Abstract

In this paper, high quality few-layer MXene-Ti3C2Tx was fabricated by the LPE method and successfully applied as saturable absorber for a passively Q-switched (PQS) Ho,Pr:LLF laser operating at 2.95 µm. The maximum average output power was determined to be 105 mW with a slope efficiency of 5%. The shortest pulse width and the largest pulse repetition rate were determined to be 266.7 ns and 83.24 kHz, corresponding to the single pulse energy and pulse peak power of 1.26 µJ and 4.73 W, respectively. It is the first demonstration of MXenes applied in mid-infrared (MIR) PQS solid-state bulk lasers, to the best of our knowledge. The results not only verify the broadband nonlinear saturable absorption properties of MXenes, but also pave the way for exploring their applications in photonic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Few-layer MXene Ti3C2Tx (T = F, O, or OH) saturable absorber for visible bulk laser

Qi Yang, Feng Zhang, Ningyi Zhang, and Han Zhang
Opt. Mater. Express 9(4) 1795-1802 (2019)

Passively Q-switched Ho,Pr:LiLuF4 bulk laser at 2.95 μm using WS2 saturable absorbers

Lei Guo, Tao Li, Shuaiyi Zhang, Mingjian Wang, Shengzhi Zhao, Kejian Yang, Dechun Li, and Zhengyu Yan
Opt. Mater. Express 7(6) 2090-2095 (2017)

Highly stable femtosecond pulse generation from a MXene Ti3C2Tx (T = F, O, or OH) mode-locked fiber laser

