Abstract

Silicon avalanche light-emitting devices (Si Av LEDs) offer various possibilities for realizing micro- and even nano- optical biosensors directly on chip. The light-emitting devices (LEDs) operate in the wavelength range of about 450-850nm, and their optical power emitted is of the order of a few hundreds of nW/µm2. These LEDs could be fabricated in micro- and nano- dimensions by using modern semiconductor fabrication processing technologies through the mainstream of silicon material. Through a series of experiments, the dispersion phenomena in the Si Av LED are observed. Also, its light emission point was proved to locate at about one micron just below the silicon-silicon oxide interface. Subsequently, a micro-fluidic channel sensor was designed by using the dispersion characteristics owned by the Si Av LED. The analytes flowing through a micro-fluidic channel could be studied by their specific transmittance and absorption spectra. Moreover, simulations verify that a novel designed waveguide-based sensor could be fabricated on chip between the Si optical source and the Si P-I-N detector.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue

Arata Nakajima, Hiroshi Kimura, Yosmongkol Sawadsaringkarn, Yasuyo Maezawa, Takuma Kobayashi, Toshihiko Noda, Kiyotaka Sasagawa, Takashi Tokuda, Yasuyuki Ishikawa, Sadao Shiosaka, and Jun Ohta
Opt. Express 20(6) 6097-6108 (2012)

Monolithic optical link in silicon-on-insulator CMOS technology

Satadal Dutta, Vishal Agarwal, Raymond J.E. Hueting, Jurriaan Schmitz, and Anne-Johan Annema
Opt. Express 25(5) 5440-5456 (2017)

Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon

Renjie Wang, Hieu P. T. Nguyen, Ashfiqua T. Connie, J. Lee, Ishiang Shih, and Zetian Mi
Opt. Express 22(S7) A1768-A1775 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. N. Konopsky and E. V. Alieva, “Imaging biosensor based on planar optical waveguide,” Opt. Laser Technol. 115, 171–175 (2019).
    [Crossref]
  2. L. M. Lehuga, “Optical biosensors,” in Biosensors and modern Biospecific Analytical Techniques, L. Gorton, ed. (Elsevier Science BV, 2005).
  3. N. Khansili, G. Rattu, and P. M. Krishna, “Label-free optical biosensors for food and biological sensor applications,” Sens. Actuators, B 265, 35–49 (2018).
    [Crossref]
  4. M. Turemis, S. Silletti, G. Pezzotti, J. Sanchís, M. Farré, and M. T. Giardi, “Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring,” Sens. Actuators, B 270, 424–432 (2018).
    [Crossref]
  5. S. Barriasa, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
    [Crossref]
  6. S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34(1), 7–25 (2016).
    [Crossref]
  7. M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sens. Biosensing Res. 6, 95–98 (2015).
    [Crossref]
  8. D. A. Edwards, R. M. Evans, and W. B. Li, “Measuring kinetic rate constants of multiple-component reactions with optical biosensors,” Anal. Biochem. 533, 41–47 (2017).
    [Crossref]
  9. T. Ramon-Marquez, A. L. Medina-Castillo, A. Fernandez-Gutierrez, and J. F. Fernandez-Sanchez, “Evaluation of two sterically directed attachments of biomolecules on a coaxial nanofibre membrane to improve the development of optical biosensors,” Talanta 187, 83–90 (2018).
    [Crossref]
  10. R. Yan, N. Scott Lynn, L. C. Kingry, Z. Yi, T. Erickson, R. A. Slayden, D. S. Dandy, and K. L. Lear, “Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor,” Appl. Phys. Lett. 101(16), 161111 (2012).
    [Crossref]
  11. V. Solis-Tinoco, S. Marquez, T. Quesada-Lopez, F. Villarroya, A. Homs-Corbera, and L. M. Lechuga, “Building of a flexible microfluidic plasmo-nanomechanical biosensor for live cell analysis,” Sens. Actuators, B 291, 48–57 (2019).
    [Crossref]
  12. S. Sahua, J. Ali, P. P. Yupapinc, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
    [Crossref]
  13. Z. Liao, Y. Zhang, Y. Li, Y. Miao, S. Gao, F. Lin, Y. Deng, and L. Geng, “Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review,” Biosens. Bioelectron. 126, 697–706 (2019).
    [Crossref]
  14. R. Newman, “Visible light from a silicon p-n junction,” Phys. Rev. 100(2), 700–703 (1955).
    [Crossref]
  15. W. G. Ghynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
    [Crossref]
  16. K. Xu, L. W. Snyman, J. Polleux, H. Chen, and G. Li, “Silicon light-emitting device with application in the micro-opto-electro-mechanical systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
    [Crossref]
  17. K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, “Light-emitting devices in Si CMOS and RF bipolar integrated circuits,” Leukos 12(4), 203–212 (2016).
    [Crossref]
  18. S. Dutta, P. G. Steeneken, V. Agarwal, J. Schmitz, A. J. Annema, and R. J. E. Hueting, “The avalanche-mode superjunction LED,” IEEE Trans. Electron Devices 64(4), 1612–1618 (2017).
    [Crossref]
  19. S. Dutta, R. J. E. Hueting, A. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modelling of light emission from avalanche-mode silicon p+n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
    [Crossref]
  20. G. Piccolo, P. I. Kuindersma, L-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” in Proc. of the 44th European Solid State Device Research Conf. (ESSDERC, 2014), pp. 274–277.
  21. A. Chatterjee, B. Bhuva, and R. Schrimpf, “High-speed light modulation in avalanche breakdown mode for Si diodes,” IEEE Electron Device Lett. 25(9), 628–630 (2004).
    [Crossref]
  22. K. A. Ogudo, L. W. Snyman, J.-L. Polleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10-40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
    [Crossref]
  23. L. W. Snyman, K. Xu, J.-L. Polleux, K. A. Ogudo, and C. Viana, “Higher intensity Si Av LEDs in an RF bipolar process through carrier energy and carrier momentum engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
    [Crossref]
  24. L. W. Snyman, J.-L. Polleux, M. Plessis, and K. A. Ogudo, “Stimulating 600–650 nm wavelength optical emission in monolithically integrated silicon LEDs through controlled injection-avalanche and carrier density balancing technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
    [Crossref]
  25. J. Bude, N. Sano, and A. Yoshii, “Hot carrier luminescence in silicon,” Phys. Rev. B 45(11), 5848–5856 (1992).
    [Crossref]
  26. N. Akil, V. E. Houtsma, P. LeMinh, J. Holleman, V. Zieren, D. de Mooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
    [Crossref]
  27. J. L. Moll and R. van Overstraeten, “Charge multiplication in silicon p-n junctions,” Solid-State Electron. 6(2), 147–157 (1963).
    [Crossref]
  28. J. Kramer, P. Seltz, E. F. Stelgmeler, H. Auderset, B. Delley, and H. Baltes, “Light-emitting devices in industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
    [Crossref]
  29. L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light-emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
    [Crossref]
  30. L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. V. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
    [Crossref]
  31. S. J. M. Matjila and L. W. Snyman, “Increased electroluminescence from a two-junction Si n+pn CMOS structure,” Proc. SPIE 4293, 140–146 (2001).
    [Crossref]
  32. L. W. Snyman, M. du Plessis, and H. Aharoni, “Injection-based Si CMOS LEDs (450-750 nm) with two order increase in light emission intensity—applications for next-generation silicon-based optoelectronics,” Jpn. J. Appl. Phys. 46(4B), 2474–2480 (2007).
    [Crossref]
  33. M. du Plessis, H. Aharoni, and L. W. Snyman, “A silicon trans-conductance light emitting device (TRANSLED),” Sens. Actuators, A 80(3), 242–248 (2000).
    [Crossref]
  34. Optical Spectrum Analyzer MS9740B Brochure-Anritsu, https://dl.cdn-anritsu.com/en-en/test-measurement/files/Brochures-Datasheets-Catalogs/Brochure/ms9740b-e1101.pdf
  35. M. du Plessis, P. Johannes, and E. Bellotti, “Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions,” IEEE J. Quantum Electron. 49(7), 570–577 (2013).
    [Crossref]
  36. “Refractive Index Database,” https://www.filmetrics.com/refractive-index-database/Silicon-oxide (28 February 2018).
  37. “Refractive Index of Silicon,” https://www.filmetrics.com/refractive-index-database/Si/Silicon (28 February 2018).
  38. D. E. Aspnes and J. B. Theeten, “Spectroscopic analysis of the interface between Si and its thermally grown oxide,” J. Electrochem. Soc. 127(6), 1359–1365 (1980).
    [Crossref]
  39. RSoft Design Group, Inc., “Beam PROP 5.1.1”

