Abstract

TeO2–ZnO–Na2CO3–La2O3 (TZNL) tellurite glasses were prepared using a conventional melt-quenching method. The effects of the Mn2+ ions and (Yb3+–Mn2+–Mn2+) trimer on the enhancement upconversion (UC) and near-infrared (NIR) emissions intensity of the co-doped Ho3+/Yb3+ bands in TZNL tellurite glasses were investigated. With the formation of the (Yb3+–Mn2+–Mn2+) trimer and the energy transfer (ET) from Mn2+ and (Yb3+–Mn2+–Mn2+) trimer into Ho3+, the UC/NIR emissions intensity of the co-doped Ho3+/Yb3+ bands was significantly increased. In addition, the ET processes between the Mn2+ and (Yb3+–Mn2+–Mn2+) trimer with Ho3+ were shown.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intense red upconversion emission of Yb/Tm/Ho triply-doped tellurite glasses

Huan Zhan, Zhiguang Zhou, Jianli He, and Aoxiang Lin
Appl. Opt. 51(15) 3091-3095 (2012)

Study on optical properties and upconversion luminescence of Er3+/Yb3+ co-doped tellurite glass for highly sensitive temperature measuring

Jianfeng Tang, Maojun Sun, Yawen Huang, Jie Gou, Yu Zhang, Guannan Li, Yuan Li, Yuhong Man, and Jun Yang
Opt. Mater. Express 7(9) 3238-3250 (2017)

Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd-Ofelt analysis and energy transfer mechanism [Invited]

Sathravada Balaji, Atul D. Sontakke, Ranjan Sen, and Annapurna Kalyandurg
Opt. Mater. Express 1(2) 138-150 (2011)

References

  • View by:
  • |
  • |
  • |

  1. V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
    [Crossref]
  2. T. Feng, F. Yan, W. Peng, Q. Li, S. Tan, J. Wang, and X. Wen, “Spectroscopy of thulium and holmium co-doped silicate glasses,” Opt. Fiber Technol. 18(4), 204–208 (2012).
    [Crossref]
  3. F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
    [Crossref]
  4. A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
    [Crossref]
  5. H. K. Dan, D. C. Zhou, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Optimizing Nd/Er ratio for enhancement of broadband near-infrared emission and energy transfer in the Er3 +-Nd3 + co-doped transparent silicate glass-ceramics,” J. Non-Cryst. Solids 414, 21–26 (2015).
    [Crossref]
  6. S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO.Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
    [Crossref]
  7. S. B. Wang, C. Z. Li, C. F. Yao, S. J. Jia, Z. X. Jia, G. S. Qin, and W. P. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 µm laser applications,” Opt. Mater. 64, 421–426 (2017).
    [Crossref]
  8. R. J. Cao, Y. Lu, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Spectroscopy of Thulium and Holmium co-doped silicate glasses,” Opt. Mater. Express 6(7), 2252 (2016).
    [Crossref]
  9. D. Gelija, L. Kadathala, and D. P. R. Borelli, “Energy transfer dynamics of Er3+/Nd3+ embedded SiO2–Al2O3–Na2CO3–SrF2–CaF2 glasses for optical communications,” Opt. Mater. 78, 172–180 (2018).
    [Crossref]
  10. Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers,” J. Quant. Spectrosc. Radiat. Transfer 141, 9–13 (2014).
    [Crossref]
  11. N. Kiran, “Eu3+ ion doped sodium–lead borophosphate glasses for red light emission,” J. Mol. Struct. 1065-1066, 93–98 (2014).
    [Crossref]
  12. K. Shinozaki, W. Pisarski, M. Affatigato, T. Honma, and T. Komatsu, “Glass structure and NIR emission of Er3+ at 1.5 µm in oxyfluoride BaF2–Al2O3–B2O3 glasses,” Opt. Mater. 50, 238–243 (2015).
    [Crossref]
  13. S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+–Ho3+ and Tm3+–Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
    [Crossref]
  14. D. D. Yin, F. J. Yang, L. B. Wu, Y. X. Zhou, H. J. Zhou, and X. S. Wang, “Enhanced 2.7 µm mid-infrared emission and energy transfer mechanism in Er3+/Nd3+ co-doped tellurite glass,” J. Alloys Compd. 618, 666–672 (2015).
    [Crossref]
  15. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
    [Crossref]
  16. J. E. Stanworth, “Tellurite glasses,” Nature 169(4301), 581–582 (1952).
    [Crossref]
  17. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: A new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [Crossref]
  18. L. Feng, Q. Su, Y. Li, C. R. Zheng, C. Wang, and H. Li, “Compositional and thermal effect on upconversion luminescence of Ho3+/Yb3+co-doped oxyfluoride glasses,” Spectrochim. Acta, Part A 73(1), 41–43 (2009).
    [Crossref]
  19. G. A. Kumar, A. Martinez, E. Mejia, and J. G. Eden, “Fluorescence and upconversion spectral studies of Ho3+ in alkali bismuth gallate glasses,” J. Alloys Compd. 365(1-2), 117–120 (2004).
    [Crossref]
  20. B. Zhou, L. L. Tao, C. Y. Y. Chan, W. Jin, Y. H. Tsang, and E. Y. B. Pun, “Near- and mid-infrared photoluminescence in Ho3+-doped and Ho3+–Yb3+ co-doped low-phonon-energy germanotellurite glasses,” J. Lumin. 137, 132–137 (2013).
    [Crossref]
  21. Q. Xu, H. Lin, H. Teng, C. Chen, and S. M. Zhou, “Energy transfer mechanisms of quantum cutting near-infrared luminescence in Ho3+/Yb3+ co-doped Y2O3 transparent ceramics,” J. Non-Cryst. Solids 403, 84–87 (2014).
    [Crossref]
  22. F. Anquez, E. Courtade, A. Sivery, P. Suret, and S. Randoux, “A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm,” Opt. Express 18(22), 22928 (2010).
    [Crossref]
  23. M. Seshadri, L. C. Barbosa, and M. Radha, “Study on structural, optical and gain properties of 1.2 and 2.0 µm emission transitions in Ho3 +-doped tellurite glasses,” J. Non-Cryst. Solids 406, 62–72 (2014).
    [Crossref]
  24. W. Gao, Z. Y. Sun, Q. Y. Han, J. Zhang, X. W. Yan, H. B. Ge, and J. Dong, “Tunable upconversion emission of Ho3+/Yb3+co-doped single β-NaYF4 microrod,” Mater. Res. Bull. 108, 10–15 (2018).
    [Crossref]
  25. T. Li, C. F. Guo, Y. M. Yang, L. Li, and N. Zhang, “Efficient green upconversion emission in Yb3+/Ho3+ co-doped CaIn2O4,” Acta Mater. 61(19), 7481–7487 (2013).
    [Crossref]
  26. H. Zhan, Z. G. Zhou, J. L. He, and A. X. Lin, “Intense red upconversion emission of Yb/Tm/Ho triply-doped tellurite glasses,” Appl. Opt. 51(15), 3091–3095 (2012).
    [Crossref]
  27. Y. Gao, Y. B. Hu, D. C. Zhou, and J. B. Qiu, “Upconversion luminescence properties of NaYF4 nanocrystals precipitated Nd3+/Yb3+/Ho3+ tri-doped Oxyfluoride glass-ceramics,” J. Nanosci. Nanotechnol. 16(4), 3744–3748 (2016).
    [Crossref]
  28. K. S. Zou, G. Z. Dong, M. Sun, and J. C. Liu, “Enhanced upconversion luminescence of TiO2: Ho3+–Yb3+ nanocrystals with modified structure via tri-doping Li+ ions,” J. Phys. D: Appl. Phys. 51(29), 295103 (2018).
    [Crossref]
  29. G. J. Gao, A. Turshatov, I. A. Howard, D. Busko, R. Joseph, D. Hudry, and B. S. Richards, “Upconversion fluorescent labels for plastic recycling: A Review,” Adv. Sustainable Syst. 1(5), 1600033 (2017).
    [Crossref]
  30. G. J. Gao, D. Busko, R. Joseph, A. Turshatov, I. A. Howard, and B. S. Richards, “High quantum yield single-band green upconversion in La2O3: Yb3+, Ho3+ microcrystals for anticounterfeiting and plastic recycling,” Part. Part. Syst. Charact. 36(3), 1800462 (2019).
    [Crossref]
  31. P. Du, E. J. J. Kim, and J. S. Yu, “Local symmetry distortion-induced enhancement of upconversion luminescence in Gd2O3:Ho3+/Yb3+/Zn2+nanoparticles for solid-state lighting and bioimaging,” Curr. App. Phys. 18(3), 310–316 (2018).
    [Crossref]
  32. C. Z. Wang, Y. Tian, X. Y. Gao, Q. H. Liu, F. F. Huang, B. P. Li, J. J. Zhang, and S. Q. Xu, “Mid-infrared fluorescence properties, structure and energy transfer around 2 µm in Tm3+/Ho3+ co-doped tellurite glass,” J. Lumin. 194, 791–796 (2018).
    [Crossref]
  33. H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics,” Opt. Laser Technol. 64, 264–268 (2014).
    [Crossref]
  34. H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement upconversion emission and energy transfer of Mn2+/Tb3+/Yb3+ tri-doped transparent glass-ceramics,” Mater. Lett. 150, 76–80 (2015).
    [Crossref]
  35. Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 µm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transfer 113(1), 87–95 (2012).
    [Crossref]
  36. M.R. Dousti, M.R. Sahar, S.K. Ghoshal, Raja J. Amjad, and A.R. Samavati, “Effect of AgCl on spectroscopic properties of Erbium-doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
    [Crossref]
  37. M. A. Merzliakov, V. V. Kouhar, G. E. Malashkevich, and E. V. Pestryakov, “Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties,” Opt. Mater. 75, 142–149 (2018).
    [Crossref]
  38. M. Azam and V. K. Rai, “Ho3+-Yb3+ co-doped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion,” Solid State Sci. 66, 7–15 (2017).
    [Crossref]
  39. Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 µm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
    [Crossref]
  40. E. H. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. F. Zhou, and Q. Y. Zhang, “Anomalous NIR luminescence in Mn2+-doped Fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
    [Crossref]
  41. W. R. Wang, Z. Y. Huang, H. P. Gao, X. Y. Cheng, and Y. L. Mao, “Broadband emission from Ce3+/Mn2+/Yb3+ tri-doped oxyfluoride glasses for glass greenhouse,” Opt. Mater. 62, 494–498 (2016).
    [Crossref]
  42. S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv. Sci. 3(12), 1600302 (2016).
    [Crossref]
  43. L. L. Han, H. H. Yao, S. L. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. P. Ci, and C. W. Wang, “Morphology controllable synthesis and upconversion luminescence of Gd4O3F6: Ho3+, Yb3+ for temperature sensing,” J. Lumin. 197, 360–369 (2018).
    [Crossref]
  44. X. Wang, X. P. Li, S. Xu, L. H. Cheng, J. S. Sun, J. S. Zhang, and B. J. Chen, “Can temperature be accurately sensed by red-green emission ratio in YNbO4: Ho3+/Yb3+ phosphor under 980 nm excitation?” J. Alloys Compd. 754, 222–226 (2018).
    [Crossref]
  45. Y. Fu, W. H. Cao, Y. Peng, X. X. Luo, and M. M. Xing, “The upconversion luminescence properties of the Yb3+–Ho3+ system in nanocrystalline Y2O2S,” J. Mater. Sci. 45(23), 6556–6561 (2010).
    [Crossref]
  46. Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y. Weng, H. Lin, and Y. S. Wang, “Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals,” Mater. Res. Bull. 45(8), 1017–1020 (2010).
    [Crossref]
  47. X. Y. Wang, H. Lin, D. H. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
    [Crossref]
  48. N. K. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li: TeO2 glass,” Spectrochim. Acta, Part A 74(5), 1115–1119 (2009).
    [Crossref]
  49. C. H. Niu, L. W. Li, X. Y. Li, Y. Lv, and X. P. Lang, “Upconversion photoluminescence properties of Ho3+/Yb3+ co-doped YNbO4 powder,” Opt. Mater. 75, 68–73 (2018).
    [Crossref]
  50. B. R. Li, X. Zhao, E. Y. B. Pun, and H. Lin, “Upconversion photon quantification of Ho3+ in highly transparent fluorotellurite glasses,” Opt. Laser Technol. 107, 8–14 (2018).
    [Crossref]
  51. X. Gao, N. L. Wang, T. Shi, S. Wang, M. H. Zhang, W. Zhang, J. L. Zhong, H. Z. Tong, and X. Y. Zhang, “Sol-gel synthesis of (-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence,” J. Fluorine Chem. 188, 23–27 (2016).
    [Crossref]
  52. H. K. Dan, N. L. Thai, L. D. Tin, J. B. Qiu, D. C. Zhou, and Q. Jiao, “Enhanced near/mid-infrared emission bands centered at ∼1.54 and ∼2.73 µm of Er3+-doped in transparent silicate glass-ceramics via Mn2+-Yb3+ dimer,” Infrared Phys. Technol. 95, 33–38 (2018).
    [Crossref]
  53. R. Martín-Rodríguez and A. Meijerink, “Infrared to near-infrared and visible upconversion mechanisms in LiYF4: Yb3+, Ho3+,” J. Lumin. 147, 147–154 (2014).
    [Crossref]
  54. X. S. Qiao, X. P. Fan, Z. Xue, and X. H. Xu, “Short-wavelength upconversion luminescence of Yb3+/Tm3+ co-doped glass ceramic containing SrF2 nanocrystals,” J. Non-Cryst. Solids 357(1), 83–87 (2011).
    [Crossref]