Jie Li, Zilong Zhang, Lin Du, Lili Miao, Jun Yi, Bin Huang, Yanhong Zou, Chujun Zhao, and Shuangchun Wen
Photon. Res. 7(3) 260-264 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X. S. Zhu, G. W. Zhu, C. Wei, L. V. Kotov, J. F. Wang, M. H. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 µm,” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
    [Crossref]
  2. T. H. Allik, S. Chandra, D. M. Rines, P. G. Schunemann, J. A. Hutchinson, and R. Utano, “Tunable 7–12-µm optical parametric oscillator using a Cr, Er: YSGG laser to pump CdSe and ZnGeP2 crystals,” Opt. Lett. 22(9), 597–599 (1997).
    [Crossref]
  3. M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
    [Crossref]
  4. D. W. Chen and T. S. Rose, “Low noise 10-W cw OPO generation near 3 µm MgO doped PPLN,” CThQ2 2005 Conference on Lasers & Electro-Optics (CLEO)1829–1831 (2005).
  5. S. R. Bowman, W. S. Rabinovich, A. P. Bowman, B. J. Feldman, and G. H. Rosenblatt, “3 µm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
    [Crossref]
  6. S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
    [Crossref]
  7. S. D. Jackson, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 29(4), 334–336 (2004).
    [Crossref]
  8. H. K. Nie, P. X. Zhang, B. T. Zhang, M. Xu, K. J. Yang, X. L. Sun, L. H. Zhang, Y. Hang, and J. L. He, “Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
    [Crossref]
  9. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  10. Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
    [Crossref]
  11. J. Ma, S. B. Lu, Z. N. Guo, X. D. Xu, H. Zhang, D. Y. Tang, and D. Y. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
    [Crossref]
  12. L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
    [Crossref]
  13. L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
    [Crossref]
  14. F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  15. Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9(48), 19100–19107 (2017).
    [Crossref]
  16. B. T. Zhang, F. Lou, R. W. Zhao, J. L. He, J. Li, X. C. Su, J. Ning, and K. J. Yang, “Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser,” Opt. Lett. 40(16), 3691–3694 (2015).
    [Crossref]
  17. X. L. Sun, B. T. Zhang, Y. L. Li, X. Y. Luo, G. R. Li, Y. X. Chen, C. Q. Zhang, and J. L. He, “Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS2 van der Waals Heterostructures and Their Application in Solid-State Bulk Lasers,” ACS Nano 12(11), 11376–11385 (2018).
    [Crossref]
  18. J. C. Lei, X. Zhang, and Z. Zhou, “Recent advances in MXene: Preparation, properties, and applications,” Frontiers of Phys. 10(3), 276–286 (2015).
    [Crossref]
  19. M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, “Electronic properties and applications of MXenes: a theoretical review,” J. Mater. Chem. C 5(10), 2488–2503 (2017).
    [Crossref]
  20. K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, and Y. Gogotsi, “Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties,” Adv. Electron. Mater. 2(6), 1600050 (2016).
    [Crossref]
  21. X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
    [Crossref]
  22. Y. Xie and P. R. C. Kent, “Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers,” Phys. Rev. B 87(23), 235441 (2013).
    [Crossref]
  23. Y. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
    [Crossref]
  24. Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
    [Crossref]
  25. X. Y. Feng, B. Y. Ding, W. Y. Liang, F. Zhang, T. Y. Ning, J. Liu, and H. Zhang, “MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser,” Laser Phys. Lett. 15(8), 085805 (2018).
    [Crossref]
  26. X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, H. K. Nie, K. J. Yang, C. Q. Zhang, and J. L. He, “Few-layer Ti3C2Tx (T = O, OH, or F) saturable absorber for a femtosecond bulk laser,” Opt. Lett. 43(16), 3862–3865 (2018).
    [Crossref]
  27. Y. X. Zhang, D. Z. Lu, H. H. Yu, and H. J. Zhang, “Low-Dimensional Saturable Absorbers in the Visible Spectral Region,” Adv. Opt. Mater. 7(1), 1800886 (2019).
    [Crossref]
  28. H. K. Nie, P. X. Zhang, B. T. Zhang, K. J. Yang, L. H. Zhang, T. Li, S. Y. Zhang, J. Q. Xu, Y. Hang, and J. L. He, “Diode-end-pumped Ho, Pr: LiLuF4 bulk laser at 2.95 µm,” Opt. Lett. 42(4), 699–702 (2017).
    [Crossref]
  29. C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
    [Crossref]
  30. X. C. Su, H. K. Nie, Y. R. Wang, G. R. Li, B. Z. Yan, B. T. Zhang, K. J. Yang, and J. L. He, “Few-layered ReS2 as saturable absorber for 2.8 µm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
    [Crossref]
  31. M. G. Fan, T. Li, S. Z. Zhao, G. Q. Li, H. Y. Ma, X. C. Gao, C. Krankel, and G. Huber, “Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 µm using MoS2,” Opt. Lett. 41(3), 540–543 (2016).
    [Crossref]
  32. Z. Y. Yan, G. Q. Li, T. Li, S. Z. Zhao, K. J. Yang, S. Y. Zhang, M. Q. Fan, L. Guo, and B. T. Zhang, “Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2,” IEEE Photonics J. 9(5), 1–7 (2017).
    [Crossref]
  33. Z. Y. Yan, T. Li, S. Z. Zhao, K. J. Yang, D. C. Li, G. Q. Li, S. Y. Zhang, and Z. J. Gao, “MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at ∼3 µm,” Opt. Laser Technol. 100, 261–264 (2018).
    [Crossref]
  34. Y. P. Yao, N. Cui, Q. G. Wang, L. L. Dong, S. D. Liu, D. L. Sun, H. Y. Zhang, D. H. Li, B. T. Zhang, and J. L. He, “Highly efficient continuous-wave and ReSe2Q-switched ∼3 µm dual-wavelength Er:YAP crystal lasers,” Opt. Lett. 44(11), 2839–2842 (2019).
    [Crossref]
  35. H. K. Nie, X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, Y. R. Wang, J. T. Liu, B. N. Shi, S. D. Liu, and J. L. He, “Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 mum bulk laser,” Opt. Lett. 43(14), 3349–3352 (2018).
    [Crossref]
  36. C. Li, J. Liu, S. Z. Jiang, S. C. Xu, W. W. Ma, J. Y. Wang, X. D. Xu, and L. B. Su, “2.8 µm passively Q-switched Er:CaF2 diode-pumped laser,” Opt. Mater. Express 6(5), 1570–1575 (2016).
    [Crossref]
  37. Z. Y. You, Y. J. Sun, D. L. Sun, Z. J. Zhu, Y. Wang, J. F. Li, C. Y. Tu, and J. L. Xu, “High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA,” Opt. Lett. 42(4), 871–874 (2017).
    [Crossref]