2019 (4)

V. N. Konopsky and E. V. Alieva, “Imaging biosensor based on planar optical waveguide,” Opt. Laser Technol. 115, 171–175 (2019).
[Crossref]

S. Barriasa, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

V. Solis-Tinoco, S. Marquez, T. Quesada-Lopez, F. Villarroya, A. Homs-Corbera, and L. M. Lechuga, “Building of a flexible microfluidic plasmo-nanomechanical biosensor for live cell analysis,” Sens. Actuators, B 291, 48–57 (2019).
[Crossref]

Z. Liao, Y. Zhang, Y. Li, Y. Miao, S. Gao, F. Lin, Y. Deng, and L. Geng, “Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review,” Biosens. Bioelectron. 126, 697–706 (2019).
[Crossref]

2018 (4)

S. Sahua, J. Ali, P. P. Yupapinc, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
[Crossref]

T. Ramon-Marquez, A. L. Medina-Castillo, A. Fernandez-Gutierrez, and J. F. Fernandez-Sanchez, “Evaluation of two sterically directed attachments of biomolecules on a coaxial nanofibre membrane to improve the development of optical biosensors,” Talanta 187, 83–90 (2018).
[Crossref]

N. Khansili, G. Rattu, and P. M. Krishna, “Label-free optical biosensors for food and biological sensor applications,” Sens. Actuators, B 265, 35–49 (2018).
[Crossref]

M. Turemis, S. Silletti, G. Pezzotti, J. Sanchís, M. Farré, and M. T. Giardi, “Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring,” Sens. Actuators, B 270, 424–432 (2018).
[Crossref]

2017 (3)

D. A. Edwards, R. M. Evans, and W. B. Li, “Measuring kinetic rate constants of multiple-component reactions with optical biosensors,” Anal. Biochem. 533, 41–47 (2017).
[Crossref]

S. Dutta, P. G. Steeneken, V. Agarwal, J. Schmitz, A. J. Annema, and R. J. E. Hueting, “The avalanche-mode superjunction LED,” IEEE Trans. Electron Devices 64(4), 1612–1618 (2017).
[Crossref]

L. W. Snyman, J.-L. Polleux, M. Plessis, and K. A. Ogudo, “Stimulating 600–650 nm wavelength optical emission in monolithically integrated silicon LEDs through controlled injection-avalanche and carrier density balancing technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
[Crossref]

2016 (2)

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, “Light-emitting devices in Si CMOS and RF bipolar integrated circuits,” Leukos 12(4), 203–212 (2016).
[Crossref]

S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34(1), 7–25 (2016).
[Crossref]

2015 (4)

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sens. Biosensing Res. 6, 95–98 (2015).
[Crossref]

K. Xu, L. W. Snyman, J. Polleux, H. Chen, and G. Li, “Silicon light-emitting device with application in the micro-opto-electro-mechanical systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

S. Dutta, R. J. E. Hueting, A. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modelling of light emission from avalanche-mode silicon p+n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

L. W. Snyman, K. Xu, J.-L. Polleux, K. A. Ogudo, and C. Viana, “Higher intensity Si Av LEDs in an RF bipolar process through carrier energy and carrier momentum engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

2014 (1)

K. A. Ogudo, L. W. Snyman, J.-L. Polleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10-40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

2013 (1)

M. du Plessis, P. Johannes, and E. Bellotti, “Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions,” IEEE J. Quantum Electron. 49(7), 570–577 (2013).
[Crossref]

2012 (1)

R. Yan, N. Scott Lynn, L. C. Kingry, Z. Yi, T. Erickson, R. A. Slayden, D. S. Dandy, and K. L. Lear, “Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor,” Appl. Phys. Lett. 101(16), 161111 (2012).
[Crossref]

2007 (1)

L. W. Snyman, M. du Plessis, and H. Aharoni, “Injection-based Si CMOS LEDs (450-750 nm) with two order increase in light emission intensity—applications for next-generation silicon-based optoelectronics,” Jpn. J. Appl. Phys. 46(4B), 2474–2480 (2007).
[Crossref]

2004 (1)

A. Chatterjee, B. Bhuva, and R. Schrimpf, “High-speed light modulation in avalanche breakdown mode for Si diodes,” IEEE Electron Device Lett. 25(9), 628–630 (2004).
[Crossref]

2002 (1)

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. V. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

2001 (1)

S. J. M. Matjila and L. W. Snyman, “Increased electroluminescence from a two-junction Si n+pn CMOS structure,” Proc. SPIE 4293, 140–146 (2001).
[Crossref]

2000 (2)