2019 (1)

G. J. Gao, D. Busko, R. Joseph, A. Turshatov, I. A. Howard, and B. S. Richards, “High quantum yield single-band green upconversion in La2O3: Yb3+, Ho3+ microcrystals for anticounterfeiting and plastic recycling,” Part. Part. Syst. Charact. 36(3), 1800462 (2019).
[Crossref]

2018 (13)

P. Du, E. J. J. Kim, and J. S. Yu, “Local symmetry distortion-induced enhancement of upconversion luminescence in Gd2O3:Ho3+/Yb3+/Zn2+nanoparticles for solid-state lighting and bioimaging,” Curr. App. Phys. 18(3), 310–316 (2018).
[Crossref]

C. Z. Wang, Y. Tian, X. Y. Gao, Q. H. Liu, F. F. Huang, B. P. Li, J. J. Zhang, and S. Q. Xu, “Mid-infrared fluorescence properties, structure and energy transfer around 2 µm in Tm3+/Ho3+ co-doped tellurite glass,” J. Lumin. 194, 791–796 (2018).
[Crossref]

K. S. Zou, G. Z. Dong, M. Sun, and J. C. Liu, “Enhanced upconversion luminescence of TiO2: Ho3+–Yb3+ nanocrystals with modified structure via tri-doping Li+ ions,” J. Phys. D: Appl. Phys. 51(29), 295103 (2018).
[Crossref]

M. A. Merzliakov, V. V. Kouhar, G. E. Malashkevich, and E. V. Pestryakov, “Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties,” Opt. Mater. 75, 142–149 (2018).
[Crossref]

F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
[Crossref]

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

D. Gelija, L. Kadathala, and D. P. R. Borelli, “Energy transfer dynamics of Er3+/Nd3+ embedded SiO2–Al2O3–Na2CO3–SrF2–CaF2 glasses for optical communications,” Opt. Mater. 78, 172–180 (2018).
[Crossref]

L. L. Han, H. H. Yao, S. L. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. P. Ci, and C. W. Wang, “Morphology controllable synthesis and upconversion luminescence of Gd4O3F6: Ho3+, Yb3+ for temperature sensing,” J. Lumin. 197, 360–369 (2018).
[Crossref]

X. Wang, X. P. Li, S. Xu, L. H. Cheng, J. S. Sun, J. S. Zhang, and B. J. Chen, “Can temperature be accurately sensed by red-green emission ratio in YNbO4: Ho3+/Yb3+ phosphor under 980 nm excitation?” J. Alloys Compd. 754, 222–226 (2018).
[Crossref]

C. H. Niu, L. W. Li, X. Y. Li, Y. Lv, and X. P. Lang, “Upconversion photoluminescence properties of Ho3+/Yb3+ co-doped YNbO4 powder,” Opt. Mater. 75, 68–73 (2018).
[Crossref]

B. R. Li, X. Zhao, E. Y. B. Pun, and H. Lin, “Upconversion photon quantification of Ho3+ in highly transparent fluorotellurite glasses,” Opt. Laser Technol. 107, 8–14 (2018).
[Crossref]

H. K. Dan, N. L. Thai, L. D. Tin, J. B. Qiu, D. C. Zhou, and Q. Jiao, “Enhanced near/mid-infrared emission bands centered at ∼1.54 and ∼2.73 µm of Er3+-doped in transparent silicate glass-ceramics via Mn2+-Yb3+ dimer,” Infrared Phys. Technol. 95, 33–38 (2018).
[Crossref]

W. Gao, Z. Y. Sun, Q. Y. Han, J. Zhang, X. W. Yan, H. B. Ge, and J. Dong, “Tunable upconversion emission of Ho3+/Yb3+co-doped single β-NaYF4 microrod,” Mater. Res. Bull. 108, 10–15 (2018).
[Crossref]

2017 (3)

S. B. Wang, C. Z. Li, C. F. Yao, S. J. Jia, Z. X. Jia, G. S. Qin, and W. P. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 µm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

M. Azam and V. K. Rai, “Ho3+-Yb3+ co-doped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion,” Solid State Sci. 66, 7–15 (2017).
[Crossref]

G. J. Gao, A. Turshatov, I. A. Howard, D. Busko, R. Joseph, D. Hudry, and B. S. Richards, “Upconversion fluorescent labels for plastic recycling: A Review,” Adv. Sustainable Syst. 1(5), 1600033 (2017).
[Crossref]

2016 (6)

Y. Gao, Y. B. Hu, D. C. Zhou, and J. B. Qiu, “Upconversion luminescence properties of NaYF4 nanocrystals precipitated Nd3+/Yb3+/Ho3+ tri-doped Oxyfluoride glass-ceramics,” J. Nanosci. Nanotechnol. 16(4), 3744–3748 (2016).
[Crossref]

W. R. Wang, Z. Y. Huang, H. P. Gao, X. Y. Cheng, and Y. L. Mao, “Broadband emission from Ce3+/Mn2+/Yb3+ tri-doped oxyfluoride glasses for glass greenhouse,” Opt. Mater. 62, 494–498 (2016).
[Crossref]

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv. Sci. 3(12), 1600302 (2016).
[Crossref]

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO.Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

R. J. Cao, Y. Lu, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Spectroscopy of Thulium and Holmium co-doped silicate glasses,” Opt. Mater. Express 6(7), 2252 (2016).
[Crossref]

X. Gao, N. L. Wang, T. Shi, S. Wang, M. H. Zhang, W. Zhang, J. L. Zhong, H. Z. Tong, and X. Y. Zhang, “Sol-gel synthesis of (-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence,” J. Fluorine Chem. 188, 23–27 (2016).
[Crossref]

2015 (4)

H. K. Dan, D. C. Zhou, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Optimizing Nd/Er ratio for enhancement of broadband near-infrared emission and energy transfer in the Er3 +-Nd3 + co-doped transparent silicate glass-ceramics,” J. Non-Cryst. Solids 414, 21–26 (2015).
[Crossref]

K. Shinozaki, W. Pisarski, M. Affatigato, T. Honma, and T. Komatsu, “Glass structure and NIR emission of Er3+ at 1.5 µm in oxyfluoride BaF2–Al2O3–B2O3 glasses,” Opt. Mater. 50, 238–243 (2015).
[Crossref]

D. D. Yin, F. J. Yang, L. B. Wu, Y. X. Zhou, H. J. Zhou, and X. S. Wang, “Enhanced 2.7 µm mid-infrared emission and energy transfer mechanism in Er3+/Nd3+ co-doped tellurite glass,” J. Alloys Compd. 618, 666–672 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement upconversion emission and energy transfer of Mn2+/Tb3+/Yb3+ tri-doped transparent glass-ceramics,” Mater. Lett. 150, 76–80 (2015).
[Crossref]

2014 (7)

E. H. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. F. Zhou, and Q. Y. Zhang, “Anomalous NIR luminescence in Mn2+-doped Fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Q. Xu, H. Lin, H. Teng, C. Chen, and S. M. Zhou, “Energy transfer mechanisms of quantum cutting near-infrared luminescence in Ho3+/Yb3+ co-doped Y2O3 transparent ceramics,” J. Non-Cryst. Solids 403, 84–87 (2014).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics,” Opt. Laser Technol. 64, 264–268 (2014).
[Crossref]

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers,” J. Quant. Spectrosc. Radiat. Transfer 141, 9–13 (2014).
[Crossref]

N. Kiran, “Eu3+ ion doped sodium–lead borophosphate glasses for red light emission,” J. Mol. Struct. 1065-1066, 93–98 (2014).
[Crossref]

R. Martín-Rodríguez and A. Meijerink, “Infrared to near-infrared and visible upconversion mechanisms in LiYF4: Yb3+, Ho3+,” J. Lumin. 147, 147–154 (2014).
[Crossref]

M. Seshadri, L. C. Barbosa, and M. Radha, “Study on structural, optical and gain properties of 1.2 and 2.0 µm emission transitions in Ho3 +-doped tellurite glasses,” J. Non-Cryst. Solids 406, 62–72 (2014).
[Crossref]

2013 (3)

T. Li, C. F. Guo, Y. M. Yang, L. Li, and N. Zhang, “Efficient green upconversion emission in Yb3+/Ho3+ co-doped CaIn2O4,” Acta Mater. 61(19), 7481–7487 (2013).
[Crossref]

B. Zhou, L. L. Tao, C. Y. Y. Chan, W. Jin, Y. H. Tsang, and E. Y. B. Pun, “Near- and mid-infrared photoluminescence in Ho3+-doped and Ho3+–Yb3+ co-doped low-phonon-energy germanotellurite glasses,” J. Lumin. 137, 132–137 (2013).
[Crossref]

M.R. Dousti, M.R. Sahar, S.K. Ghoshal, Raja J. Amjad, and A.R. Samavati, “Effect of AgCl on spectroscopic properties of Erbium-doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

2012 (4)

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 µm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transfer 113(1), 87–95 (2012).
[Crossref]

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

T. Feng, F. Yan, W. Peng, Q. Li, S. Tan, J. Wang, and X. Wen, “Spectroscopy of thulium and holmium co-doped silicate glasses,” Opt. Fiber Technol. 18(4), 204–208 (2012).
[Crossref]

H. Zhan, Z. G. Zhou, J. L. He, and A. X. Lin, “Intense red upconversion emission of Yb/Tm/Ho triply-doped tellurite glasses,” Appl. Opt. 51(15), 3091–3095 (2012).
[Crossref]

2011 (1)

X. S. Qiao, X. P. Fan, Z. Xue, and X. H. Xu, “Short-wavelength upconversion luminescence of Yb3+/Tm3+ co-doped glass ceramic containing SrF2 nanocrystals,” J. Non-Cryst. Solids 357(1), 83–87 (2011).
[Crossref]

2010 (4)

Y. Fu, W. H. Cao, Y. Peng, X. X. Luo, and M. M. Xing, “The upconversion luminescence properties of the Yb3+–Ho3+ system in nanocrystalline Y2O2S,” J. Mater. Sci. 45(23), 6556–6561 (2010).
[Crossref]

Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y. Weng, H. Lin, and Y. S. Wang, “Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals,” Mater. Res. Bull. 45(8), 1017–1020 (2010).
[Crossref]

F. Anquez, E. Courtade, A. Sivery, P. Suret, and S. Randoux, “A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm,” Opt. Express 18(22), 22928 (2010).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 µm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

2009 (2)

L. Feng, Q. Su, Y. Li, C. R. Zheng, C. Wang, and H. Li, “Compositional and thermal effect on upconversion luminescence of Ho3+/Yb3+co-doped oxyfluoride glasses,” Spectrochim. Acta, Part A 73(1), 41–43 (2009).
[Crossref]

N. K. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li: TeO2 glass,” Spectrochim. Acta, Part A 74(5), 1115–1119 (2009).
[Crossref]

2008 (1)

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

2007 (2)

S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+–Ho3+ and Tm3+–Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
[Crossref]

X. Y. Wang, H. Lin, D. H. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

2004 (1)

G. A. Kumar, A. Martinez, E. Mejia, and J. G. Eden, “Fluorescence and upconversion spectral studies of Ho3+ in alkali bismuth gallate glasses,” J. Alloys Compd. 365(1-2), 117–120 (2004).
[Crossref]

1994 (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: A new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

1952 (1)

J. E. Stanworth, “Tellurite glasses,” Nature 169(4301), 581–582 (1952).
[Crossref]

Adam, J. L.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Affatigato, M.