2019 (2)

2018 (9)

H. K. Nie, X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, Y. R. Wang, J. T. Liu, B. N. Shi, S. D. Liu, and J. L. He, “Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 mum bulk laser,” Opt. Lett. 43(14), 3349–3352 (2018).
[Crossref]

Z. Y. Yan, T. Li, S. Z. Zhao, K. J. Yang, D. C. Li, G. Q. Li, S. Y. Zhang, and Z. J. Gao, “MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at ∼3 µm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

X. Y. Feng, B. Y. Ding, W. Y. Liang, F. Zhang, T. Y. Ning, J. Liu, and H. Zhang, “MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser,” Laser Phys. Lett. 15(8), 085805 (2018).
[Crossref]

X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, H. K. Nie, K. J. Yang, C. Q. Zhang, and J. L. He, “Few-layer Ti3C2Tx (T = O, OH, or F) saturable absorber for a femtosecond bulk laser,” Opt. Lett. 43(16), 3862–3865 (2018).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, M. Xu, K. J. Yang, X. L. Sun, L. H. Zhang, Y. Hang, and J. L. He, “Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

X. L. Sun, B. T. Zhang, Y. L. Li, X. Y. Luo, G. R. Li, Y. X. Chen, C. Q. Zhang, and J. L. He, “Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS2 van der Waals Heterostructures and Their Application in Solid-State Bulk Lasers,” ACS Nano 12(11), 11376–11385 (2018).
[Crossref]

2017 (8)

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9(48), 19100–19107 (2017).
[Crossref]

X. S. Zhu, G. W. Zhu, C. Wei, L. V. Kotov, J. F. Wang, M. H. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 µm,” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]

Y. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, “Electronic properties and applications of MXenes: a theoretical review,” J. Mater. Chem. C 5(10), 2488–2503 (2017).
[Crossref]

Z. Y. Yan, G. Q. Li, T. Li, S. Z. Zhao, K. J. Yang, S. Y. Zhang, M. Q. Fan, L. Guo, and B. T. Zhang, “Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, K. J. Yang, L. H. Zhang, T. Li, S. Y. Zhang, J. Q. Xu, Y. Hang, and J. L. He, “Diode-end-pumped Ho, Pr: LiLuF4 bulk laser at 2.95 µm,” Opt. Lett. 42(4), 699–702 (2017).
[Crossref]

X. C. Su, H. K. Nie, Y. R. Wang, G. R. Li, B. Z. Yan, B. T. Zhang, K. J. Yang, and J. L. He, “Few-layered ReS2 as saturable absorber for 2.8 µm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
[Crossref]

Z. Y. You, Y. J. Sun, D. L. Sun, Z. J. Zhu, Y. Wang, J. F. Li, C. Y. Tu, and J. L. Xu, “High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA,” Opt. Lett. 42(4), 871–874 (2017).
[Crossref]

2016 (4)

M. G. Fan, T. Li, S. Z. Zhao, G. Q. Li, H. Y. Ma, X. C. Gao, C. Krankel, and G. Huber, “Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 µm using MoS2,” Opt. Lett. 41(3), 540–543 (2016).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

C. Li, J. Liu, S. Z. Jiang, S. C. Xu, W. W. Ma, J. Y. Wang, X. D. Xu, and L. B. Su, “2.8 µm passively Q-switched Er:CaF2 diode-pumped laser,” Opt. Mater. Express 6(5), 1570–1575 (2016).
[Crossref]

K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, and Y. Gogotsi, “Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties,” Adv. Electron. Mater. 2(6), 1600050 (2016).
[Crossref]

2015 (3)

2014 (1)

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

2013 (1)

Y. Xie and P. R. C. Kent, “Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers,” Phys. Rev. B 87(23), 235441 (2013).
[Crossref]

2012 (1)

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

2011 (1)

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

2010 (1)

2009 (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

2007 (1)

2004 (1)

1997 (1)

1990 (1)

S. R. Bowman, W. S. Rabinovich, A. P. Bowman, B. J. Feldman, and G. H. Rosenblatt, “3 µm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

Allik, T. H.