M. du Plessis, H. Aharoni, and L. W. Snyman, “A silicon trans-conductance light emitting device (TRANSLED),” Sens. Actuators, A 80(3), 242–248 (2000).
[Crossref]

N. Akil, V. E. Houtsma, P. LeMinh, J. Holleman, V. Zieren, D. de Mooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

1999 (1)

L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light-emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
[Crossref]

1993 (1)

J. Kramer, P. Seltz, E. F. Stelgmeler, H. Auderset, B. Delley, and H. Baltes, “Light-emitting devices in industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

1992 (1)

J. Bude, N. Sano, and A. Yoshii, “Hot carrier luminescence in silicon,” Phys. Rev. B 45(11), 5848–5856 (1992).
[Crossref]

1980 (1)

D. E. Aspnes and J. B. Theeten, “Spectroscopic analysis of the interface between Si and its thermally grown oxide,” J. Electrochem. Soc. 127(6), 1359–1365 (1980).
[Crossref]

1963 (1)

J. L. Moll and R. van Overstraeten, “Charge multiplication in silicon p-n junctions,” Solid-State Electron. 6(2), 147–157 (1963).
[Crossref]

1956 (1)

W. G. Ghynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

1955 (1)

R. Newman, “Visible light from a silicon p-n junction,” Phys. Rev. 100(2), 700–703 (1955).
[Crossref]

Agarwal, V.

S. Dutta, P. G. Steeneken, V. Agarwal, J. Schmitz, A. J. Annema, and R. J. E. Hueting, “The avalanche-mode superjunction LED,” IEEE Trans. Electron Devices 64(4), 1612–1618 (2017).
[Crossref]

Aharoni, H.

L. W. Snyman, M. du Plessis, and H. Aharoni, “Injection-based Si CMOS LEDs (450-750 nm) with two order increase in light emission intensity—applications for next-generation silicon-based optoelectronics,” Jpn. J. Appl. Phys. 46(4B), 2474–2480 (2007).
[Crossref]

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. V. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

M. du Plessis, H. Aharoni, and L. W. Snyman, “A silicon trans-conductance light emitting device (TRANSLED),” Sens. Actuators, A 80(3), 242–248 (2000).
[Crossref]

L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light-emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
[Crossref]

Akil, N.

N. Akil, V. E. Houtsma, P. LeMinh, J. Holleman, V. Zieren, D. de Mooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Ali, J.

S. Sahua, J. Ali, P. P. Yupapinc, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
[Crossref]

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, “Imaging biosensor based on planar optical waveguide,” Opt. Laser Technol. 115, 171–175 (2019).
[Crossref]

Annema, A.

S. Dutta, R. J. E. Hueting, A. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modelling of light emission from avalanche-mode silicon p+n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

Annema, A. J.

S. Dutta, P. G. Steeneken, V. Agarwal, J. Schmitz, A. J. Annema, and R. J. E. Hueting, “The avalanche-mode superjunction LED,” IEEE Trans. Electron Devices 64(4), 1612–1618 (2017).
[Crossref]

Aspnes, D. E.

D. E. Aspnes and J. B. Theeten, “Spectroscopic analysis of the interface between Si and its thermally grown oxide,” J. Electrochem. Soc. 127(6), 1359–1365 (1980).
[Crossref]

Auderset, H.

J. Kramer, P. Seltz, E. F. Stelgmeler, H. Auderset, B. Delley, and H. Baltes, “Light-emitting devices in industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

Baltes, H.

J. Kramer, P. Seltz, E. F. Stelgmeler, H. Auderset, B. Delley, and H. Baltes, “Light-emitting devices in industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

Barriasa, S.

S. Barriasa, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

Bellotti, E.

M. du Plessis, P. Johannes, and E. Bellotti, “Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions,” IEEE J. Quantum Electron. 49(7), 570–577 (2013).
[Crossref]

Bhuva, B.

A. Chatterjee, B. Bhuva, and R. Schrimpf, “High-speed light modulation in avalanche breakdown mode for Si diodes,” IEEE Electron Device Lett. 25(9), 628–630 (2004).
[Crossref]

Biber, A.

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. V. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

Brazão, J.

S. Barriasa, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

Bude, J.

J. Bude, N. Sano, and A. Yoshii, “Hot carrier luminescence in silicon,” Phys. Rev. B 45(11), 5848–5856 (1992).
[Crossref]

Busacca, A. C.

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sens. Biosensing Res. 6, 95–98 (2015).
[Crossref]

Chatterjee, A.

A. Chatterjee, B. Bhuva, and R. Schrimpf, “High-speed light modulation in avalanche breakdown mode for Si diodes,” IEEE Electron Device Lett. 25(9), 628–630 (2004).
[Crossref]

Chen, H.

K. Xu, L. W. Snyman, J. Polleux, H. Chen, and G. Li, “Silicon light-emitting device with application in the micro-opto-electro-mechanical systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

Collaert, N.

G. Piccolo, P. I. Kuindersma, L-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” in Proc. of the 44th European Solid State Device Research Conf. (ESSDERC, 2014), pp. 274–277.

Conoci, S.

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sens. Biosensing Res. 6, 95–98 (2015).
[Crossref]

Dandy, D. S.

R. Yan, N. Scott Lynn, L. C. Kingry, Z. Yi, T. Erickson, R. A. Slayden, D. S. Dandy, and K. L. Lear, “Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor,” Appl. Phys. Lett. 101(16), 161111 (2012).
[Crossref]

de Mooij, D.

N. Akil, V. E. Houtsma, P. LeMinh, J. Holleman, V. Zieren, D. de Mooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Delley, B.

J. Kramer, P. Seltz, E. F. Stelgmeler, H. Auderset, B. Delley, and H. Baltes, “Light-emitting devices in industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

Deng, Y.

Z. Liao, Y. Zhang, Y. Li, Y. Miao, S. Gao, F. Lin, Y. Deng, and L. Geng, “Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review,” Biosens. Bioelectron. 126, 697–706 (2019).
[Crossref]

du Plessis, M.

M. du Plessis, P. Johannes, and E. Bellotti, “Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions,” IEEE J. Quantum Electron. 49(7), 570–577 (2013).
[Crossref]

L. W. Snyman, M. du Plessis, and H. Aharoni, “Injection-based Si CMOS LEDs (450-750 nm) with two order increase in light emission intensity—applications for next-generation silicon-based optoelectronics,” Jpn. J. Appl. Phys. 46(4B), 2474–2480 (2007).
[Crossref]

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. V. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

M. du Plessis, H. Aharoni, and L. W. Snyman, “A silicon trans-conductance light emitting device (TRANSLED),” Sens. Actuators, A 80(3), 242–248 (2000).
[Crossref]

L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light-emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
[Crossref]

Dutta, S.