K. Shinozaki, W. Pisarski, M. Affatigato, T. Honma, and T. Komatsu, “Glass structure and NIR emission of Er3+ at 1.5 µm in oxyfluoride BaF2–Al2O3–B2O3 glasses,” Opt. Mater. 50, 238–243 (2015).
[Crossref]

Alonso, D.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO.Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

Alonso Alvarez, D.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Amjad, Raja J.

M.R. Dousti, M.R. Sahar, S.K. Ghoshal, Raja J. Amjad, and A.R. Samavati, “Effect of AgCl on spectroscopic properties of Erbium-doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

Anquez, F.

Armellini, C.

F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
[Crossref]

Azam, M.

M. Azam and V. K. Rai, “Ho3+-Yb3+ co-doped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion,” Solid State Sci. 66, 7–15 (2017).
[Crossref]

Barbosa, L. C.

M. Seshadri, L. C. Barbosa, and M. Radha, “Study on structural, optical and gain properties of 1.2 and 2.0 µm emission transitions in Ho3 +-doped tellurite glasses,” J. Non-Cryst. Solids 406, 62–72 (2014).
[Crossref]

Belmokhtar, S.

F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
[Crossref]

Borelli, D. P. R.

D. Gelija, L. Kadathala, and D. P. R. Borelli, “Energy transfer dynamics of Er3+/Nd3+ embedded SiO2–Al2O3–Na2CO3–SrF2–CaF2 glasses for optical communications,” Opt. Mater. 78, 172–180 (2018).
[Crossref]

Bouajaj, A.

F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
[Crossref]

Busko, D.

G. J. Gao, D. Busko, R. Joseph, A. Turshatov, I. A. Howard, and B. S. Richards, “High quantum yield single-band green upconversion in La2O3: Yb3+, Ho3+ microcrystals for anticounterfeiting and plastic recycling,” Part. Part. Syst. Charact. 36(3), 1800462 (2019).
[Crossref]

G. J. Gao, A. Turshatov, I. A. Howard, D. Busko, R. Joseph, D. Hudry, and B. S. Richards, “Upconversion fluorescent labels for plastic recycling: A Review,” Adv. Sustainable Syst. 1(5), 1600033 (2017).
[Crossref]

Cáceres, J. M.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO.Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

Canat, G.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Cao, R. J.

Cao, W. H.

Y. Fu, W. H. Cao, Y. Peng, X. X. Luo, and M. M. Xing, “The upconversion luminescence properties of the Yb3+–Ho3+ system in nanocrystalline Y2O2S,” J. Mater. Sci. 45(23), 6556–6561 (2010).
[Crossref]

Chan, C. Y. Y.

B. Zhou, L. L. Tao, C. Y. Y. Chan, W. Jin, Y. H. Tsang, and E. Y. B. Pun, “Near- and mid-infrared photoluminescence in Ho3+-doped and Ho3+–Yb3+ co-doped low-phonon-energy germanotellurite glasses,” J. Lumin. 137, 132–137 (2013).
[Crossref]

Chemisana, D.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Chen, B. J.

X. Wang, X. P. Li, S. Xu, L. H. Cheng, J. S. Sun, J. S. Zhang, and B. J. Chen, “Can temperature be accurately sensed by red-green emission ratio in YNbO4: Ho3+/Yb3+ phosphor under 980 nm excitation?” J. Alloys Compd. 754, 222–226 (2018).
[Crossref]

Chen, C.

Q. Xu, H. Lin, H. Teng, C. Chen, and S. M. Zhou, “Energy transfer mechanisms of quantum cutting near-infrared luminescence in Ho3+/Yb3+ co-doped Y2O3 transparent ceramics,” J. Non-Cryst. Solids 403, 84–87 (2014).
[Crossref]

Chen, D. P.

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers,” J. Quant. Spectrosc. Radiat. Transfer 141, 9–13 (2014).
[Crossref]

Chen, D. Q.

Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y. Weng, H. Lin, and Y. S. Wang, “Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals,” Mater. Res. Bull. 45(8), 1017–1020 (2010).
[Crossref]

Cheng, L. H.

X. Wang, X. P. Li, S. Xu, L. H. Cheng, J. S. Sun, J. S. Zhang, and B. J. Chen, “Can temperature be accurately sensed by red-green emission ratio in YNbO4: Ho3+/Yb3+ phosphor under 980 nm excitation?” J. Alloys Compd. 754, 222–226 (2018).
[Crossref]

Cheng, X. Y.

W. R. Wang, Z. Y. Huang, H. P. Gao, X. Y. Cheng, and Y. L. Mao, “Broadband emission from Ce3+/Mn2+/Yb3+ tri-doped oxyfluoride glasses for glass greenhouse,” Opt. Mater. 62, 494–498 (2016).
[Crossref]

Chiappini, A.

F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
[Crossref]

Ci, Z. P.

L. L. Han, H. H. Yao, S. L. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. P. Ci, and C. W. Wang, “Morphology controllable synthesis and upconversion luminescence of Gd4O3F6: Ho3+, Yb3+ for temperature sensing,” J. Lumin. 197, 360–369 (2018).
[Crossref]

Courtade, E.

Dan, H. K.

H. K. Dan, N. L. Thai, L. D. Tin, J. B. Qiu, D. C. Zhou, and Q. Jiao, “Enhanced near/mid-infrared emission bands centered at ∼1.54 and ∼2.73 µm of Er3+-doped in transparent silicate glass-ceramics via Mn2+-Yb3+ dimer,” Infrared Phys. Technol. 95, 33–38 (2018).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement upconversion emission and energy transfer of Mn2+/Tb3+/Yb3+ tri-doped transparent glass-ceramics,” Mater. Lett. 150, 76–80 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Optimizing Nd/Er ratio for enhancement of broadband near-infrared emission and energy transfer in the Er3 +-Nd3 + co-doped transparent silicate glass-ceramics,” J. Non-Cryst. Solids 414, 21–26 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics,” Opt. Laser Technol. 64, 264–268 (2014).
[Crossref]

Ding, S.

E. H. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. F. Zhou, and Q. Y. Zhang, “Anomalous NIR luminescence in Mn2+-doped Fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Dong, G. Z.

K. S. Zou, G. Z. Dong, M. Sun, and J. C. Liu, “Enhanced upconversion luminescence of TiO2: Ho3+–Yb3+ nanocrystals with modified structure via tri-doping Li+ ions,” J. Phys. D: Appl. Phys. 51(29), 295103 (2018).
[Crossref]

Dong, J.

W. Gao, Z. Y. Sun, Q. Y. Han, J. Zhang, X. W. Yan, H. B. Ge, and J. Dong, “Tunable upconversion emission of Ho3+/Yb3+co-doped single β-NaYF4 microrod,” Mater. Res. Bull. 108, 10–15 (2018).
[Crossref]

Doualan, J. L.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Dousti, M.R.

M.R. Dousti, M.R. Sahar, S.K. Ghoshal, Raja J. Amjad, and A.R. Samavati, “Effect of AgCl on spectroscopic properties of Erbium-doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

Du, P.

P. Du, E. J. J. Kim, and J. S. Yu, “Local symmetry distortion-induced enhancement of upconversion luminescence in Gd2O3:Ho3+/Yb3+/Zn2+nanoparticles for solid-state lighting and bioimaging,” Curr. App. Phys. 18(3), 310–316 (2018).
[Crossref]

Eden, J. G.

G. A. Kumar, A. Martinez, E. Mejia, and J. G. Eden, “Fluorescence and upconversion spectral studies of Ho3+ in alkali bismuth gallate glasses,” J. Alloys Compd. 365(1-2), 117–120 (2004).
[Crossref]

Ekins-Daukes, N.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Enrichi, F.

F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
[Crossref]

Fan, X. P.

X. S. Qiao, X. P. Fan, Z. Xue, and X. H. Xu, “Short-wavelength upconversion luminescence of Yb3+/Tm3+ co-doped glass ceramic containing SrF2 nanocrystals,” J. Non-Cryst. Solids 357(1), 83–87 (2011).
[Crossref]

Feng, L.

L. Feng, Q. Su, Y. Li, C. R. Zheng, C. Wang, and H. Li, “Compositional and thermal effect on upconversion luminescence of Ho3+/Yb3+co-doped oxyfluoride glasses,” Spectrochim. Acta, Part A 73(1), 41–43 (2009).
[Crossref]

Feng, S. Y.

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 µm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Feng, T.

T. Feng, F. Yan, W. Peng, Q. Li, S. Tan, J. Wang, and X. Wen, “Spectroscopy of thulium and holmium co-doped silicate glasses,” Opt. Fiber Technol. 18(4), 204–208 (2012).
[Crossref]

Ferrari, M.

F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
[Crossref]

Ferre Llin, L.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Fu, Y.

Y. Fu, W. H. Cao, Y. Peng, X. X. Luo, and M. M. Xing, “The upconversion luminescence properties of the Yb3+–Ho3+ system in nanocrystalline Y2O2S,” J. Mater. Sci. 45(23), 6556–6561 (2010).
[Crossref]

Gadret, G.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Gao, G. J.

G. J. Gao, D. Busko, R. Joseph, A. Turshatov, I. A. Howard, and B. S. Richards, “High quantum yield single-band green upconversion in La2O3: Yb3+, Ho3+ microcrystals for anticounterfeiting and plastic recycling,” Part. Part. Syst. Charact. 36(3), 1800462 (2019).
[Crossref]

G. J. Gao, A. Turshatov, I. A. Howard, D. Busko, R. Joseph, D. Hudry, and B. S. Richards, “Upconversion fluorescent labels for plastic recycling: A Review,” Adv. Sustainable Syst. 1(5), 1600033 (2017).
[Crossref]

Gao, H. P.

W. R. Wang, Z. Y. Huang, H. P. Gao, X. Y. Cheng, and Y. L. Mao, “Broadband emission from Ce3+/Mn2+/Yb3+ tri-doped oxyfluoride glasses for glass greenhouse,” Opt. Mater. 62, 494–498 (2016).
[Crossref]

Gao, W.

W. Gao, Z. Y. Sun, Q. Y. Han, J. Zhang, X. W. Yan, H. B. Ge, and J. Dong, “Tunable upconversion emission of Ho3+/Yb3+co-doped single β-NaYF4 microrod,” Mater. Res. Bull. 108, 10–15 (2018).
[Crossref]

Gao, X.

X. Gao, N. L. Wang, T. Shi, S. Wang, M. H. Zhang, W. Zhang, J. L. Zhong, H. Z. Tong, and X. Y. Zhang, “Sol-gel synthesis of (-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence,” J. Fluorine Chem. 188, 23–27 (2016).
[Crossref]

Gao, X. Y.

C. Z. Wang, Y. Tian, X. Y. Gao, Q. H. Liu, F. F. Huang, B. P. Li, J. J. Zhang, and S. Q. Xu, “Mid-infrared fluorescence properties, structure and energy transfer around 2 µm in Tm3+/Ho3+ co-doped tellurite glass,” J. Lumin. 194, 791–796 (2018).
[Crossref]

Gao, Y.

Y. Gao, Y. B. Hu, D. C. Zhou, and J. B. Qiu, “Upconversion luminescence properties of NaYF4 nanocrystals precipitated Nd3+/Yb3+/Ho3+ tri-doped Oxyfluoride glass-ceramics,” J. Nanosci. Nanotechnol. 16(4), 3744–3748 (2016).
[Crossref]

Ge, H. B.

W. Gao, Z. Y. Sun, Q. Y. Han, J. Zhang, X. W. Yan, H. B. Ge, and J. Dong, “Tunable upconversion emission of Ho3+/Yb3+co-doped single β-NaYF4 microrod,” Mater. Res. Bull. 108, 10–15 (2018).
[Crossref]

Gelija, D.

D. Gelija, L. Kadathala, and D. P. R. Borelli, “Energy transfer dynamics of Er3+/Nd3+ embedded SiO2–Al2O3–Na2CO3–SrF2–CaF2 glasses for optical communications,” Opt. Mater. 78, 172–180 (2018).
[Crossref]

Ghoshal, S.K.

M.R. Dousti, M.R. Sahar, S.K. Ghoshal, Raja J. Amjad, and A.R. Samavati, “Effect of AgCl on spectroscopic properties of Erbium-doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

Giri, N. K.

N. K. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li: TeO2 glass,” Spectrochim. Acta, Part A 74(5), 1115–1119 (2009).
[Crossref]

Guarracino, I.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Guo, C.

L. L. Han, H. H. Yao, S. L. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. P. Ci, and C. W. Wang, “Morphology controllable synthesis and upconversion luminescence of Gd4O3F6: Ho3+, Yb3+ for temperature sensing,” J. Lumin. 197, 360–369 (2018).
[Crossref]

Guo, C. F.