Anasori, B.

Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Y. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, and Y. Gogotsi, “Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties,” Adv. Electron. Mater. 2(6), 1600050 (2016).
[Crossref]

Arai, M.

M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, “Electronic properties and applications of MXenes: a theoretical review,” J. Mater. Chem. C 5(10), 2488–2503 (2017).
[Crossref]

Bao, Q. L.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Barsoum, M. W.

K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, and Y. Gogotsi, “Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties,” Adv. Electron. Mater. 2(6), 1600050 (2016).
[Crossref]

Bauer, A.

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

Belahsene, S.

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

Bhattacharya, S.

Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Bowman, A. P.

S. R. Bowman, W. S. Rabinovich, A. P. Bowman, B. J. Feldman, and G. H. Rosenblatt, “3 µm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

Bowman, S. R.

S. R. Bowman, W. S. Rabinovich, A. P. Bowman, B. J. Feldman, and G. H. Rosenblatt, “3 µm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

Bugge, F.

Cao, R.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

Chandra, S.

Chen, D. W.

D. W. Chen and T. S. Rose, “Low noise 10-W cw OPO generation near 3 µm MgO doped PPLN,” CThQ2 2005 Conference on Lasers & Electro-Optics (CLEO)1829–1831 (2005).

Chen, Y.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

Chen, Y. X.

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

X. L. Sun, B. T. Zhang, Y. L. Li, X. Y. Luo, G. R. Li, Y. X. Chen, C. Q. Zhang, and J. L. He, “Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS2 van der Waals Heterostructures and Their Application in Solid-State Bulk Lasers,” ACS Nano 12(11), 11376–11385 (2018).
[Crossref]

Chertopalov, S.

Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Cui, N.

Dallner, M.

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

Dhanabalan, S. C.

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Ding, B. Y.

X. Y. Feng, B. Y. Ding, W. Y. Liang, F. Zhang, T. Y. Ning, J. Liu, and H. Zhang, “MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser,” Laser Phys. Lett. 15(8), 085805 (2018).
[Crossref]

Dong, B. Q.

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Dong, L. L.

Dong, Y. C.

Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Dubey, M.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Edlinger, M.

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

Erbert, G.

Fan, D. Y.

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

J. Ma, S. B. Lu, Z. N. Guo, X. D. Xu, H. Zhang, D. Y. Tang, and D. Y. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref]

Fan, M. G.

Fan, M. Q.

Z. Y. Yan, G. Q. Li, T. Li, S. Z. Zhao, K. J. Yang, S. Y. Zhang, M. Q. Fan, L. Guo, and B. T. Zhang, “Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Feldman, B. J.

S. R. Bowman, W. S. Rabinovich, A. P. Bowman, B. J. Feldman, and G. H. Rosenblatt, “3 µm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

Feng, X. Y.

X. Y. Feng, B. Y. Ding, W. Y. Liang, F. Zhang, T. Y. Ning, J. Liu, and H. Zhang, “MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser,” Laser Phys. Lett. 15(8), 085805 (2018).
[Crossref]

Fischer, M. O.

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

Forchel, A. W. B.

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

Gao, X. C.

Gao, Z. J.

Z. Y. Yan, T. Li, S. Z. Zhao, K. J. Yang, D. C. Li, G. Q. Li, S. Y. Zhang, and Z. J. Gao, “MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at ∼3 µm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

Ge, Y. Q.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

Gogotsi, Y.

Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Y. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, and Y. Gogotsi, “Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties,” Adv. Electron. Mater. 2(6), 1600050 (2016).
[Crossref]

Guo, L.