S. Dutta, P. G. Steeneken, V. Agarwal, J. Schmitz, A. J. Annema, and R. J. E. Hueting, “The avalanche-mode superjunction LED,” IEEE Trans. Electron Devices 64(4), 1612–1618 (2017).
[Crossref]

S. Dutta, R. J. E. Hueting, A. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modelling of light emission from avalanche-mode silicon p+n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

Edwards, D. A.

D. A. Edwards, R. M. Evans, and W. B. Li, “Measuring kinetic rate constants of multiple-component reactions with optical biosensors,” Anal. Biochem. 533, 41–47 (2017).
[Crossref]

Eiras-Dias, J. E.

S. Barriasa, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

Erickson, T.

R. Yan, N. Scott Lynn, L. C. Kingry, Z. Yi, T. Erickson, R. A. Slayden, D. S. Dandy, and K. L. Lear, “Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor,” Appl. Phys. Lett. 101(16), 161111 (2012).
[Crossref]

Evans, R. M.

D. A. Edwards, R. M. Evans, and W. B. Li, “Measuring kinetic rate constants of multiple-component reactions with optical biosensors,” Anal. Biochem. 533, 41–47 (2017).
[Crossref]

Farré, M.

M. Turemis, S. Silletti, G. Pezzotti, J. Sanchís, M. Farré, and M. T. Giardi, “Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring,” Sens. Actuators, B 270, 424–432 (2018).
[Crossref]

Fernandes, J. R.

S. Barriasa, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

Fernandez-Gutierrez, A.

T. Ramon-Marquez, A. L. Medina-Castillo, A. Fernandez-Gutierrez, and J. F. Fernandez-Sanchez, “Evaluation of two sterically directed attachments of biomolecules on a coaxial nanofibre membrane to improve the development of optical biosensors,” Talanta 187, 83–90 (2018).
[Crossref]

Fernandez-Sanchez, J. F.

T. Ramon-Marquez, A. L. Medina-Castillo, A. Fernandez-Gutierrez, and J. F. Fernandez-Sanchez, “Evaluation of two sterically directed attachments of biomolecules on a coaxial nanofibre membrane to improve the development of optical biosensors,” Talanta 187, 83–90 (2018).
[Crossref]

Gao, S.

Z. Liao, Y. Zhang, Y. Li, Y. Miao, S. Gao, F. Lin, Y. Deng, and L. Geng, “Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review,” Biosens. Bioelectron. 126, 697–706 (2019).
[Crossref]

Geng, L.

Z. Liao, Y. Zhang, Y. Li, Y. Miao, S. Gao, F. Lin, Y. Deng, and L. Geng, “Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review,” Biosens. Bioelectron. 126, 697–706 (2019).
[Crossref]

Ghynoweth, W. G.

W. G. Ghynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Giardi, M. T.

M. Turemis, S. Silletti, G. Pezzotti, J. Sanchís, M. Farré, and M. T. Giardi, “Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring,” Sens. Actuators, B 270, 424–432 (2018).
[Crossref]

Holleman, J.

N. Akil, V. E. Houtsma, P. LeMinh, J. Holleman, V. Zieren, D. de Mooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Homs-Corbera, A.

V. Solis-Tinoco, S. Marquez, T. Quesada-Lopez, F. Villarroya, A. Homs-Corbera, and L. M. Lechuga, “Building of a flexible microfluidic plasmo-nanomechanical biosensor for live cell analysis,” Sens. Actuators, B 291, 48–57 (2019).
[Crossref]

Houtsma, V. E.

N. Akil, V. E. Houtsma, P. LeMinh, J. Holleman, V. Zieren, D. de Mooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Hueting, R. J. E.

S. Dutta, P. G. Steeneken, V. Agarwal, J. Schmitz, A. J. Annema, and R. J. E. Hueting, “The avalanche-mode superjunction LED,” IEEE Trans. Electron Devices 64(4), 1612–1618 (2017).
[Crossref]

S. Dutta, R. J. E. Hueting, A. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modelling of light emission from avalanche-mode silicon p+n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

G. Piccolo, P. I. Kuindersma, L-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” in Proc. of the 44th European Solid State Device Research Conf. (ESSDERC, 2014), pp. 274–277.

Johannes, P.

M. du Plessis, P. Johannes, and E. Bellotti, “Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions,” IEEE J. Quantum Electron. 49(7), 570–577 (2013).
[Crossref]

Khansili, N.

N. Khansili, G. Rattu, and P. M. Krishna, “Label-free optical biosensors for food and biological sensor applications,” Sens. Actuators, B 265, 35–49 (2018).
[Crossref]

Kingry, L. C.

R. Yan, N. Scott Lynn, L. C. Kingry, Z. Yi, T. Erickson, R. A. Slayden, D. S. Dandy, and K. L. Lear, “Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor,” Appl. Phys. Lett. 101(16), 161111 (2012).
[Crossref]

Konopsky, V. N.

V. N. Konopsky and E. V. Alieva, “Imaging biosensor based on planar optical waveguide,” Opt. Laser Technol. 115, 171–175 (2019).
[Crossref]

Kramer, J.

J. Kramer, P. Seltz, E. F. Stelgmeler, H. Auderset, B. Delley, and H. Baltes, “Light-emitting devices in industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

Krishna, P. M.

N. Khansili, G. Rattu, and P. M. Krishna, “Label-free optical biosensors for food and biological sensor applications,” Sens. Actuators, B 265, 35–49 (2018).
[Crossref]

Kuindersma, P. I.

G. Piccolo, P. I. Kuindersma, L-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” in Proc. of the 44th European Solid State Device Research Conf. (ESSDERC, 2014), pp. 274–277.

Lear, K. L.

R. Yan, N. Scott Lynn, L. C. Kingry, Z. Yi, T. Erickson, R. A. Slayden, D. S. Dandy, and K. L. Lear, “Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor,” Appl. Phys. Lett. 101(16), 161111 (2012).
[Crossref]

Lechuga, L. M.

V. Solis-Tinoco, S. Marquez, T. Quesada-Lopez, F. Villarroya, A. Homs-Corbera, and L. M. Lechuga, “Building of a flexible microfluidic plasmo-nanomechanical biosensor for live cell analysis,” Sens. Actuators, B 291, 48–57 (2019).
[Crossref]

Lee, S. Y.

S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34(1), 7–25 (2016).
[Crossref]

Lehuga, L. M.

L. M. Lehuga, “Optical biosensors,” in Biosensors and modern Biospecific Analytical Techniques, L. Gorton, ed. (Elsevier Science BV, 2005).