T. Li, C. F. Guo, Y. M. Yang, L. Li, and N. Zhang, “Efficient green upconversion emission in Yb3+/Ho3+ co-doped CaIn2O4,” Acta Mater. 61(19), 7481–7487 (2013).
[Crossref]

Han, L. L.

L. L. Han, H. H. Yao, S. L. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. P. Ci, and C. W. Wang, “Morphology controllable synthesis and upconversion luminescence of Gd4O3F6: Ho3+, Yb3+ for temperature sensing,” J. Lumin. 197, 360–369 (2018).
[Crossref]

Han, Q. Y.

W. Gao, Z. Y. Sun, Q. Y. Han, J. Zhang, X. W. Yan, H. B. Ge, and J. Dong, “Tunable upconversion emission of Ho3+/Yb3+co-doped single β-NaYF4 microrod,” Mater. Res. Bull. 108, 10–15 (2018).
[Crossref]

He, J. L.

Honma, T.

K. Shinozaki, W. Pisarski, M. Affatigato, T. Honma, and T. Komatsu, “Glass structure and NIR emission of Er3+ at 1.5 µm in oxyfluoride BaF2–Al2O3–B2O3 glasses,” Opt. Mater. 50, 238–243 (2015).
[Crossref]

Houizot, P.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Howard, I. A.

G. J. Gao, D. Busko, R. Joseph, A. Turshatov, I. A. Howard, and B. S. Richards, “High quantum yield single-band green upconversion in La2O3: Yb3+, Ho3+ microcrystals for anticounterfeiting and plastic recycling,” Part. Part. Syst. Charact. 36(3), 1800462 (2019).
[Crossref]

G. J. Gao, A. Turshatov, I. A. Howard, D. Busko, R. Joseph, D. Hudry, and B. S. Richards, “Upconversion fluorescent labels for plastic recycling: A Review,” Adv. Sustainable Syst. 1(5), 1600033 (2017).
[Crossref]

Hu, L. L.

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 µm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transfer 113(1), 87–95 (2012).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 µm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Hu, Y. B.

Y. Gao, Y. B. Hu, D. C. Zhou, and J. B. Qiu, “Upconversion luminescence properties of NaYF4 nanocrystals precipitated Nd3+/Yb3+/Ho3+ tri-doped Oxyfluoride glass-ceramics,” J. Nanosci. Nanotechnol. 16(4), 3744–3748 (2016).
[Crossref]

Huang, F. F.

C. Z. Wang, Y. Tian, X. Y. Gao, Q. H. Liu, F. F. Huang, B. P. Li, J. J. Zhang, and S. Q. Xu, “Mid-infrared fluorescence properties, structure and energy transfer around 2 µm in Tm3+/Ho3+ co-doped tellurite glass,” J. Lumin. 194, 791–796 (2018).
[Crossref]

R. J. Cao, Y. Lu, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Spectroscopy of Thulium and Holmium co-doped silicate glasses,” Opt. Mater. Express 6(7), 2252 (2016).
[Crossref]

Huang, P.

Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y. Weng, H. Lin, and Y. S. Wang, “Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals,” Mater. Res. Bull. 45(8), 1017–1020 (2010).
[Crossref]

Huang, Z. Y.

W. R. Wang, Z. Y. Huang, H. P. Gao, X. Y. Cheng, and Y. L. Mao, “Broadband emission from Ce3+/Mn2+/Yb3+ tri-doped oxyfluoride glasses for glass greenhouse,” Opt. Mater. 62, 494–498 (2016).
[Crossref]

Hudry, D.

G. J. Gao, A. Turshatov, I. A. Howard, D. Busko, R. Joseph, D. Hudry, and B. S. Richards, “Upconversion fluorescent labels for plastic recycling: A Review,” Adv. Sustainable Syst. 1(5), 1600033 (2017).
[Crossref]

Jha, A.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+–Ho3+ and Tm3+–Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
[Crossref]

Jia, S. J.

S. B. Wang, C. Z. Li, C. F. Yao, S. J. Jia, Z. X. Jia, G. S. Qin, and W. P. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 µm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

Jia, Z. X.

S. B. Wang, C. Z. Li, C. F. Yao, S. J. Jia, Z. X. Jia, G. S. Qin, and W. P. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 µm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

Jiang, X.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Jiao, Q.

H. K. Dan, N. L. Thai, L. D. Tin, J. B. Qiu, D. C. Zhou, and Q. Jiao, “Enhanced near/mid-infrared emission bands centered at ∼1.54 and ∼2.73 µm of Er3+-doped in transparent silicate glass-ceramics via Mn2+-Yb3+ dimer,” Infrared Phys. Technol. 95, 33–38 (2018).
[Crossref]

Jin, W.

B. Zhou, L. L. Tao, C. Y. Y. Chan, W. Jin, Y. H. Tsang, and E. Y. B. Pun, “Near- and mid-infrared photoluminescence in Ho3+-doped and Ho3+–Yb3+ co-doped low-phonon-energy germanotellurite glasses,” J. Lumin. 137, 132–137 (2013).
[Crossref]

Jose, G.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Joseph, R.

G. J. Gao, D. Busko, R. Joseph, A. Turshatov, I. A. Howard, and B. S. Richards, “High quantum yield single-band green upconversion in La2O3: Yb3+, Ho3+ microcrystals for anticounterfeiting and plastic recycling,” Part. Part. Syst. Charact. 36(3), 1800462 (2019).
[Crossref]

G. J. Gao, A. Turshatov, I. A. Howard, D. Busko, R. Joseph, D. Hudry, and B. S. Richards, “Upconversion fluorescent labels for plastic recycling: A Review,” Adv. Sustainable Syst. 1(5), 1600033 (2017).
[Crossref]

Joshi, P.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Kadathala, L.

D. Gelija, L. Kadathala, and D. P. R. Borelli, “Energy transfer dynamics of Er3+/Nd3+ embedded SiO2–Al2O3–Na2CO3–SrF2–CaF2 glasses for optical communications,” Opt. Mater. 78, 172–180 (2018).
[Crossref]

Kim, E. J. J.

P. Du, E. J. J. Kim, and J. S. Yu, “Local symmetry distortion-induced enhancement of upconversion luminescence in Gd2O3:Ho3+/Yb3+/Zn2+nanoparticles for solid-state lighting and bioimaging,” Curr. App. Phys. 18(3), 310–316 (2018).
[Crossref]

Kiran, N.

N. Kiran, “Eu3+ ion doped sodium–lead borophosphate glasses for red light emission,” J. Mol. Struct. 1065-1066, 93–98 (2014).
[Crossref]

Komatsu, T.

K. Shinozaki, W. Pisarski, M. Affatigato, T. Honma, and T. Komatsu, “Glass structure and NIR emission of Er3+ at 1.5 µm in oxyfluoride BaF2–Al2O3–B2O3 glasses,” Opt. Mater. 50, 238–243 (2015).
[Crossref]

Kouhar, V. V.

M. A. Merzliakov, V. V. Kouhar, G. E. Malashkevich, and E. V. Pestryakov, “Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties,” Opt. Mater. 75, 142–149 (2018).
[Crossref]

Kumar, G. A.

G. A. Kumar, A. Martinez, E. Mejia, and J. G. Eden, “Fluorescence and upconversion spectral studies of Ho3+ in alkali bismuth gallate glasses,” J. Alloys Compd. 365(1-2), 117–120 (2004).
[Crossref]

Lang, X. P.

C. H. Niu, L. W. Li, X. Y. Li, Y. Lv, and X. P. Lang, “Upconversion photoluminescence properties of Ho3+/Yb3+ co-doped YNbO4 powder,” Opt. Mater. 75, 68–73 (2018).
[Crossref]

Lavín, V.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO.Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

León-Luis, S. F.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO.Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

Li, B. P.

C. Z. Wang, Y. Tian, X. Y. Gao, Q. H. Liu, F. F. Huang, B. P. Li, J. J. Zhang, and S. Q. Xu, “Mid-infrared fluorescence properties, structure and energy transfer around 2 µm in Tm3+/Ho3+ co-doped tellurite glass,” J. Lumin. 194, 791–796 (2018).
[Crossref]

Li, B. R.

B. R. Li, X. Zhao, E. Y. B. Pun, and H. Lin, “Upconversion photon quantification of Ho3+ in highly transparent fluorotellurite glasses,” Opt. Laser Technol. 107, 8–14 (2018).
[Crossref]

Li, C. Z.

S. B. Wang, C. Z. Li, C. F. Yao, S. J. Jia, Z. X. Jia, G. S. Qin, and W. P. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 µm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

Li, H.

L. Feng, Q. Su, Y. Li, C. R. Zheng, C. Wang, and H. Li, “Compositional and thermal effect on upconversion luminescence of Ho3+/Yb3+co-doped oxyfluoride glasses,” Spectrochim. Acta, Part A 73(1), 41–43 (2009).
[Crossref]

Li, L.

T. Li, C. F. Guo, Y. M. Yang, L. Li, and N. Zhang, “Efficient green upconversion emission in Yb3+/Ho3+ co-doped CaIn2O4,” Acta Mater. 61(19), 7481–7487 (2013).
[Crossref]

Li, L. W.

C. H. Niu, L. W. Li, X. Y. Li, Y. Lv, and X. P. Lang, “Upconversion photoluminescence properties of Ho3+/Yb3+ co-doped YNbO4 powder,” Opt. Mater. 75, 68–73 (2018).
[Crossref]

Li, Q.

T. Feng, F. Yan, W. Peng, Q. Li, S. Tan, J. Wang, and X. Wen, “Spectroscopy of thulium and holmium co-doped silicate glasses,” Opt. Fiber Technol. 18(4), 204–208 (2012).
[Crossref]

Li, T.

T. Li, C. F. Guo, Y. M. Yang, L. Li, and N. Zhang, “Efficient green upconversion emission in Yb3+/Ho3+ co-doped CaIn2O4,” Acta Mater. 61(19), 7481–7487 (2013).
[Crossref]

Li, X. P.

X. Wang, X. P. Li, S. Xu, L. H. Cheng, J. S. Sun, J. S. Zhang, and B. J. Chen, “Can temperature be accurately sensed by red-green emission ratio in YNbO4: Ho3+/Yb3+ phosphor under 980 nm excitation?” J. Alloys Compd. 754, 222–226 (2018).
[Crossref]

Li, X. Y.

C. H. Niu, L. W. Li, X. Y. Li, Y. Lv, and X. P. Lang, “Upconversion photoluminescence properties of Ho3+/Yb3+ co-doped YNbO4 powder,” Opt. Mater. 75, 68–73 (2018).
[Crossref]

Li, Y.

L. Feng, Q. Su, Y. Li, C. R. Zheng, C. Wang, and H. Li, “Compositional and thermal effect on upconversion luminescence of Ho3+/Yb3+co-doped oxyfluoride glasses,” Spectrochim. Acta, Part A 73(1), 41–43 (2009).
[Crossref]

Lin, A. X.

Lin, H.

B. R. Li, X. Zhao, E. Y. B. Pun, and H. Lin, “Upconversion photon quantification of Ho3+ in highly transparent fluorotellurite glasses,” Opt. Laser Technol. 107, 8–14 (2018).
[Crossref]

Q. Xu, H. Lin, H. Teng, C. Chen, and S. M. Zhou, “Energy transfer mechanisms of quantum cutting near-infrared luminescence in Ho3+/Yb3+ co-doped Y2O3 transparent ceramics,” J. Non-Cryst. Solids 403, 84–87 (2014).
[Crossref]

Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y. Weng, H. Lin, and Y. S. Wang, “Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals,” Mater. Res. Bull. 45(8), 1017–1020 (2010).
[Crossref]

X. Y. Wang, H. Lin, D. H. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

Lin, L.

X. Y. Wang, H. Lin, D. H. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

Liu, J. C.

K. S. Zou, G. Z. Dong, M. Sun, and J. C. Liu, “Enhanced upconversion luminescence of TiO2: Ho3+–Yb3+ nanocrystals with modified structure via tri-doping Li+ ions,” J. Phys. D: Appl. Phys. 51(29), 295103 (2018).
[Crossref]

Liu, Q. H.

C. Z. Wang, Y. Tian, X. Y. Gao, Q. H. Liu, F. F. Huang, B. P. Li, J. J. Zhang, and S. Q. Xu, “Mid-infrared fluorescence properties, structure and energy transfer around 2 µm in Tm3+/Ho3+ co-doped tellurite glass,” J. Lumin. 194, 791–796 (2018).
[Crossref]

Lousteau, J.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Lu, Y.

