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

2013 (2)

2012 (4)

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators, B 173, 79–84 (2012).
[Crossref]

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett. 37(7), 1175–1177 (2012).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

2010 (1)

2009 (2)

2007 (2)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

2005 (1)

M. Shinn and W. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators, B 105(2), 360–364 (2005).
[Crossref]

2002 (1)

1999 (1)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

1997 (1)

1993 (1)

B. Liedberg, C. Nylander, and I. Lundström, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators, B 11(1-3), 63–72 (1993).
[Crossref]

1991 (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44(19), 10961–10964 (1991).
[Crossref]

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

a, S. L.

W. Kong, Z. Zheng, Y. Wan, S. L. a, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

A. S. Illia, G. J. A.

B. Auguié, M. C. Fuertes, P. C. Angelomié, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Abdala, N. L.

B. Auguié, M. C. Fuertes, P. C. Angelomié, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Abdulhalim, I.

Abram, R. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Angelomié, P. C.

B. Auguié, M. C. Fuertes, P. C. Angelomié, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Anopchenko, A.

Auguié, B.

B. Auguié, M. C. Fuertes, P. C. Angelomié, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Aurelio, D.

D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96(4), 045308 (2017).
[Crossref]

Belharet, D.

Benyattou, T.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Bernal, M.-P.

Brand, S.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44(19), 10961–10964 (1991).
[Crossref]

Castaldi, G.

M. Scaravilli, A. Micco, G. Castaldi, G. Coppola, M. Gioffre, M. Iodice, V. L. Ferrara, V. Galdi, and A. Cusano, “Excitation of Bloch surface waves on an optical fiber tip,” Adv. Opt. Mater. 6, 1800477 (2018).
[Crossref]

Chamberlain, J. M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Chen, J.

J. Chen, D. Zhang, P. Wang, H. Ming, and J. R. Lakowicz, “Strong polarization transformation of Bloch surface waves,” Phys. Rev. Appl. 9(2), 024008 (2018).
[Crossref]

Cheng, J.

Cheng, M.

Y. Wan, Z. Zheng, M. Cheng, W. Kong, and K. Liu, “Polarimetric-phase-enhanced intensity interrogation scheme for surface wave optical sensors with low optical loss,” Sensors 18(10), 3262 (2018).
[Crossref]

Chlebus, R.

R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18(11), 3693 (2018).
[Crossref]

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Chylek, J.

R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18(11), 3693 (2018).
[Crossref]

Ciprian, D.

M. Gryga, D. Ciprian, and P. Hlubina, “Surface electromagnetic wave sensor utilizing a one-dimensional photonic crystal,” Proc. SPIE 11028, 110281P (2019).
[Crossref]

P. Hlubina, M. Lunackova, and D. Ciprian, “Phase sensitive measurement of the wavelength dependence of the complex permittivity of a thin gold film using surface plasmon resonance,” Opt. Mater. Express 9(3), 992–1001 (2019).
[Crossref]

R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18(11), 3693 (2018).
[Crossref]

P. Hlubina and D. Ciprian, “Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment,” Plasmonics 12(4), 1071–1078 (2017).
[Crossref]

P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
[Crossref]

Coppola, G.

M. Scaravilli, A. Micco, G. Castaldi, G. Coppola, M. Gioffre, M. Iodice, V. L. Ferrara, V. Galdi, and A. Cusano, “Excitation of Bloch surface waves on an optical fiber tip,” Adv. Opt. Mater. 6, 1800477 (2018).
[Crossref]

Cusano, A.

M. Scaravilli, A. Micco, G. Castaldi, G. Coppola, M. Gioffre, M. Iodice, V. L. Ferrara, V. Galdi, and A. Cusano, “Excitation of Bloch surface waves on an optical fiber tip,” Adv. Opt. Mater. 6, 1800477 (2018).
[Crossref]

Danz, N

Danz, N.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Descrovi, E.

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Dobrowolski, J. A.

Dominici, L.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Du, G.

Y. Li, T. Yang, Z. Pang, G. Du, and S. Song, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22(18), 21403–21410 (2014).
[Crossref]

Y. Li, T. Yang, S. Song, Z. Pang, and G. Du, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Duliakova, M.

P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
[Crossref]

Fainstein, A.