LeMinh, P.

N. Akil, V. E. Houtsma, P. LeMinh, J. Holleman, V. Zieren, D. de Mooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Li, G.

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, “Light-emitting devices in Si CMOS and RF bipolar integrated circuits,” Leukos 12(4), 203–212 (2016).
[Crossref]

K. Xu, L. W. Snyman, J. Polleux, H. Chen, and G. Li, “Silicon light-emitting device with application in the micro-opto-electro-mechanical systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

Li, W. B.

D. A. Edwards, R. M. Evans, and W. B. Li, “Measuring kinetic rate constants of multiple-component reactions with optical biosensors,” Anal. Biochem. 533, 41–47 (2017).
[Crossref]

Li, Y.

Z. Liao, Y. Zhang, Y. Li, Y. Miao, S. Gao, F. Lin, Y. Deng, and L. Geng, “Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review,” Biosens. Bioelectron. 126, 697–706 (2019).
[Crossref]

Li, Z.

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, “Light-emitting devices in Si CMOS and RF bipolar integrated circuits,” Leukos 12(4), 203–212 (2016).
[Crossref]

Liao, Z.

Z. Liao, Y. Zhang, Y. Li, Y. Miao, S. Gao, F. Lin, Y. Deng, and L. Geng, “Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review,” Biosens. Bioelectron. 126, 697–706 (2019).
[Crossref]

Libertino, S.

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sens. Biosensing Res. 6, 95–98 (2015).
[Crossref]

Lin, F.

Z. Liao, Y. Zhang, Y. Li, Y. Miao, S. Gao, F. Lin, Y. Deng, and L. Geng, “Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review,” Biosens. Bioelectron. 126, 697–706 (2019).
[Crossref]

Ma, Z.

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, “Light-emitting devices in Si CMOS and RF bipolar integrated circuits,” Leukos 12(4), 203–212 (2016).
[Crossref]

Marais, J. F. K.

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. V. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

Marquez, S.

V. Solis-Tinoco, S. Marquez, T. Quesada-Lopez, F. Villarroya, A. Homs-Corbera, and L. M. Lechuga, “Building of a flexible microfluidic plasmo-nanomechanical biosensor for live cell analysis,” Sens. Actuators, B 291, 48–57 (2019).
[Crossref]

Martins-Lopes, P.

S. Barriasa, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

Matjila, S. J. M.

S. J. M. Matjila and L. W. Snyman, “Increased electroluminescence from a two-junction Si n+pn CMOS structure,” Proc. SPIE 4293, 140–146 (2001).
[Crossref]

McKay, K. G.

W. G. Ghynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Medina-Castillo, A. L.

T. Ramon-Marquez, A. L. Medina-Castillo, A. Fernandez-Gutierrez, and J. F. Fernandez-Sanchez, “Evaluation of two sterically directed attachments of biomolecules on a coaxial nanofibre membrane to improve the development of optical biosensors,” Talanta 187, 83–90 (2018).
[Crossref]

Miao, Y.

Z. Liao, Y. Zhang, Y. Li, Y. Miao, S. Gao, F. Lin, Y. Deng, and L. Geng, “Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review,” Biosens. Bioelectron. 126, 697–706 (2019).
[Crossref]

Moll, J. L.

J. L. Moll and R. van Overstraeten, “Charge multiplication in silicon p-n junctions,” Solid-State Electron. 6(2), 147–157 (1963).
[Crossref]

Nanver, L. K.

S. Dutta, R. J. E. Hueting, A. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modelling of light emission from avalanche-mode silicon p+n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

Newman, R.

R. Newman, “Visible light from a silicon p-n junction,” Phys. Rev. 100(2), 700–703 (1955).
[Crossref]

Niekerk, D. V.

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. V. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

Ogudo, K. A.

L. W. Snyman, J.-L. Polleux, M. Plessis, and K. A. Ogudo, “Stimulating 600–650 nm wavelength optical emission in monolithically integrated silicon LEDs through controlled injection-avalanche and carrier density balancing technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
[Crossref]

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, “Light-emitting devices in Si CMOS and RF bipolar integrated circuits,” Leukos 12(4), 203–212 (2016).
[Crossref]

L. W. Snyman, K. Xu, J.-L. Polleux, K. A. Ogudo, and C. Viana, “Higher intensity Si Av LEDs in an RF bipolar process through carrier energy and carrier momentum engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

K. A. Ogudo, L. W. Snyman, J.-L. Polleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10-40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

Petralia, S.

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sens. Biosensing Res. 6, 95–98 (2015).
[Crossref]

Pezzotti, G.

M. Turemis, S. Silletti, G. Pezzotti, J. Sanchís, M. Farré, and M. T. Giardi, “Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring,” Sens. Actuators, B 270, 424–432 (2018).
[Crossref]

Piccolo, G.

G. Piccolo, P. I. Kuindersma, L-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” in Proc. of the 44th European Solid State Device Research Conf. (ESSDERC, 2014), pp. 274–277.

Plessis, M.

L. W. Snyman, J.-L. Polleux, M. Plessis, and K. A. Ogudo, “Stimulating 600–650 nm wavelength optical emission in monolithically integrated silicon LEDs through controlled injection-avalanche and carrier density balancing technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
[Crossref]

Polleux, J.

K. Xu, L. W. Snyman, J. Polleux, H. Chen, and G. Li, “Silicon light-emitting device with application in the micro-opto-electro-mechanical systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

Polleux, J.-L.

L. W. Snyman, J.-L. Polleux, M. Plessis, and K. A. Ogudo, “Stimulating 600–650 nm wavelength optical emission in monolithically integrated silicon LEDs through controlled injection-avalanche and carrier density balancing technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
[Crossref]

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, “Light-emitting devices in Si CMOS and RF bipolar integrated circuits,” Leukos 12(4), 203–212 (2016).
[Crossref]

L. W. Snyman, K. Xu, J.-L. Polleux, K. A. Ogudo, and C. Viana, “Higher intensity Si Av LEDs in an RF bipolar process through carrier energy and carrier momentum engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

K. A. Ogudo, L. W. Snyman, J.-L. Polleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10-40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

Qi, L.

S. Dutta, R. J. E. Hueting, A. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modelling of light emission from avalanche-mode silicon p+n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

Quesada-Lopez, T.

V. Solis-Tinoco, S. Marquez, T. Quesada-Lopez, F. Villarroya, A. Homs-Corbera, and L. M. Lechuga, “Building of a flexible microfluidic plasmo-nanomechanical biosensor for live cell analysis,” Sens. Actuators, B 291, 48–57 (2019).
[Crossref]

Ragnarsson, L-A.