Luo, X. X.

Y. Fu, W. H. Cao, Y. Peng, X. X. Luo, and M. M. Xing, “The upconversion luminescence properties of the Yb3+–Ho3+ system in nanocrystalline Y2O2S,” J. Mater. Sci. 45(23), 6556–6561 (2010).
[Crossref]

Lv, Y.

C. H. Niu, L. W. Li, X. Y. Li, Y. Lv, and X. P. Lang, “Upconversion photoluminescence properties of Ho3+/Yb3+ co-doped YNbO4 powder,” Opt. Mater. 75, 68–73 (2018).
[Crossref]

Malashkevich, G. E.

M. A. Merzliakov, V. V. Kouhar, G. E. Malashkevich, and E. V. Pestryakov, “Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties,” Opt. Mater. 75, 142–149 (2018).
[Crossref]

Mao, Y. L.

W. R. Wang, Z. Y. Huang, H. P. Gao, X. Y. Cheng, and Y. L. Mao, “Broadband emission from Ce3+/Mn2+/Yb3+ tri-doped oxyfluoride glasses for glass greenhouse,” Opt. Mater. 62, 494–498 (2016).
[Crossref]

Markides, C. N.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Martín, I. R.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO.Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

Martinez, A.

G. A. Kumar, A. Martinez, E. Mejia, and J. G. Eden, “Fluorescence and upconversion spectral studies of Ho3+ in alkali bismuth gallate glasses,” J. Alloys Compd. 365(1-2), 117–120 (2004).
[Crossref]

Martín-Rodríguez, R.

R. Martín-Rodríguez and A. Meijerink, “Infrared to near-infrared and visible upconversion mechanisms in LiYF4: Yb3+, Ho3+,” J. Lumin. 147, 147–154 (2014).
[Crossref]

Meijerink, A.

R. Martín-Rodríguez and A. Meijerink, “Infrared to near-infrared and visible upconversion mechanisms in LiYF4: Yb3+, Ho3+,” J. Lumin. 147, 147–154 (2014).
[Crossref]

Mejia, E.

G. A. Kumar, A. Martinez, E. Mejia, and J. G. Eden, “Fluorescence and upconversion spectral studies of Ho3+ in alkali bismuth gallate glasses,” J. Alloys Compd. 365(1-2), 117–120 (2004).
[Crossref]

Mellor, A.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Merzliakov, M. A.

M. A. Merzliakov, V. V. Kouhar, G. E. Malashkevich, and E. V. Pestryakov, “Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties,” Opt. Mater. 75, 142–149 (2018).
[Crossref]

Miao, S. L.

L. L. Han, H. H. Yao, S. L. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. P. Ci, and C. W. Wang, “Morphology controllable synthesis and upconversion luminescence of Gd4O3F6: Ho3+, Yb3+ for temperature sensing,” J. Lumin. 197, 360–369 (2018).
[Crossref]

Moizan, V.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Moncorgé, R.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Monteseguro, V.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO.Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

Nazabal, V.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Niu, C. H.

C. H. Niu, L. W. Li, X. Y. Li, Y. Lv, and X. P. Lang, “Upconversion photoluminescence properties of Ho3+/Yb3+ co-doped YNbO4 powder,” Opt. Mater. 75, 68–73 (2018).
[Crossref]

Paul, D. J.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Peng, W.

T. Feng, F. Yan, W. Peng, Q. Li, S. Tan, J. Wang, and X. Wen, “Spectroscopy of thulium and holmium co-doped silicate glasses,” Opt. Fiber Technol. 18(4), 204–208 (2012).
[Crossref]

Peng, Y.

Y. Fu, W. H. Cao, Y. Peng, X. X. Luo, and M. M. Xing, “The upconversion luminescence properties of the Yb3+–Ho3+ system in nanocrystalline Y2O2S,” J. Mater. Sci. 45(23), 6556–6561 (2010).
[Crossref]

Pestryakov, E. V.

M. A. Merzliakov, V. V. Kouhar, G. E. Malashkevich, and E. V. Pestryakov, “Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties,” Opt. Mater. 75, 142–149 (2018).
[Crossref]

Pisarski, W.

K. Shinozaki, W. Pisarski, M. Affatigato, T. Honma, and T. Komatsu, “Glass structure and NIR emission of Er3+ at 1.5 µm in oxyfluoride BaF2–Al2O3–B2O3 glasses,” Opt. Mater. 50, 238–243 (2015).
[Crossref]

Pitois, S.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Pun, E. Y. B.

B. R. Li, X. Zhao, E. Y. B. Pun, and H. Lin, “Upconversion photon quantification of Ho3+ in highly transparent fluorotellurite glasses,” Opt. Laser Technol. 107, 8–14 (2018).
[Crossref]

B. Zhou, L. L. Tao, C. Y. Y. Chan, W. Jin, Y. H. Tsang, and E. Y. B. Pun, “Near- and mid-infrared photoluminescence in Ho3+-doped and Ho3+–Yb3+ co-doped low-phonon-energy germanotellurite glasses,” J. Lumin. 137, 132–137 (2013).
[Crossref]

X. Y. Wang, H. Lin, D. H. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

Qiao, J.

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement upconversion emission and energy transfer of Mn2+/Tb3+/Yb3+ tri-doped transparent glass-ceramics,” Mater. Lett. 150, 76–80 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics,” Opt. Laser Technol. 64, 264–268 (2014).
[Crossref]

Qiao, X. S.

X. S. Qiao, X. P. Fan, Z. Xue, and X. H. Xu, “Short-wavelength upconversion luminescence of Yb3+/Tm3+ co-doped glass ceramic containing SrF2 nanocrystals,” J. Non-Cryst. Solids 357(1), 83–87 (2011).
[Crossref]

Qin, G. S.

S. B. Wang, C. Z. Li, C. F. Yao, S. J. Jia, Z. X. Jia, G. S. Qin, and W. P. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 µm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

Qin, W. P.

S. B. Wang, C. Z. Li, C. F. Yao, S. J. Jia, Z. X. Jia, G. S. Qin, and W. P. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 µm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

Qiu, J. B.

H. K. Dan, N. L. Thai, L. D. Tin, J. B. Qiu, D. C. Zhou, and Q. Jiao, “Enhanced near/mid-infrared emission bands centered at ∼1.54 and ∼2.73 µm of Er3+-doped in transparent silicate glass-ceramics via Mn2+-Yb3+ dimer,” Infrared Phys. Technol. 95, 33–38 (2018).
[Crossref]

Y. Gao, Y. B. Hu, D. C. Zhou, and J. B. Qiu, “Upconversion luminescence properties of NaYF4 nanocrystals precipitated Nd3+/Yb3+/Ho3+ tri-doped Oxyfluoride glass-ceramics,” J. Nanosci. Nanotechnol. 16(4), 3744–3748 (2016).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement upconversion emission and energy transfer of Mn2+/Tb3+/Yb3+ tri-doped transparent glass-ceramics,” Mater. Lett. 150, 76–80 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Optimizing Nd/Er ratio for enhancement of broadband near-infrared emission and energy transfer in the Er3 +-Nd3 + co-doped transparent silicate glass-ceramics,” J. Non-Cryst. Solids 414, 21–26 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics,” Opt. Laser Technol. 64, 264–268 (2014).
[Crossref]

Quandt, A.

F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
[Crossref]

Radha, M.

M. Seshadri, L. C. Barbosa, and M. Radha, “Study on structural, optical and gain properties of 1.2 and 2.0 µm emission transitions in Ho3 +-doped tellurite glasses,” J. Non-Cryst. Solids 406, 62–72 (2014).
[Crossref]

Rai, A.

N. K. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li: TeO2 glass,” Spectrochim. Acta, Part A 74(5), 1115–1119 (2009).
[Crossref]

Rai, S. B.

N. K. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li: TeO2 glass,” Spectrochim. Acta, Part A 74(5), 1115–1119 (2009).
[Crossref]

Rai, V. K.

M. Azam and V. K. Rai, “Ho3+-Yb3+ co-doped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion,” Solid State Sci. 66, 7–15 (2017).
[Crossref]

Randoux, S.

Richards, B.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Richards, B. S.

G. J. Gao, D. Busko, R. Joseph, A. Turshatov, I. A. Howard, and B. S. Richards, “High quantum yield single-band green upconversion in La2O3: Yb3+, Ho3+ microcrystals for anticounterfeiting and plastic recycling,” Part. Part. Syst. Charact. 36(3), 1800462 (2019).
[Crossref]

G. J. Gao, A. Turshatov, I. A. Howard, D. Busko, R. Joseph, D. Hudry, and B. S. Richards, “Upconversion fluorescent labels for plastic recycling: A Review,” Adv. Sustainable Syst. 1(5), 1600033 (2017).
[Crossref]

Righini, G. C.

F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
[Crossref]

Riverola, A.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Rodríguez-Mendoza, U. R.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO.Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

Sahar, M.R.

M.R. Dousti, M.R. Sahar, S.K. Ghoshal, Raja J. Amjad, and A.R. Samavati, “Effect of AgCl on spectroscopic properties of Erbium-doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

Samavati, A.R.

M.R. Dousti, M.R. Sahar, S.K. Ghoshal, Raja J. Amjad, and A.R. Samavati, “Effect of AgCl on spectroscopic properties of Erbium-doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

Seshadri, M.

M. Seshadri, L. C. Barbosa, and M. Radha, “Study on structural, optical and gain properties of 1.2 and 2.0 µm emission transitions in Ho3 +-doped tellurite glasses,” J. Non-Cryst. Solids 406, 62–72 (2014).
[Crossref]

Shan, Z. F.

Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y. Weng, H. Lin, and Y. S. Wang, “Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals,” Mater. Res. Bull. 45(8), 1017–1020 (2010).
[Crossref]

Shen, S. X.

S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+–Ho3+ and Tm3+–Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
[Crossref]

Sheng, Q. C.

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers,” J. Quant. Spectrosc. Radiat. Transfer 141, 9–13 (2014).
[Crossref]

Shi, T.

X. Gao, N. L. Wang, T. Shi, S. Wang, M. H. Zhang, W. Zhang, J. L. Zhong, H. Z. Tong, and X. Y. Zhang, “Sol-gel synthesis of (-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence,” J. Fluorine Chem. 188, 23–27 (2016).
[Crossref]

Shinozaki, K.

K. Shinozaki, W. Pisarski, M. Affatigato, T. Honma, and T. Komatsu, “Glass structure and NIR emission of Er3+ at 1.5 µm in oxyfluoride BaF2–Al2O3–B2O3 glasses,” Opt. Mater. 50, 238–243 (2015).
[Crossref]

Sivery, A.

Smektala, F.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: A new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Song, E. H.

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv. Sci. 3(12), 1600302 (2016).
[Crossref]

E. H. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. F. Zhou, and Q. Y. Zhang, “Anomalous NIR luminescence in Mn2+-doped Fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Song, Z. G.

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement upconversion emission and energy transfer of Mn2+/Tb3+/Yb3+ tri-doped transparent glass-ceramics,” Mater. Lett. 150, 76–80 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Optimizing Nd/Er ratio for enhancement of broadband near-infrared emission and energy transfer in the Er3 +-Nd3 + co-doped transparent silicate glass-ceramics,” J. Non-Cryst. Solids 414, 21–26 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics,” Opt. Laser Technol. 64, 264–268 (2014).
[Crossref]

Stanworth, J. E.

J. E. Stanworth, “Tellurite glasses,” Nature 169(4301), 581–582 (1952).
[Crossref]

Su, Q.

L. Feng, Q. Su, Y. Li, C. R. Zheng, C. Wang, and H. Li, “Compositional and thermal effect on upconversion luminescence of Ho3+/Yb3+co-doped oxyfluoride glasses,” Spectrochim. Acta, Part A 73(1), 41–43 (2009).
[Crossref]

Sun, J. S.

X. Wang, X. P. Li, S. Xu, L. H. Cheng, J. S. Sun, J. S. Zhang, and B. J. Chen, “Can temperature be accurately sensed by red-green emission ratio in YNbO4: Ho3+/Yb3+ phosphor under 980 nm excitation?” J. Alloys Compd. 754, 222–226 (2018).
[Crossref]

Sun, M.

K. S. Zou, G. Z. Dong, M. Sun, and J. C. Liu, “Enhanced upconversion luminescence of TiO2: Ho3+–Yb3+ nanocrystals with modified structure via tri-doping Li+ ions,” J. Phys. D: Appl. Phys. 51(29), 295103 (2018).
[Crossref]

Sun, T.