B. Auguié, M. C. Fuertes, P. C. Angelomié, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Farmer, A.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators, B 173, 79–84 (2012).
[Crossref]

Feng, J.

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Ferrara, V. L.

M. Scaravilli, A. Micco, G. Castaldi, G. Coppola, M. Gioffre, M. Iodice, V. L. Ferrara, V. Galdi, and A. Cusano, “Excitation of Bloch surface waves on an optical fiber tip,” Adv. Opt. Mater. 6, 1800477 (2018).
[Crossref]

Figliozzi, G.

Friedli, A. C.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators, B 173, 79–84 (2012).
[Crossref]

Fuertes, M. C.

B. Auguié, M. C. Fuertes, P. C. Angelomié, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Galdi, V.

M. Scaravilli, A. Micco, G. Castaldi, G. Coppola, M. Gioffre, M. Iodice, V. L. Ferrara, V. Galdi, and A. Cusano, “Excitation of Bloch surface waves on an optical fiber tip,” Adv. Opt. Mater. 6, 1800477 (2018).
[Crossref]

Gaspar-Armenta, J.

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

Giannini, V.

C. Zhang, K. Wu, V. Giannini, and X. Li, “Planar hot-electron photodetection with Tamm plasmons,” ACS Nano 11(2), 1719–1727 (2017).
[Crossref]

Gioffre, M.

M. Scaravilli, A. Micco, G. Castaldi, G. Coppola, M. Gioffre, M. Iodice, V. L. Ferrara, V. Galdi, and A. Cusano, “Excitation of Bloch surface waves on an optical fiber tip,” Adv. Opt. Mater. 6, 1800477 (2018).
[Crossref]

Gonzalez-Valencia, E.

Gooding, J. J.

Grigorenko, A.

Grosjean, T.

Gryga, M.

M. Gryga, D. Ciprian, and P. Hlubina, “Surface electromagnetic wave sensor utilizing a one-dimensional photonic crystal,” Proc. SPIE 11028, 110281P (2019).
[Crossref]

Guan, B.

Guillermain, E.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Herrera, R. A.

Herzig, H. P.

Hlubina, P.

P. Hlubina, M. Lunackova, and D. Ciprian, “Phase sensitive measurement of the wavelength dependence of the complex permittivity of a thin gold film using surface plasmon resonance,” Opt. Mater. Express 9(3), 992–1001 (2019).
[Crossref]

M. Gryga, D. Ciprian, and P. Hlubina, “Surface electromagnetic wave sensor utilizing a one-dimensional photonic crystal,” Proc. SPIE 11028, 110281P (2019).
[Crossref]

R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18(11), 3693 (2018).
[Crossref]

P. Hlubina and D. Ciprian, “Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment,” Plasmonics 12(4), 1071–1078 (2017).
[Crossref]

P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
[Crossref]

Homola, J.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006).

Iodice, M.

M. Scaravilli, A. Micco, G. Castaldi, G. Coppola, M. Gioffre, M. Iodice, V. L. Ferrara, V. Galdi, and A. Cusano, “Excitation of Bloch surface waves on an optical fiber tip,” Adv. Opt. Mater. 6, 1800477 (2018).
[Crossref]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Jiao, Y.

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surfacewave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref]

Joannopoulos, J. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44(19), 10961–10964 (1991).
[Crossref]

Kabashin, A.

Kadulova, M.

P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
[Crossref]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Kanga, X. B.

X. B. Kanga, L. Wen, and Z. G. Wang, “Design of guided Bloch surface wave resonance bio-sensors with high sensitivity,” Opt. Commun. 383, 531–536 (2017).
[Crossref]

Kavokin, A. V.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Kim, M.-S.

Kong, W.

Y. Wan, Z. Zheng, M. Cheng, W. Kong, and K. Liu, “Polarimetric-phase-enhanced intensity interrogation scheme for surface wave optical sensors with low optical loss,” Sensors 18(10), 3262 (2018).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. L. a, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

Kovalevich, T.

Lakowicz, J. R.

J. Chen, D. Zhang, P. Wang, H. Ming, and J. R. Lakowicz, “Strong polarization transformation of Bloch surface waves,” Phys. Rev. Appl. 9(2), 024008 (2018).
[Crossref]

Li, X.

C. Zhang, K. Wu, V. Giannini, and X. Li, “Planar hot-electron photodetection with Tamm plasmons,” ACS Nano 11(2), 1719–1727 (2017).
[Crossref]

Li, X.-B.