G. Piccolo, P. I. Kuindersma, L-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” in Proc. of the 44th European Solid State Device Research Conf. (ESSDERC, 2014), pp. 274–277.

Ramon-Marquez, T.

T. Ramon-Marquez, A. L. Medina-Castillo, A. Fernandez-Gutierrez, and J. F. Fernandez-Sanchez, “Evaluation of two sterically directed attachments of biomolecules on a coaxial nanofibre membrane to improve the development of optical biosensors,” Talanta 187, 83–90 (2018).
[Crossref]

Rattu, G.

N. Khansili, G. Rattu, and P. M. Krishna, “Label-free optical biosensors for food and biological sensor applications,” Sens. Actuators, B 265, 35–49 (2018).
[Crossref]

Sahua, S.

S. Sahua, J. Ali, P. P. Yupapinc, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
[Crossref]

Sanchís, J.

M. Turemis, S. Silletti, G. Pezzotti, J. Sanchís, M. Farré, and M. T. Giardi, “Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring,” Sens. Actuators, B 270, 424–432 (2018).
[Crossref]

Sano, N.

J. Bude, N. Sano, and A. Yoshii, “Hot carrier luminescence in silicon,” Phys. Rev. B 45(11), 5848–5856 (1992).
[Crossref]

Santangelo, M. F.

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sens. Biosensing Res. 6, 95–98 (2015).
[Crossref]

Schmieder, D.

K. A. Ogudo, L. W. Snyman, J.-L. Polleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10-40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

Schmitz, J.

S. Dutta, P. G. Steeneken, V. Agarwal, J. Schmitz, A. J. Annema, and R. J. E. Hueting, “The avalanche-mode superjunction LED,” IEEE Trans. Electron Devices 64(4), 1612–1618 (2017).
[Crossref]

S. Dutta, R. J. E. Hueting, A. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modelling of light emission from avalanche-mode silicon p+n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

G. Piccolo, P. I. Kuindersma, L-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” in Proc. of the 44th European Solid State Device Research Conf. (ESSDERC, 2014), pp. 274–277.

Schrimpf, R.

A. Chatterjee, B. Bhuva, and R. Schrimpf, “High-speed light modulation in avalanche breakdown mode for Si diodes,” IEEE Electron Device Lett. 25(9), 628–630 (2004).
[Crossref]

Sciuto, E. L.

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sens. Biosensing Res. 6, 95–98 (2015).
[Crossref]

Scott Lynn, N.

R. Yan, N. Scott Lynn, L. C. Kingry, Z. Yi, T. Erickson, R. A. Slayden, D. S. Dandy, and K. L. Lear, “Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor,” Appl. Phys. Lett. 101(16), 161111 (2012).
[Crossref]

Seevinck, E.

L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light-emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
[Crossref]

Seltz, P.

J. Kramer, P. Seltz, E. F. Stelgmeler, H. Auderset, B. Delley, and H. Baltes, “Light-emitting devices in industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

Silletti, S.

M. Turemis, S. Silletti, G. Pezzotti, J. Sanchís, M. Farré, and M. T. Giardi, “Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring,” Sens. Actuators, B 270, 424–432 (2018).
[Crossref]

Singh, G.

S. Sahua, J. Ali, P. P. Yupapinc, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
[Crossref]

Slayden, R. A.

R. Yan, N. Scott Lynn, L. C. Kingry, Z. Yi, T. Erickson, R. A. Slayden, D. S. Dandy, and K. L. Lear, “Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor,” Appl. Phys. Lett. 101(16), 161111 (2012).
[Crossref]

Snyman, L. W.

L. W. Snyman, J.-L. Polleux, M. Plessis, and K. A. Ogudo, “Stimulating 600–650 nm wavelength optical emission in monolithically integrated silicon LEDs through controlled injection-avalanche and carrier density balancing technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
[Crossref]

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, “Light-emitting devices in Si CMOS and RF bipolar integrated circuits,” Leukos 12(4), 203–212 (2016).
[Crossref]

K. Xu, L. W. Snyman, J. Polleux, H. Chen, and G. Li, “Silicon light-emitting device with application in the micro-opto-electro-mechanical systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

L. W. Snyman, K. Xu, J.-L. Polleux, K. A. Ogudo, and C. Viana, “Higher intensity Si Av LEDs in an RF bipolar process through carrier energy and carrier momentum engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

K. A. Ogudo, L. W. Snyman, J.-L. Polleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10-40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

L. W. Snyman, M. du Plessis, and H. Aharoni, “Injection-based Si CMOS LEDs (450-750 nm) with two order increase in light emission intensity—applications for next-generation silicon-based optoelectronics,” Jpn. J. Appl. Phys. 46(4B), 2474–2480 (2007).
[Crossref]

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. V. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

S. J. M. Matjila and L. W. Snyman, “Increased electroluminescence from a two-junction Si n+pn CMOS structure,” Proc. SPIE 4293, 140–146 (2001).
[Crossref]

M. du Plessis, H. Aharoni, and L. W. Snyman, “A silicon trans-conductance light emitting device (TRANSLED),” Sens. Actuators, A 80(3), 242–248 (2000).
[Crossref]

L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light-emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
[Crossref]

Solis-Tinoco, V.

V. Solis-Tinoco, S. Marquez, T. Quesada-Lopez, F. Villarroya, A. Homs-Corbera, and L. M. Lechuga, “Building of a flexible microfluidic plasmo-nanomechanical biosensor for live cell analysis,” Sens. Actuators, B 291, 48–57 (2019).
[Crossref]

Steeneken, P. G.

S. Dutta, P. G. Steeneken, V. Agarwal, J. Schmitz, A. J. Annema, and R. J. E. Hueting, “The avalanche-mode superjunction LED,” IEEE Trans. Electron Devices 64(4), 1612–1618 (2017).
[Crossref]

Stelgmeler, E. F.

J. Kramer, P. Seltz, E. F. Stelgmeler, H. Auderset, B. Delley, and H. Baltes, “Light-emitting devices in industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

Tegegne, Z.

K. A. Ogudo, L. W. Snyman, J.-L. Polleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10-40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

Theeten, J. B.

D. E. Aspnes and J. B. Theeten, “Spectroscopic analysis of the interface between Si and its thermally grown oxide,” J. Electrochem. Soc. 127(6), 1359–1365 (1980).
[Crossref]

Turemis, M.

M. Turemis, S. Silletti, G. Pezzotti, J. Sanchís, M. Farré, and M. T. Giardi, “Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring,” Sens. Actuators, B 270, 424–432 (2018).
[Crossref]

van den Berg, A.