L. L. Han, H. H. Yao, S. L. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. P. Ci, and C. W. Wang, “Morphology controllable synthesis and upconversion luminescence of Gd4O3F6: Ho3+, Yb3+ for temperature sensing,” J. Lumin. 197, 360–369 (2018).
[Crossref]

Sun, Z. Y.

W. Gao, Z. Y. Sun, Q. Y. Han, J. Zhang, X. W. Yan, H. B. Ge, and J. Dong, “Tunable upconversion emission of Ho3+/Yb3+co-doped single β-NaYF4 microrod,” Mater. Res. Bull. 108, 10–15 (2018).
[Crossref]

Suret, P.

Tan, S.

T. Feng, F. Yan, W. Peng, Q. Li, S. Tan, J. Wang, and X. Wen, “Spectroscopy of thulium and holmium co-doped silicate glasses,” Opt. Fiber Technol. 18(4), 204–208 (2012).
[Crossref]

Tao, L. L.

B. Zhou, L. L. Tao, C. Y. Y. Chan, W. Jin, Y. H. Tsang, and E. Y. B. Pun, “Near- and mid-infrared photoluminescence in Ho3+-doped and Ho3+–Yb3+ co-doped low-phonon-energy germanotellurite glasses,” J. Lumin. 137, 132–137 (2013).
[Crossref]

Teddy-Fernandez, T.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Teng, H.

Q. Xu, H. Lin, H. Teng, C. Chen, and S. M. Zhou, “Energy transfer mechanisms of quantum cutting near-infrared luminescence in Ho3+/Yb3+ co-doped Y2O3 transparent ceramics,” J. Non-Cryst. Solids 403, 84–87 (2014).
[Crossref]

Thai, N. L.

H. K. Dan, N. L. Thai, L. D. Tin, J. B. Qiu, D. C. Zhou, and Q. Jiao, “Enhanced near/mid-infrared emission bands centered at ∼1.54 and ∼2.73 µm of Er3+-doped in transparent silicate glass-ceramics via Mn2+-Yb3+ dimer,” Infrared Phys. Technol. 95, 33–38 (2018).
[Crossref]

Tian, Y.

C. Z. Wang, Y. Tian, X. Y. Gao, Q. H. Liu, F. F. Huang, B. P. Li, J. J. Zhang, and S. Q. Xu, “Mid-infrared fluorescence properties, structure and energy transfer around 2 µm in Tm3+/Ho3+ co-doped tellurite glass,” J. Lumin. 194, 791–796 (2018).
[Crossref]

R. J. Cao, Y. Lu, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Spectroscopy of Thulium and Holmium co-doped silicate glasses,” Opt. Mater. Express 6(7), 2252 (2016).
[Crossref]

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 µm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transfer 113(1), 87–95 (2012).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 µm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Tin, L. D.

H. K. Dan, N. L. Thai, L. D. Tin, J. B. Qiu, D. C. Zhou, and Q. Jiao, “Enhanced near/mid-infrared emission bands centered at ∼1.54 and ∼2.73 µm of Er3+-doped in transparent silicate glass-ceramics via Mn2+-Yb3+ dimer,” Infrared Phys. Technol. 95, 33–38 (2018).
[Crossref]

Tong, H. Z.

X. Gao, N. L. Wang, T. Shi, S. Wang, M. H. Zhang, W. Zhang, J. L. Zhong, H. Z. Tong, and X. Y. Zhang, “Sol-gel synthesis of (-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence,” J. Fluorine Chem. 188, 23–27 (2016).
[Crossref]

Troles, J.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Tsang, Y. H.

B. Zhou, L. L. Tao, C. Y. Y. Chan, W. Jin, Y. H. Tsang, and E. Y. B. Pun, “Near- and mid-infrared photoluminescence in Ho3+-doped and Ho3+–Yb3+ co-doped low-phonon-energy germanotellurite glasses,” J. Lumin. 137, 132–137 (2013).
[Crossref]

Turshatov, A.

G. J. Gao, D. Busko, R. Joseph, A. Turshatov, I. A. Howard, and B. S. Richards, “High quantum yield single-band green upconversion in La2O3: Yb3+, Ho3+ microcrystals for anticounterfeiting and plastic recycling,” Part. Part. Syst. Charact. 36(3), 1800462 (2019).
[Crossref]

G. J. Gao, A. Turshatov, I. A. Howard, D. Busko, R. Joseph, D. Hudry, and B. S. Richards, “Upconversion fluorescent labels for plastic recycling: A Review,” Adv. Sustainable Syst. 1(5), 1600033 (2017).
[Crossref]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: A new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Vomiero, A.

F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
[Crossref]

Wang, C.

L. Feng, Q. Su, Y. Li, C. R. Zheng, C. Wang, and H. Li, “Compositional and thermal effect on upconversion luminescence of Ho3+/Yb3+co-doped oxyfluoride glasses,” Spectrochim. Acta, Part A 73(1), 41–43 (2009).
[Crossref]

Wang, C. W.

L. L. Han, H. H. Yao, S. L. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. P. Ci, and C. W. Wang, “Morphology controllable synthesis and upconversion luminescence of Gd4O3F6: Ho3+, Yb3+ for temperature sensing,” J. Lumin. 197, 360–369 (2018).
[Crossref]

Wang, C. Z.

C. Z. Wang, Y. Tian, X. Y. Gao, Q. H. Liu, F. F. Huang, B. P. Li, J. J. Zhang, and S. Q. Xu, “Mid-infrared fluorescence properties, structure and energy transfer around 2 µm in Tm3+/Ho3+ co-doped tellurite glass,” J. Lumin. 194, 791–796 (2018).
[Crossref]

Wang, J.

T. Feng, F. Yan, W. Peng, Q. Li, S. Tan, J. Wang, and X. Wen, “Spectroscopy of thulium and holmium co-doped silicate glasses,” Opt. Fiber Technol. 18(4), 204–208 (2012).
[Crossref]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: A new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wang, N. L.

X. Gao, N. L. Wang, T. Shi, S. Wang, M. H. Zhang, W. Zhang, J. L. Zhong, H. Z. Tong, and X. Y. Zhang, “Sol-gel synthesis of (-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence,” J. Fluorine Chem. 188, 23–27 (2016).
[Crossref]

Wang, R. F.

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement upconversion emission and energy transfer of Mn2+/Tb3+/Yb3+ tri-doped transparent glass-ceramics,” Mater. Lett. 150, 76–80 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics,” Opt. Laser Technol. 64, 264–268 (2014).
[Crossref]

Wang, S.

L. L. Han, H. H. Yao, S. L. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. P. Ci, and C. W. Wang, “Morphology controllable synthesis and upconversion luminescence of Gd4O3F6: Ho3+, Yb3+ for temperature sensing,” J. Lumin. 197, 360–369 (2018).
[Crossref]

X. Gao, N. L. Wang, T. Shi, S. Wang, M. H. Zhang, W. Zhang, J. L. Zhong, H. Z. Tong, and X. Y. Zhang, “Sol-gel synthesis of (-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence,” J. Fluorine Chem. 188, 23–27 (2016).
[Crossref]

Wang, S. B.

S. B. Wang, C. Z. Li, C. F. Yao, S. J. Jia, Z. X. Jia, G. S. Qin, and W. P. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 µm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

Wang, W. R.

W. R. Wang, Z. Y. Huang, H. P. Gao, X. Y. Cheng, and Y. L. Mao, “Broadband emission from Ce3+/Mn2+/Yb3+ tri-doped oxyfluoride glasses for glass greenhouse,” Opt. Mater. 62, 494–498 (2016).
[Crossref]

Wang, X.

X. Wang, X. P. Li, S. Xu, L. H. Cheng, J. S. Sun, J. S. Zhang, and B. J. Chen, “Can temperature be accurately sensed by red-green emission ratio in YNbO4: Ho3+/Yb3+ phosphor under 980 nm excitation?” J. Alloys Compd. 754, 222–226 (2018).
[Crossref]

Wang, X. L.

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers,” J. Quant. Spectrosc. Radiat. Transfer 141, 9–13 (2014).
[Crossref]

Wang, X. S.

D. D. Yin, F. J. Yang, L. B. Wu, Y. X. Zhou, H. J. Zhou, and X. S. Wang, “Enhanced 2.7 µm mid-infrared emission and energy transfer mechanism in Er3+/Nd3+ co-doped tellurite glass,” J. Alloys Compd. 618, 666–672 (2015).
[Crossref]

Wang, X. Y.

X. Y. Wang, H. Lin, D. H. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

Wang, Y. S.

Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y. Weng, H. Lin, and Y. S. Wang, “Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals,” Mater. Res. Bull. 45(8), 1017–1020 (2010).
[Crossref]

Wen, X.

T. Feng, F. Yan, W. Peng, Q. Li, S. Tan, J. Wang, and X. Wen, “Spectroscopy of thulium and holmium co-doped silicate glasses,” Opt. Fiber Technol. 18(4), 204–208 (2012).
[Crossref]

Weng, F. Y.

Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y. Weng, H. Lin, and Y. S. Wang, “Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals,” Mater. Res. Bull. 45(8), 1017–1020 (2010).
[Crossref]

Wilson, S.

S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+–Ho3+ and Tm3+–Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
[Crossref]

Wu, L. B.

D. D. Yin, F. J. Yang, L. B. Wu, Y. X. Zhou, H. J. Zhou, and X. S. Wang, “Enhanced 2.7 µm mid-infrared emission and energy transfer mechanism in Er3+/Nd3+ co-doped tellurite glass,” J. Alloys Compd. 618, 666–672 (2015).
[Crossref]

Wu, M.

E. H. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. F. Zhou, and Q. Y. Zhang, “Anomalous NIR luminescence in Mn2+-doped Fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Xiao, F.

E. H. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. F. Zhou, and Q. Y. Zhang, “Anomalous NIR luminescence in Mn2+-doped Fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Xing, M. M.

Y. Fu, W. H. Cao, Y. Peng, X. X. Luo, and M. M. Xing, “The upconversion luminescence properties of the Yb3+–Ho3+ system in nanocrystalline Y2O2S,” J. Mater. Sci. 45(23), 6556–6561 (2010).
[Crossref]

Xu, Q.

Q. Xu, H. Lin, H. Teng, C. Chen, and S. M. Zhou, “Energy transfer mechanisms of quantum cutting near-infrared luminescence in Ho3+/Yb3+ co-doped Y2O3 transparent ceramics,” J. Non-Cryst. Solids 403, 84–87 (2014).
[Crossref]

Xu, R. R.

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 µm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transfer 113(1), 87–95 (2012).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 µm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Xu, S.

X. Wang, X. P. Li, S. Xu, L. H. Cheng, J. S. Sun, J. S. Zhang, and B. J. Chen, “Can temperature be accurately sensed by red-green emission ratio in YNbO4: Ho3+/Yb3+ phosphor under 980 nm excitation?” J. Alloys Compd. 754, 222–226 (2018).
[Crossref]

Xu, S. Q.

C. Z. Wang, Y. Tian, X. Y. Gao, Q. H. Liu, F. F. Huang, B. P. Li, J. J. Zhang, and S. Q. Xu, “Mid-infrared fluorescence properties, structure and energy transfer around 2 µm in Tm3+/Ho3+ co-doped tellurite glass,” J. Lumin. 194, 791–796 (2018).
[Crossref]

R. J. Cao, Y. Lu, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Spectroscopy of Thulium and Holmium co-doped silicate glasses,” Opt. Mater. Express 6(7), 2252 (2016).
[Crossref]

Xu, X. H.

X. S. Qiao, X. P. Fan, Z. Xue, and X. H. Xu, “Short-wavelength upconversion luminescence of Yb3+/Tm3+ co-doped glass ceramic containing SrF2 nanocrystals,” J. Non-Cryst. Solids 357(1), 83–87 (2011).
[Crossref]

Xue, Z.

X. S. Qiao, X. P. Fan, Z. Xue, and X. H. Xu, “Short-wavelength upconversion luminescence of Yb3+/Tm3+ co-doped glass ceramic containing SrF2 nanocrystals,” J. Non-Cryst. Solids 357(1), 83–87 (2011).
[Crossref]

Yan, F.

T. Feng, F. Yan, W. Peng, Q. Li, S. Tan, J. Wang, and X. Wen, “Spectroscopy of thulium and holmium co-doped silicate glasses,” Opt. Fiber Technol. 18(4), 204–208 (2012).
[Crossref]

Yan, X. W.