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Li, Y.

Y. Li, T. Yang, Z. Pang, G. Du, and S. Song, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22(18), 21403–21410 (2014).
[Crossref]

Y. Li, T. Yang, S. Song, Z. Pang, and G. Du, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators, B 11(1-3), 63–72 (1993).
[Crossref]

Liscidini, M.

D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96(4), 045308 (2017).
[Crossref]

M. Liscidini and J. E. Sipe, “Analysis of Bloch-surface-wave assisted diffraction-based biosensors,” J. Opt. Soc. Am. B 26(2), 279–289 (2009).
[Crossref]

Liu, H.

Liu, J.

W. Kong, Z. Zheng, Y. Wan, S. L. a, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

Liu, K.

Y. Wan, Z. Zheng, M. Cheng, W. Kong, and K. Liu, “Polarimetric-phase-enhanced intensity interrogation scheme for surface wave optical sensors with low optical loss,” Sensors 18(10), 3262 (2018).
[Crossref]

Lopez-Ríos, T.

Lunackova, M.

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators, B 11(1-3), 63–72 (1993).
[Crossref]

Lysenko, V.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44(19), 10961–10964 (1991).
[Crossref]

Micco, A.

M. Scaravilli, A. Micco, G. Castaldi, G. Coppola, M. Gioffre, M. Iodice, V. L. Ferrara, V. Galdi, and A. Cusano, “Excitation of Bloch surface waves on an optical fiber tip,” Adv. Opt. Mater. 6, 1800477 (2018).
[Crossref]

Michelotti, F.

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Ming, H.

J. Chen, D. Zhang, P. Wang, H. Ming, and J. R. Lakowicz, “Strong polarization transformation of Bloch surface waves,” Phys. Rev. Appl. 9(2), 024008 (2018).
[Crossref]

Miroshnichenko, A. E.

A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
[Crossref]

Munzert, P.

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators, B 11(1-3), 63–72 (1993).
[Crossref]

Orobtchouk, R.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Panf, F.

Pang, Z.

Y. Li, T. Yang, Z. Pang, G. Du, and S. Song, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22(18), 21403–21410 (2014).
[Crossref]

Y. Li, T. Yang, S. Song, Z. Pang, and G. Du, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Patskovsky, S.

Perriat, P.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Pillonnet, A.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Popov, K. V.

Qiao, H.

Rahmani, M.

A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
[Crossref]

Ramos-Mendieta, F.

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44(19), 10961–10964 (1991).
[Crossref]

Reece, P. J.

Regalado, L. E.

Rifat, A. A.

A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
[Crossref]

Rizzo, R.

Robert, L.

Robertson, W.

M. Shinn and W. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators, B 105(2), 360–364 (2005).
[Crossref]

Robertson, W. M.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators, B 173, 79–84 (2012).
[Crossref]

Rodriguez, G. A.

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surfacewave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref]

Roux, S.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Ryckman, J. D.

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surfacewave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref]

Scaravilli, M.

M. Scaravilli, A. Micco, G. Castaldi, G. Coppola, M. Gioffre, M. Iodice, V. L. Ferrara, V. Galdi, and A. Cusano, “Excitation of Bloch surface waves on an optical fiber tip,” Adv. Opt. Mater. 6, 1800477 (2018).
[Crossref]

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Shalabney, A.

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Shinn, M.

M. Shinn and W. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators, B 105(2), 360–364 (2005).
[Crossref]

Sinibaldi, A.

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Sipe, J. E.

Song, J.-F.

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Song, S.

Y. Li, T. Yang, Z. Pang, G. Du, and S. Song, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22(18), 21403–21410 (2014).
[Crossref]

Y. Li, T. Yang, S. Song, Z. Pang, and G. Du, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Sonntag, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Sullivan, B. T.

Sun, H.-B.

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Tan, X.-J.

Tikhonravov, A. V.

Torres, P.

Tu, T.

Ulliac, G.

Villa, F.

Wan, Y.

Y. Wan, Z. Zheng, M. Cheng, W. Kong, and K. Liu, “Polarimetric-phase-enhanced intensity interrogation scheme for surface wave optical sensors with low optical loss,” Sensors 18(10), 3262 (2018).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. L. a, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

Wang, P.