N. Akil, V. E. Houtsma, P. LeMinh, J. Holleman, V. Zieren, D. de Mooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

van Overstraeten, R.

J. L. Moll and R. van Overstraeten, “Charge multiplication in silicon p-n junctions,” Solid-State Electron. 6(2), 147–157 (1963).
[Crossref]

Viana, C.

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, “Light-emitting devices in Si CMOS and RF bipolar integrated circuits,” Leukos 12(4), 203–212 (2016).
[Crossref]

L. W. Snyman, K. Xu, J.-L. Polleux, K. A. Ogudo, and C. Viana, “Higher intensity Si Av LEDs in an RF bipolar process through carrier energy and carrier momentum engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

K. A. Ogudo, L. W. Snyman, J.-L. Polleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10-40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

Villarroya, F.

V. Solis-Tinoco, S. Marquez, T. Quesada-Lopez, F. Villarroya, A. Homs-Corbera, and L. M. Lechuga, “Building of a flexible microfluidic plasmo-nanomechanical biosensor for live cell analysis,” Sens. Actuators, B 291, 48–57 (2019).
[Crossref]

Wallinga, H.

N. Akil, V. E. Houtsma, P. LeMinh, J. Holleman, V. Zieren, D. de Mooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Woerlee, P. H.

N. Akil, V. E. Houtsma, P. LeMinh, J. Holleman, V. Zieren, D. de Mooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Xu, K.

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, “Light-emitting devices in Si CMOS and RF bipolar integrated circuits,” Leukos 12(4), 203–212 (2016).
[Crossref]

K. Xu, L. W. Snyman, J. Polleux, H. Chen, and G. Li, “Silicon light-emitting device with application in the micro-opto-electro-mechanical systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

L. W. Snyman, K. Xu, J.-L. Polleux, K. A. Ogudo, and C. Viana, “Higher intensity Si Av LEDs in an RF bipolar process through carrier energy and carrier momentum engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

Yan, R.

R. Yan, N. Scott Lynn, L. C. Kingry, Z. Yi, T. Erickson, R. A. Slayden, D. S. Dandy, and K. L. Lear, “Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor,” Appl. Phys. Lett. 101(16), 161111 (2012).
[Crossref]

Yi, Z.

R. Yan, N. Scott Lynn, L. C. Kingry, Z. Yi, T. Erickson, R. A. Slayden, D. S. Dandy, and K. L. Lear, “Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor,” Appl. Phys. Lett. 101(16), 161111 (2012).
[Crossref]

Yoo, S. M.

S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34(1), 7–25 (2016).
[Crossref]

Yoshii, A.

J. Bude, N. Sano, and A. Yoshii, “Hot carrier luminescence in silicon,” Phys. Rev. B 45(11), 5848–5856 (1992).
[Crossref]

Yu, Q.

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, “Light-emitting devices in Si CMOS and RF bipolar integrated circuits,” Leukos 12(4), 203–212 (2016).
[Crossref]

Yupapinc, P. P.

S. Sahua, J. Ali, P. P. Yupapinc, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
[Crossref]

Zhang, Y.

Z. Liao, Y. Zhang, Y. Li, Y. Miao, S. Gao, F. Lin, Y. Deng, and L. Geng, “Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review,” Biosens. Bioelectron. 126, 697–706 (2019).
[Crossref]

Zieren, V.

N. Akil, V. E. Houtsma, P. LeMinh, J. Holleman, V. Zieren, D. de Mooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Anal. Biochem. (1)

D. A. Edwards, R. M. Evans, and W. B. Li, “Measuring kinetic rate constants of multiple-component reactions with optical biosensors,” Anal. Biochem. 533, 41–47 (2017).
[Crossref]

Appl. Phys. Lett. (1)

R. Yan, N. Scott Lynn, L. C. Kingry, Z. Yi, T. Erickson, R. A. Slayden, D. S. Dandy, and K. L. Lear, “Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor,” Appl. Phys. Lett. 101(16), 161111 (2012).
[Crossref]

Biosens. Bioelectron. (1)

Z. Liao, Y. Zhang, Y. Li, Y. Miao, S. Gao, F. Lin, Y. Deng, and L. Geng, “Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review,” Biosens. Bioelectron. 126, 697–706 (2019).
[Crossref]

Food Chem. (1)

S. Barriasa, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

IEEE Electron Device Lett. (2)

A. Chatterjee, B. Bhuva, and R. Schrimpf, “High-speed light modulation in avalanche breakdown mode for Si diodes,” IEEE Electron Device Lett. 25(9), 628–630 (2004).
[Crossref]

L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light-emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
[Crossref]

IEEE J. Quantum Electron. (3)

M. du Plessis, P. Johannes, and E. Bellotti, “Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions,” IEEE J. Quantum Electron. 49(7), 570–577 (2013).
[Crossref]

L. W. Snyman, K. Xu, J.-L. Polleux, K. A. Ogudo, and C. Viana, “Higher intensity Si Av LEDs in an RF bipolar process through carrier energy and carrier momentum engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

L. W. Snyman, J.-L. Polleux, M. Plessis, and K. A. Ogudo, “Stimulating 600–650 nm wavelength optical emission in monolithically integrated silicon LEDs through controlled injection-avalanche and carrier density balancing technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
[Crossref]

IEEE Trans. Electron Devices (1)

S. Dutta, P. G. Steeneken, V. Agarwal, J. Schmitz, A. J. Annema, and R. J. E. Hueting, “The avalanche-mode superjunction LED,” IEEE Trans. Electron Devices 64(4), 1612–1618 (2017).
[Crossref]

Int. J. Mater., Mech. Manuf. (1)

K. Xu, L. W. Snyman, J. Polleux, H. Chen, and G. Li, “Silicon light-emitting device with application in the micro-opto-electro-mechanical systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

J. Appl. Phys. (2)

S. Dutta, R. J. E. Hueting, A. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modelling of light emission from avalanche-mode silicon p+n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

N. Akil, V. E. Houtsma, P. LeMinh, J. Holleman, V. Zieren, D. de Mooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

J. Electrochem. Soc. (1)

D. E. Aspnes and J. B. Theeten, “Spectroscopic analysis of the interface between Si and its thermally grown oxide,” J. Electrochem. Soc. 127(6), 1359–1365 (1980).
[Crossref]

Jpn. J. Appl. Phys. (1)

L. W. Snyman, M. du Plessis, and H. Aharoni, “Injection-based Si CMOS LEDs (450-750 nm) with two order increase in light emission intensity—applications for next-generation silicon-based optoelectronics,” Jpn. J. Appl. Phys. 46(4B), 2474–2480 (2007).
[Crossref]