W. Gao, Z. Y. Sun, Q. Y. Han, J. Zhang, X. W. Yan, H. B. Ge, and J. Dong, “Tunable upconversion emission of Ho3+/Yb3+co-doped single β-NaYF4 microrod,” Mater. Res. Bull. 108, 10–15 (2018).
[Crossref]

Yang, D. H.

X. Y. Wang, H. Lin, D. H. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

Yang, F. J.

D. D. Yin, F. J. Yang, L. B. Wu, Y. X. Zhou, H. J. Zhou, and X. S. Wang, “Enhanced 2.7 µm mid-infrared emission and energy transfer mechanism in Er3+/Nd3+ co-doped tellurite glass,” J. Alloys Compd. 618, 666–672 (2015).
[Crossref]

Yang, Y. M.

T. Li, C. F. Guo, Y. M. Yang, L. Li, and N. Zhang, “Efficient green upconversion emission in Yb3+/Ho3+ co-doped CaIn2O4,” Acta Mater. 61(19), 7481–7487 (2013).
[Crossref]

Yang, Z. W.

H. K. Dan, D. C. Zhou, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Optimizing Nd/Er ratio for enhancement of broadband near-infrared emission and energy transfer in the Er3 +-Nd3 + co-doped transparent silicate glass-ceramics,” J. Non-Cryst. Solids 414, 21–26 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement upconversion emission and energy transfer of Mn2+/Tb3+/Yb3+ tri-doped transparent glass-ceramics,” Mater. Lett. 150, 76–80 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics,” Opt. Laser Technol. 64, 264–268 (2014).
[Crossref]

Yao, C. F.

S. B. Wang, C. Z. Li, C. F. Yao, S. J. Jia, Z. X. Jia, G. S. Qin, and W. P. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 µm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

Yao, H. H.

L. L. Han, H. H. Yao, S. L. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. P. Ci, and C. W. Wang, “Morphology controllable synthesis and upconversion luminescence of Gd4O3F6: Ho3+, Yb3+ for temperature sensing,” J. Lumin. 197, 360–369 (2018).
[Crossref]

Ye, S.

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv. Sci. 3(12), 1600302 (2016).
[Crossref]

E. H. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. F. Zhou, and Q. Y. Zhang, “Anomalous NIR luminescence in Mn2+-doped Fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Yin, D. D.

D. D. Yin, F. J. Yang, L. B. Wu, Y. X. Zhou, H. J. Zhou, and X. S. Wang, “Enhanced 2.7 µm mid-infrared emission and energy transfer mechanism in Er3+/Nd3+ co-doped tellurite glass,” J. Alloys Compd. 618, 666–672 (2015).
[Crossref]

Yu, J. S.

P. Du, E. J. J. Kim, and J. S. Yu, “Local symmetry distortion-induced enhancement of upconversion luminescence in Gd2O3:Ho3+/Yb3+/Zn2+nanoparticles for solid-state lighting and bioimaging,” Curr. App. Phys. 18(3), 310–316 (2018).
[Crossref]

Yu, X.

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement upconversion emission and energy transfer of Mn2+/Tb3+/Yb3+ tri-doped transparent glass-ceramics,” Mater. Lett. 150, 76–80 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Optimizing Nd/Er ratio for enhancement of broadband near-infrared emission and energy transfer in the Er3 +-Nd3 + co-doped transparent silicate glass-ceramics,” J. Non-Cryst. Solids 414, 21–26 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics,” Opt. Laser Technol. 64, 264–268 (2014).
[Crossref]

Yu, Y. L.

Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y. Weng, H. Lin, and Y. S. Wang, “Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals,” Mater. Res. Bull. 45(8), 1017–1020 (2010).
[Crossref]

Zhan, H.

Zhang, E.

S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+–Ho3+ and Tm3+–Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
[Crossref]

Zhang, J.

W. Gao, Z. Y. Sun, Q. Y. Han, J. Zhang, X. W. Yan, H. B. Ge, and J. Dong, “Tunable upconversion emission of Ho3+/Yb3+co-doped single β-NaYF4 microrod,” Mater. Res. Bull. 108, 10–15 (2018).
[Crossref]

Zhang, J. J.

C. Z. Wang, Y. Tian, X. Y. Gao, Q. H. Liu, F. F. Huang, B. P. Li, J. J. Zhang, and S. Q. Xu, “Mid-infrared fluorescence properties, structure and energy transfer around 2 µm in Tm3+/Ho3+ co-doped tellurite glass,” J. Lumin. 194, 791–796 (2018).
[Crossref]

R. J. Cao, Y. Lu, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Spectroscopy of Thulium and Holmium co-doped silicate glasses,” Opt. Mater. Express 6(7), 2252 (2016).
[Crossref]

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 µm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transfer 113(1), 87–95 (2012).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 µm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Zhang, J. S.

X. Wang, X. P. Li, S. Xu, L. H. Cheng, J. S. Sun, J. S. Zhang, and B. J. Chen, “Can temperature be accurately sensed by red-green emission ratio in YNbO4: Ho3+/Yb3+ phosphor under 980 nm excitation?” J. Alloys Compd. 754, 222–226 (2018).
[Crossref]

Zhang, L. Y.

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 µm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Zhang, M. H.

X. Gao, N. L. Wang, T. Shi, S. Wang, M. H. Zhang, W. Zhang, J. L. Zhong, H. Z. Tong, and X. Y. Zhang, “Sol-gel synthesis of (-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence,” J. Fluorine Chem. 188, 23–27 (2016).
[Crossref]

Zhang, N.

T. Li, C. F. Guo, Y. M. Yang, L. Li, and N. Zhang, “Efficient green upconversion emission in Yb3+/Ho3+ co-doped CaIn2O4,” Acta Mater. 61(19), 7481–7487 (2013).
[Crossref]

Zhang, Q. Y.

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv. Sci. 3(12), 1600302 (2016).
[Crossref]

E. H. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. F. Zhou, and Q. Y. Zhang, “Anomalous NIR luminescence in Mn2+-doped Fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Zhang, W.

X. Gao, N. L. Wang, T. Shi, S. Wang, M. H. Zhang, W. Zhang, J. L. Zhong, H. Z. Tong, and X. Y. Zhang, “Sol-gel synthesis of (-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence,” J. Fluorine Chem. 188, 23–27 (2016).
[Crossref]

Zhang, X. Y.

X. Gao, N. L. Wang, T. Shi, S. Wang, M. H. Zhang, W. Zhang, J. L. Zhong, H. Z. Tong, and X. Y. Zhang, “Sol-gel synthesis of (-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence,” J. Fluorine Chem. 188, 23–27 (2016).
[Crossref]

Zhao, J.

L. L. Han, H. H. Yao, S. L. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. P. Ci, and C. W. Wang, “Morphology controllable synthesis and upconversion luminescence of Gd4O3F6: Ho3+, Yb3+ for temperature sensing,” J. Lumin. 197, 360–369 (2018).
[Crossref]

Zhao, X.

B. R. Li, X. Zhao, E. Y. B. Pun, and H. Lin, “Upconversion photon quantification of Ho3+ in highly transparent fluorotellurite glasses,” Opt. Laser Technol. 107, 8–14 (2018).
[Crossref]

Zheng, C. R.

L. Feng, Q. Su, Y. Li, C. R. Zheng, C. Wang, and H. Li, “Compositional and thermal effect on upconversion luminescence of Ho3+/Yb3+co-doped oxyfluoride glasses,” Spectrochim. Acta, Part A 73(1), 41–43 (2009).
[Crossref]

Zhong, J. L.

X. Gao, N. L. Wang, T. Shi, S. Wang, M. H. Zhang, W. Zhang, J. L. Zhong, H. Z. Tong, and X. Y. Zhang, “Sol-gel synthesis of (-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence,” J. Fluorine Chem. 188, 23–27 (2016).
[Crossref]

Zhou, B.

B. Zhou, L. L. Tao, C. Y. Y. Chan, W. Jin, Y. H. Tsang, and E. Y. B. Pun, “Near- and mid-infrared photoluminescence in Ho3+-doped and Ho3+–Yb3+ co-doped low-phonon-energy germanotellurite glasses,” J. Lumin. 137, 132–137 (2013).
[Crossref]

Zhou, D. C.

H. K. Dan, N. L. Thai, L. D. Tin, J. B. Qiu, D. C. Zhou, and Q. Jiao, “Enhanced near/mid-infrared emission bands centered at ∼1.54 and ∼2.73 µm of Er3+-doped in transparent silicate glass-ceramics via Mn2+-Yb3+ dimer,” Infrared Phys. Technol. 95, 33–38 (2018).
[Crossref]

Y. Gao, Y. B. Hu, D. C. Zhou, and J. B. Qiu, “Upconversion luminescence properties of NaYF4 nanocrystals precipitated Nd3+/Yb3+/Ho3+ tri-doped Oxyfluoride glass-ceramics,” J. Nanosci. Nanotechnol. 16(4), 3744–3748 (2016).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement upconversion emission and energy transfer of Mn2+/Tb3+/Yb3+ tri-doped transparent glass-ceramics,” Mater. Lett. 150, 76–80 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Optimizing Nd/Er ratio for enhancement of broadband near-infrared emission and energy transfer in the Er3 +-Nd3 + co-doped transparent silicate glass-ceramics,” J. Non-Cryst. Solids 414, 21–26 (2015).
[Crossref]

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics,” Opt. Laser Technol. 64, 264–268 (2014).
[Crossref]

Zhou, H. J.

D. D. Yin, F. J. Yang, L. B. Wu, Y. X. Zhou, H. J. Zhou, and X. S. Wang, “Enhanced 2.7 µm mid-infrared emission and energy transfer mechanism in Er3+/Nd3+ co-doped tellurite glass,” J. Alloys Compd. 618, 666–672 (2015).
[Crossref]

Zhou, S. F.

E. H. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. F. Zhou, and Q. Y. Zhang, “Anomalous NIR luminescence in Mn2+-doped Fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Zhou, S. M.

Q. Xu, H. Lin, H. Teng, C. Chen, and S. M. Zhou, “Energy transfer mechanisms of quantum cutting near-infrared luminescence in Ho3+/Yb3+ co-doped Y2O3 transparent ceramics,” J. Non-Cryst. Solids 403, 84–87 (2014).
[Crossref]

Zhou, Y. X.

D. D. Yin, F. J. Yang, L. B. Wu, Y. X. Zhou, H. J. Zhou, and X. S. Wang, “Enhanced 2.7 µm mid-infrared emission and energy transfer mechanism in Er3+/Nd3+ co-doped tellurite glass,” J. Alloys Compd. 618, 666–672 (2015).
[Crossref]

Zhou, Z. G.

Zou, K. S.

K. S. Zou, G. Z. Dong, M. Sun, and J. C. Liu, “Enhanced upconversion luminescence of TiO2: Ho3+–Yb3+ nanocrystals with modified structure via tri-doping Li+ ions,” J. Phys. D: Appl. Phys. 51(29), 295103 (2018).
[Crossref]

Zur, L.