J. Chen, D. Zhang, P. Wang, H. Ming, and J. R. Lakowicz, “Strong polarization transformation of Bloch surface waves,” Phys. Rev. Appl. 9(2), 024008 (2018).
[Crossref]

Wang, T.

Wang, Z. G.

X. B. Kanga, L. Wen, and Z. G. Wang, “Design of guided Bloch surface wave resonance bio-sensors with high sensitivity,” Opt. Commun. 383, 531–536 (2017).
[Crossref]

Weiss, S. M.

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surfacewave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref]

Wen, J.

Wen, L.

X. B. Kanga, L. Wen, and Z. G. Wang, “Design of guided Bloch surface wave resonance bio-sensors with high sensitivity,” Opt. Commun. 383, 531–536 (2017).
[Crossref]

Wright, S. M.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators, B 173, 79–84 (2012).
[Crossref]

Wu, K.

C. Zhang, K. Wu, V. Giannini, and X. Li, “Planar hot-electron photodetection with Tamm plasmons,” ACS Nano 11(2), 1719–1727 (2017).
[Crossref]

Xu, L.

A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
[Crossref]

Yang, T.

Y. Li, T. Yang, Z. Pang, G. Du, and S. Song, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22(18), 21403–21410 (2014).
[Crossref]

Y. Li, T. Yang, S. Song, Z. Pang, and G. Du, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

P. Yeh, Optical Waves in Layered Media (J. Wiley and Sons, Inc., 1988).

Zhang, C.

C. Zhang, K. Wu, V. Giannini, and X. Li, “Planar hot-electron photodetection with Tamm plasmons,” ACS Nano 11(2), 1719–1727 (2017).
[Crossref]

Zhang, D.

J. Chen, D. Zhang, P. Wang, H. Ming, and J. R. Lakowicz, “Strong polarization transformation of Bloch surface waves,” Phys. Rev. Appl. 9(2), 024008 (2018).
[Crossref]

Zhang, X.-L.

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Zheng, Z.

Y. Wan, Z. Zheng, M. Cheng, W. Kong, and K. Liu, “Polarimetric-phase-enhanced intensity interrogation scheme for surface wave optical sensors with low optical loss,” Sensors 18(10), 3262 (2018).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. L. a, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

Zhu, S.

Zhu, X.-S.

ACS Nano (1)

C. Zhang, K. Wu, V. Giannini, and X. Li, “Planar hot-electron photodetection with Tamm plasmons,” ACS Nano 11(2), 1719–1727 (2017).
[Crossref]

ACS Photonics (1)

B. Auguié, M. C. Fuertes, P. C. Angelomié, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Adv. Opt. Mater. (1)

M. Scaravilli, A. Micco, G. Castaldi, G. Coppola, M. Gioffre, M. Iodice, V. L. Ferrara, V. Galdi, and A. Cusano, “Excitation of Bloch surface waves on an optical fiber tip,” Adv. Opt. Mater. 6, 1800477 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

Y. Li, T. Yang, S. Song, Z. Pang, and G. Du, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Biosens. Bioelectron. (1)

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surfacewave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Materials (1)

A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
[Crossref]

Opt. Commun. (2)

P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
[Crossref]

X. B. Kanga, L. Wen, and Z. G. Wang, “Design of guided Bloch surface wave resonance bio-sensors with high sensitivity,” Opt. Commun. 383, 531–536 (2017).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. Appl. (1)

J. Chen, D. Zhang, P. Wang, H. Ming, and J. R. Lakowicz, “Strong polarization transformation of Bloch surface waves,” Phys. Rev. Appl. 9(2), 024008 (2018).
[Crossref]

Phys. Rev. B (3)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44(19), 10961–10964 (1991).
[Crossref]

D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96(4), 045308 (2017).
[Crossref]

Plasmonics (1)

P. Hlubina and D. Ciprian, “Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment,” Plasmonics 12(4), 1071–1078 (2017).
[Crossref]

Proc. SPIE (1)

M. Gryga, D. Ciprian, and P. Hlubina, “Surface electromagnetic wave sensor utilizing a one-dimensional photonic crystal,” Proc. SPIE 11028, 110281P (2019).
[Crossref]

Sens. Actuators, B (6)

M. Shinn and W. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators, B 105(2), 360–364 (2005).
[Crossref]

B. Liedberg, C. Nylander, and I. Lundström, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators, B 11(1-3), 63–72 (1993).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators, B 173, 79–84 (2012).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. L. a, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

Sensors (2)

Y. Wan, Z. Zheng, M. Cheng, W. Kong, and K. Liu, “Polarimetric-phase-enhanced intensity interrogation scheme for surface wave optical sensors with low optical loss,” Sensors 18(10), 3262 (2018).
[Crossref]

R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18(11), 3693 (2018).
[Crossref]

Other (3)

http://refractiveindex.info .