Leukos (1)

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, “Light-emitting devices in Si CMOS and RF bipolar integrated circuits,” Leukos 12(4), 203–212 (2016).
[Crossref]

Opt. Eng. (1)

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. V. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

Opt. Laser Technol. (1)

V. N. Konopsky and E. V. Alieva, “Imaging biosensor based on planar optical waveguide,” Opt. Laser Technol. 115, 171–175 (2019).
[Crossref]

Optik (1)

S. Sahua, J. Ali, P. P. Yupapinc, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
[Crossref]

Phys. Rev. (2)

R. Newman, “Visible light from a silicon p-n junction,” Phys. Rev. 100(2), 700–703 (1955).
[Crossref]

W. G. Ghynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Phys. Rev. B (1)

J. Bude, N. Sano, and A. Yoshii, “Hot carrier luminescence in silicon,” Phys. Rev. B 45(11), 5848–5856 (1992).
[Crossref]

Proc. SPIE (2)

K. A. Ogudo, L. W. Snyman, J.-L. Polleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10-40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

S. J. M. Matjila and L. W. Snyman, “Increased electroluminescence from a two-junction Si n+pn CMOS structure,” Proc. SPIE 4293, 140–146 (2001).
[Crossref]

Sens. Actuators, A (2)

M. du Plessis, H. Aharoni, and L. W. Snyman, “A silicon trans-conductance light emitting device (TRANSLED),” Sens. Actuators, A 80(3), 242–248 (2000).
[Crossref]

J. Kramer, P. Seltz, E. F. Stelgmeler, H. Auderset, B. Delley, and H. Baltes, “Light-emitting devices in industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

Sens. Actuators, B (3)

V. Solis-Tinoco, S. Marquez, T. Quesada-Lopez, F. Villarroya, A. Homs-Corbera, and L. M. Lechuga, “Building of a flexible microfluidic plasmo-nanomechanical biosensor for live cell analysis,” Sens. Actuators, B 291, 48–57 (2019).
[Crossref]

N. Khansili, G. Rattu, and P. M. Krishna, “Label-free optical biosensors for food and biological sensor applications,” Sens. Actuators, B 265, 35–49 (2018).
[Crossref]

M. Turemis, S. Silletti, G. Pezzotti, J. Sanchís, M. Farré, and M. T. Giardi, “Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring,” Sens. Actuators, B 270, 424–432 (2018).
[Crossref]

Sens. Biosensing Res. (1)

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sens. Biosensing Res. 6, 95–98 (2015).
[Crossref]

Solid-State Electron. (1)

J. L. Moll and R. van Overstraeten, “Charge multiplication in silicon p-n junctions,” Solid-State Electron. 6(2), 147–157 (1963).
[Crossref]

Talanta (1)

T. Ramon-Marquez, A. L. Medina-Castillo, A. Fernandez-Gutierrez, and J. F. Fernandez-Sanchez, “Evaluation of two sterically directed attachments of biomolecules on a coaxial nanofibre membrane to improve the development of optical biosensors,” Talanta 187, 83–90 (2018).
[Crossref]

Trends Biotechnol. (1)

S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34(1), 7–25 (2016).
[Crossref]

Other (6)

L. M. Lehuga, “Optical biosensors,” in Biosensors and modern Biospecific Analytical Techniques, L. Gorton, ed. (Elsevier Science BV, 2005).

G. Piccolo, P. I. Kuindersma, L-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” in Proc. of the 44th European Solid State Device Research Conf. (ESSDERC, 2014), pp. 274–277.

Optical Spectrum Analyzer MS9740B Brochure-Anritsu, https://dl.cdn-anritsu.com/en-en/test-measurement/files/Brochures-Datasheets-Catalogs/Brochure/ms9740b-e1101.pdf

RSoft Design Group, Inc., “Beam PROP 5.1.1”

“Refractive Index Database,” https://www.filmetrics.com/refractive-index-database/Silicon-oxide (28 February 2018).

“Refractive Index of Silicon,” https://www.filmetrics.com/refractive-index-database/Si/Silicon (28 February 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Device design, considerations: (a) high resolution micrograph of the Silicon Avalanche LED, fabricated through an RF bipolar-integrated circuit process. The fuscous region represent the etching into Si substrate, filled with about 4 µm thick silicon oxide as an interlayer, and a 0.5 µm thick silicon nitride layer deposited topside. (b) lateral cross-section of the device. (c) spectral characteristics of the emitted optical radiation with some prominent peaks.
Fig. 2.
Fig. 2. Observed experimental dispersion characteristics (color shifts per propagation wavelength) at 5 degree, 15 degree, 30 degree, 45 degree and 60 degree for the emitted radiation from the device. The micrographs show the clear dispersion of emitted colors increasing with the tilt angle.
Fig. 3.
Fig. 3. Modeling and ray tracing of the optical refraction phenomena (a) while optical source positioning at 1µm below the silicon and silicon oxide interface. Light propagates into oxide layer from emission point in silicon layer, then travels through nitride layer with little dispersion. The exit angles to the normal of the surface could be recognized. Refractive indices and refraction phenomena are proposed to occur as shown in (b) and (c).
Fig. 4.
Fig. 4. Basic scheme of fluid particles detection & analysis on a single chip by the usual route and by the use of miniaturized light emitters in which the standard CMOS technology is used.
Fig. 5.
Fig. 5. Proposed Si Av LED with dispersion characteristics in a micro dimension biosensor. This design could integrate light source and detectors with other circuits on chip by using silicon material. (a) Lateral cross-section of the biosensor device. (b) Layer schematic of this micro-fluidic channel biosensor.
Fig. 6.
Fig. 6. Calculated exit angles values for incident angle of 5 degree, 10 degree, 15 degree while the optical source is positioned at 1µm below the Si/SiO2 surface. θ1 is the incident angle to the Si/SiO2 interface and θ2 is the refraction angle in the SiO2 layer.
Fig. 7.
Fig. 7. Schematic of optical biosensors based on evanescent wave interaction. While the light travels through the waveguide, partial light interacts with the analytes within the cavity. The variation in the effective refractive index changes the propagation characteristics of light.
Fig. 8.
Fig. 8. Bridge waveguide design realized by RSoft BeamProp optical simulation software: (a) proposed design of bridge waveguide device; (b) outcome of the simulation run for the bridge waveguide design.
Fig. 9.
Fig. 9. Straight waveguide design realized by RSoft BeamProp optical simulation software: (a) proposed design of straight waveguide device; (b) outcome of the simulation run for the straight waveguide design.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 1 sin θ 1 = n 2 sin θ 2
I = I 0 exp ( α d )