F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
[Crossref]

Acta Mater. (1)

T. Li, C. F. Guo, Y. M. Yang, L. Li, and N. Zhang, “Efficient green upconversion emission in Yb3+/Ho3+ co-doped CaIn2O4,” Acta Mater. 61(19), 7481–7487 (2013).
[Crossref]

Adv. Opt. Mater. (1)

E. H. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. F. Zhou, and Q. Y. Zhang, “Anomalous NIR luminescence in Mn2+-doped Fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Adv. Sci. (1)

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv. Sci. 3(12), 1600302 (2016).
[Crossref]

Adv. Sustainable Syst. (1)

G. J. Gao, A. Turshatov, I. A. Howard, D. Busko, R. Joseph, D. Hudry, and B. S. Richards, “Upconversion fluorescent labels for plastic recycling: A Review,” Adv. Sustainable Syst. 1(5), 1600033 (2017).
[Crossref]

Appl. Opt. (1)

Curr. App. Phys. (1)

P. Du, E. J. J. Kim, and J. S. Yu, “Local symmetry distortion-induced enhancement of upconversion luminescence in Gd2O3:Ho3+/Yb3+/Zn2+nanoparticles for solid-state lighting and bioimaging,” Curr. App. Phys. 18(3), 310–316 (2018).
[Crossref]

Infrared Phys. Technol. (1)

H. K. Dan, N. L. Thai, L. D. Tin, J. B. Qiu, D. C. Zhou, and Q. Jiao, “Enhanced near/mid-infrared emission bands centered at ∼1.54 and ∼2.73 µm of Er3+-doped in transparent silicate glass-ceramics via Mn2+-Yb3+ dimer,” Infrared Phys. Technol. 95, 33–38 (2018).
[Crossref]

J. Alloys Compd. (3)

X. Wang, X. P. Li, S. Xu, L. H. Cheng, J. S. Sun, J. S. Zhang, and B. J. Chen, “Can temperature be accurately sensed by red-green emission ratio in YNbO4: Ho3+/Yb3+ phosphor under 980 nm excitation?” J. Alloys Compd. 754, 222–226 (2018).
[Crossref]

G. A. Kumar, A. Martinez, E. Mejia, and J. G. Eden, “Fluorescence and upconversion spectral studies of Ho3+ in alkali bismuth gallate glasses,” J. Alloys Compd. 365(1-2), 117–120 (2004).
[Crossref]

D. D. Yin, F. J. Yang, L. B. Wu, Y. X. Zhou, H. J. Zhou, and X. S. Wang, “Enhanced 2.7 µm mid-infrared emission and energy transfer mechanism in Er3+/Nd3+ co-doped tellurite glass,” J. Alloys Compd. 618, 666–672 (2015).
[Crossref]

J. Appl. Phys. (1)

X. Y. Wang, H. Lin, D. H. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

J. Fluorine Chem. (1)

X. Gao, N. L. Wang, T. Shi, S. Wang, M. H. Zhang, W. Zhang, J. L. Zhong, H. Z. Tong, and X. Y. Zhang, “Sol-gel synthesis of (-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence,” J. Fluorine Chem. 188, 23–27 (2016).
[Crossref]

J. Lumin. (7)

R. Martín-Rodríguez and A. Meijerink, “Infrared to near-infrared and visible upconversion mechanisms in LiYF4: Yb3+, Ho3+,” J. Lumin. 147, 147–154 (2014).
[Crossref]

L. L. Han, H. H. Yao, S. L. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. P. Ci, and C. W. Wang, “Morphology controllable synthesis and upconversion luminescence of Gd4O3F6: Ho3+, Yb3+ for temperature sensing,” J. Lumin. 197, 360–369 (2018).
[Crossref]

S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+–Ho3+ and Tm3+–Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
[Crossref]

F. Enrichi, C. Armellini, S. Belmokhtar, A. Bouajaj, A. Chiappini, M. Ferrari, A. Quandt, G. C. Righini, A. Vomiero, and L. Zur, “Visible to NIR downconversion process in Tb3+-Yb3+ co-doped silica-hafnia glass and glass-ceramics sol-gel waveguides for solar cells,” J. Lumin. 193, 44–50 (2018).
[Crossref]

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO.Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

B. Zhou, L. L. Tao, C. Y. Y. Chan, W. Jin, Y. H. Tsang, and E. Y. B. Pun, “Near- and mid-infrared photoluminescence in Ho3+-doped and Ho3+–Yb3+ co-doped low-phonon-energy germanotellurite glasses,” J. Lumin. 137, 132–137 (2013).
[Crossref]

C. Z. Wang, Y. Tian, X. Y. Gao, Q. H. Liu, F. F. Huang, B. P. Li, J. J. Zhang, and S. Q. Xu, “Mid-infrared fluorescence properties, structure and energy transfer around 2 µm in Tm3+/Ho3+ co-doped tellurite glass,” J. Lumin. 194, 791–796 (2018).
[Crossref]

J. Mater. Sci. (1)

Y. Fu, W. H. Cao, Y. Peng, X. X. Luo, and M. M. Xing, “The upconversion luminescence properties of the Yb3+–Ho3+ system in nanocrystalline Y2O2S,” J. Mater. Sci. 45(23), 6556–6561 (2010).
[Crossref]

J. Mol. Struct. (2)

M.R. Dousti, M.R. Sahar, S.K. Ghoshal, Raja J. Amjad, and A.R. Samavati, “Effect of AgCl on spectroscopic properties of Erbium-doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

N. Kiran, “Eu3+ ion doped sodium–lead borophosphate glasses for red light emission,” J. Mol. Struct. 1065-1066, 93–98 (2014).
[Crossref]

J. Nanosci. Nanotechnol. (1)

Y. Gao, Y. B. Hu, D. C. Zhou, and J. B. Qiu, “Upconversion luminescence properties of NaYF4 nanocrystals precipitated Nd3+/Yb3+/Ho3+ tri-doped Oxyfluoride glass-ceramics,” J. Nanosci. Nanotechnol. 16(4), 3744–3748 (2016).
[Crossref]

J. Non-Cryst. Solids (4)

Q. Xu, H. Lin, H. Teng, C. Chen, and S. M. Zhou, “Energy transfer mechanisms of quantum cutting near-infrared luminescence in Ho3+/Yb3+ co-doped Y2O3 transparent ceramics,” J. Non-Cryst. Solids 403, 84–87 (2014).
[Crossref]

M. Seshadri, L. C. Barbosa, and M. Radha, “Study on structural, optical and gain properties of 1.2 and 2.0 µm emission transitions in Ho3 +-doped tellurite glasses,” J. Non-Cryst. Solids 406, 62–72 (2014).
[Crossref]

H. K. Dan, D. C. Zhou, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Optimizing Nd/Er ratio for enhancement of broadband near-infrared emission and energy transfer in the Er3 +-Nd3 + co-doped transparent silicate glass-ceramics,” J. Non-Cryst. Solids 414, 21–26 (2015).
[Crossref]

X. S. Qiao, X. P. Fan, Z. Xue, and X. H. Xu, “Short-wavelength upconversion luminescence of Yb3+/Tm3+ co-doped glass ceramic containing SrF2 nanocrystals,” J. Non-Cryst. Solids 357(1), 83–87 (2011).
[Crossref]

J. Phys. D: Appl. Phys. (1)

K. S. Zou, G. Z. Dong, M. Sun, and J. C. Liu, “Enhanced upconversion luminescence of TiO2: Ho3+–Yb3+ nanocrystals with modified structure via tri-doping Li+ ions,” J. Phys. D: Appl. Phys. 51(29), 295103 (2018).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 µm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transfer 113(1), 87–95 (2012).
[Crossref]

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers,” J. Quant. Spectrosc. Radiat. Transfer 141, 9–13 (2014).
[Crossref]

Mater. Lett. (1)

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement upconversion emission and energy transfer of Mn2+/Tb3+/Yb3+ tri-doped transparent glass-ceramics,” Mater. Lett. 150, 76–80 (2015).
[Crossref]

Mater. Res. Bull. (2)

W. Gao, Z. Y. Sun, Q. Y. Han, J. Zhang, X. W. Yan, H. B. Ge, and J. Dong, “Tunable upconversion emission of Ho3+/Yb3+co-doped single β-NaYF4 microrod,” Mater. Res. Bull. 108, 10–15 (2018).
[Crossref]

Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y. Weng, H. Lin, and Y. S. Wang, “Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals,” Mater. Res. Bull. 45(8), 1017–1020 (2010).
[Crossref]

Nature (1)

J. E. Stanworth, “Tellurite glasses,” Nature 169(4301), 581–582 (1952).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

T. Feng, F. Yan, W. Peng, Q. Li, S. Tan, J. Wang, and X. Wen, “Spectroscopy of thulium and holmium co-doped silicate glasses,” Opt. Fiber Technol. 18(4), 204–208 (2012).
[Crossref]

Opt. Laser Technol. (2)

H. K. Dan, D. C. Zhou, R. F. Wang, J. Qiao, Z. W. Yang, Z. G. Song, X. Yu, and J. B. Qiu, “Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics,” Opt. Laser Technol. 64, 264–268 (2014).
[Crossref]

B. R. Li, X. Zhao, E. Y. B. Pun, and H. Lin, “Upconversion photon quantification of Ho3+ in highly transparent fluorotellurite glasses,” Opt. Laser Technol. 107, 8–14 (2018).
[Crossref]

Opt. Mater. (9)

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 µm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

C. H. Niu, L. W. Li, X. Y. Li, Y. Lv, and X. P. Lang, “Upconversion photoluminescence properties of Ho3+/Yb3+ co-doped YNbO4 powder,” Opt. Mater. 75, 68–73 (2018).
[Crossref]

M. A. Merzliakov, V. V. Kouhar, G. E. Malashkevich, and E. V. Pestryakov, “Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties,” Opt. Mater. 75, 142–149 (2018).
[Crossref]

W. R. Wang, Z. Y. Huang, H. P. Gao, X. Y. Cheng, and Y. L. Mao, “Broadband emission from Ce3+/Mn2+/Yb3+ tri-doped oxyfluoride glasses for glass greenhouse,” Opt. Mater. 62, 494–498 (2016).
[Crossref]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

D. Gelija, L. Kadathala, and D. P. R. Borelli, “Energy transfer dynamics of Er3+/Nd3+ embedded SiO2–Al2O3–Na2CO3–SrF2–CaF2 glasses for optical communications,” Opt. Mater. 78, 172–180 (2018).
[Crossref]

S. B. Wang, C. Z. Li, C. F. Yao, S. J. Jia, Z. X. Jia, G. S. Qin, and W. P. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 µm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: A new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

K. Shinozaki, W. Pisarski, M. Affatigato, T. Honma, and T. Komatsu, “Glass structure and NIR emission of Er3+ at 1.5 µm in oxyfluoride BaF2–Al2O3–B2O3 glasses,” Opt. Mater. 50, 238–243 (2015).
[Crossref]

Opt. Mater. Express (1)

Part. Part. Syst. Charact. (1)

G. J. Gao, D. Busko, R. Joseph, A. Turshatov, I. A. Howard, and B. S. Richards, “High quantum yield single-band green upconversion in La2O3: Yb3+, Ho3+ microcrystals for anticounterfeiting and plastic recycling,” Part. Part. Syst. Charact. 36(3), 1800462 (2019).
[Crossref]

Prog. Mater. Sci. (1)

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Solid State Sci. (1)

M. Azam and V. K. Rai, “Ho3+-Yb3+ co-doped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion,” Solid State Sci. 66, 7–15 (2017).
[Crossref]

Spectrochim. Acta, Part A (2)

N. K. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li: TeO2 glass,” Spectrochim. Acta, Part A 74(5), 1115–1119 (2009).
[Crossref]

L. Feng, Q. Su, Y. Li, C. R. Zheng, C. Wang, and H. Li, “Compositional and thermal effect on upconversion luminescence of Ho3+/Yb3+co-doped oxyfluoride glasses,” Spectrochim. Acta, Part A 73(1), 41–43 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. DTA curve of TZNL-0.5Ho2Mn2Yb glass sample.
Fig. 2.
Fig. 2. Absorption spectra of (a) TZNL-0Ho2Mn2Yb, (b) TZNL-0.5Ho0Mn0Yb, and (c) TZNL-0.5H02Mn2Yb glass samples.
Fig. 3.
Fig. 3. UC emission spectra of TZNL-0.5Ho2Yb7Mn glass samples under different pumping powers.
Fig. 4.
Fig. 4. (a) UC emission spectra of TZNL-1 glass samples under 980 nm LD excitation and a pumping power of 2.0 W within the range of 500–700 nm; (b) UC emission spectra of TZNL-1 glass samples under 980 nm LD excitation and the pumping power of 2.0 W within the range of 700–800 nm.
Fig. 5.
Fig. 5. NIR emission spectra of the co-doped Ho3+/Yb3+ TZNL-1 glass samples under 980 nm LD excitation and a pumping power of 2.0 W within the range of 1100–1650 nm.
Fig. 6.
Fig. 6. ET processes of the (Yb3+–Mn2+–Mn2+) trimer and Ho3+ in TZNL glass.
Fig. 7.
Fig. 7. NIR emission spectra of the Ho3+/Yb3+ co-doped TZNL-2 glass samples in the range of 900–1250 nm.
Fig. 8.
Fig. 8. (a) Fluorescence lifetime of the (Yb3+–Mn2+–Mn2+) trimer at 612 nm in TZNL-1 glass samples; (b) Fluorescence lifetime of Yb3+ ions at 991 nm in TZNL-2 tellurite glass samples; (c) Fluorescence lifetime of Ho3+ ions at 659 nm in TZNL-1 glass samples; (d) Fluorescence lifetime of Ho3+ ions at 1,190 nm in TZNL-1 glass samples.

Tables (1)

Tables Icon

Table 1. Chemical composition of TeO2–ZnO–Na2CO3–La2O3–MnO–Ho2O3–Yb2O3 tellurite glasses (in mol. %)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ=A1τ12+A2τ22A1τ1+A2τ2
ηETE(YbMnMn/Ho)=1τTZNL0.5H02Yb9MnτTZNL0.5Ho2Yb0Mn