P. Yeh, Optical Waves in Layered Media (J. Wiley and Sons, Inc., 1988).

J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. An SEM photo of a multilayer structure (a), and the geometric representation of the structure (b).
Fig. 2.
Fig. 2. Theoretical spectral reflectance of $p$-polarized wave at different angles of incidence $\theta$: $45^{\circ }$ to $49^{\circ }$ (a). The normalized optical field intensity distribution at angle of incidence $\theta =45^{\circ }$ (b). Analyte is air.
Fig. 3.
Fig. 3. Theoretical spectral reflectance of $p$-polarized wave for different refractive indices of analyte when $\theta =45^{\circ }$ (a). The resonance wavelength as a function of the refractive index of the analyte with solid line as a fit (b).
Fig. 4.
Fig. 4. Theoretical spectral reflectance of $s$-polarized wave for different refractive indices of analyte when $\theta =41^{\circ }$ (a). The resonance wavelength as a function of the refractive index of the analyte with solid line as a fit (b).
Fig. 5.
Fig. 5. Theoretical spectral reflectance of $s$-polarized wave at different angles of incidence $\theta$ (a). The normalized optical field intensity distribution at angle of incidence $\theta =64.5^{\circ }$ (b). Analyte is water.
Fig. 6.
Fig. 6. Theoretical spectral reflectance of $s$-polarized wave for different weight concentrations of ethanol in water when $\theta =64.5^{\circ }$ (a). The resonance wavelength as a function of the refractive index of the analyte with solid line as a fit (b).
Fig. 7.
Fig. 7. Theoretical spectral reflectance of $s$-polarized wave at different angles of incidence $\theta$ (a). The normalized optical field intensity distribution at angle of incidence $\theta =60.5^{\circ }$ (b). Analyte is water.
Fig. 8.
Fig. 8. Theoretical spectral reflectance of $s$-polarized wave for different weight concentrations of ethanol in water when $\theta =61.3^{\circ }$ (a). The resonance wavelength as a function of the refractive index of the analyte with solid line as a fit (b).
Fig. 9.
Fig. 9. Experimental setup for measuring the reflectance responses of the multilayer structure in the Kretschmann configuration.
Fig. 10.
Fig. 10. Measured spectral reflectance at different angles of incidence $\alpha$, $p$-polarized wave (a), $s$-polarized wave (b). Analyte is air.
Fig. 11.
Fig. 11. Measured spectral reflectance of $s$-polarized wave for different weight concentrations of ethanol in water when $\alpha =-5.5^{\circ }$ (a). The resonance wavelength as a function of the refractive index of the aqueous solution of ethanol with solid line as a fit (b).
Fig. 12.
Fig. 12. Measured spectral reflectance of $s$-polarized wave for different weight concentrations of ethanol in water when $\alpha =-2^{\circ }$ (a). The resonance wavelength as a function of the refractive index of the aqueous solution of ethanol with solid line as a fit (b).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = a + b λ 2 + c λ 4 ,
n 2 ( λ ) = a + b λ 2 λ 2 c 2 ,
[ U I ( 0 ) U R ( 0 ) ] = [ M 11 M 12 M 21 M 22 ] [ U T ( N + 1 ) U B ( N + 1 ) ] ,
M = D 0 1 [ j = 1 N D j P j D j 1 , ] D N + 1
D j = { ( 1 1 k j k j ) for s wave, ( 1 1 k j n j 2 k j n j 2 ) for p wave,
k j = [ ( n j ω c ) 2 ( n 0 ω c sin θ ) 2 ] 1 / 2 .
P j = ( e i k j t j 0 0 e i k j t j ) ,
r = M 21 M 11 ,
R = | r | 2 .
S n = δ λ r δ n ,
θ = 60 sin 1 [ n a i r ( λ r ) sin α / n ( λ r ) ] ,