Z. Y. Yan, G. Q. Li, T. Li, S. Z. Zhao, K. J. Yang, S. Y. Zhang, M. Q. Fan, L. Guo, and B. T. Zhang, “Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Guo, Z. N.

Halim, J.

K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, and Y. Gogotsi, “Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties,” Adv. Electron. Mater. 2(6), 1600050 (2016).
[Crossref]

Hang, Y.

H. K. Nie, P. X. Zhang, B. T. Zhang, M. Xu, K. J. Yang, X. L. Sun, L. H. Zhang, Y. Hang, and J. L. He, “Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, K. J. Yang, L. H. Zhang, T. Li, S. Y. Zhang, J. Q. Xu, Y. Hang, and J. L. He, “Diode-end-pumped Ho, Pr: LiLuF4 bulk laser at 2.95 µm,” Opt. Lett. 42(4), 699–702 (2017).
[Crossref]

Hantanasirisakul, K.

K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, and Y. Gogotsi, “Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties,” Adv. Electron. Mater. 2(6), 1600050 (2016).
[Crossref]

He, J. L.

Y. P. Yao, N. Cui, Q. G. Wang, L. L. Dong, S. D. Liu, D. L. Sun, H. Y. Zhang, D. H. Li, B. T. Zhang, and J. L. He, “Highly efficient continuous-wave and ReSe2Q-switched ∼3 µm dual-wavelength Er:YAP crystal lasers,” Opt. Lett. 44(11), 2839–2842 (2019).
[Crossref]

H. K. Nie, X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, Y. R. Wang, J. T. Liu, B. N. Shi, S. D. Liu, and J. L. He, “Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 mum bulk laser,” Opt. Lett. 43(14), 3349–3352 (2018).
[Crossref]

X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, H. K. Nie, K. J. Yang, C. Q. Zhang, and J. L. He, “Few-layer Ti3C2Tx (T = O, OH, or F) saturable absorber for a femtosecond bulk laser,” Opt. Lett. 43(16), 3862–3865 (2018).
[Crossref]

X. L. Sun, B. T. Zhang, Y. L. Li, X. Y. Luo, G. R. Li, Y. X. Chen, C. Q. Zhang, and J. L. He, “Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS2 van der Waals Heterostructures and Their Application in Solid-State Bulk Lasers,” ACS Nano 12(11), 11376–11385 (2018).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, M. Xu, K. J. Yang, X. L. Sun, L. H. Zhang, Y. Hang, and J. L. He, “Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9(48), 19100–19107 (2017).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, K. J. Yang, L. H. Zhang, T. Li, S. Y. Zhang, J. Q. Xu, Y. Hang, and J. L. He, “Diode-end-pumped Ho, Pr: LiLuF4 bulk laser at 2.95 µm,” Opt. Lett. 42(4), 699–702 (2017).
[Crossref]

X. C. Su, H. K. Nie, Y. R. Wang, G. R. Li, B. Z. Yan, B. T. Zhang, K. J. Yang, and J. L. He, “Few-layered ReS2 as saturable absorber for 2.8 µm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
[Crossref]

B. T. Zhang, F. Lou, R. W. Zhao, J. L. He, J. Li, X. C. Su, J. Ning, and K. J. Yang, “Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser,” Opt. Lett. 40(16), 3691–3694 (2015).
[Crossref]

He, Z. L.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

Höfling, S.

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

Hu, L.

Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Huber, G.

Hutchinson, J. A.

Jackson, S. D.

Jhon, Y.

Y. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Jhon, Y. M.

Y. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Jiang, S. Z.

Jiang, X. T.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

Kent, P. R. C.

Y. Xie and P. R. C. Kent, “Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers,” Phys. Rev. B 87(23), 235441 (2013).
[Crossref]

Khazaei, M.

M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, “Electronic properties and applications of MXenes: a theoretical review,” J. Mater. Chem. C 5(10), 2488–2503 (2017).
[Crossref]

Koeth, J.

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

Koo, J.

Y. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Kota, S.

K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, and Y. Gogotsi, “Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties,” Adv. Electron. Mater. 2(6), 1600050 (2016).
[Crossref]

Kotov, L. V.

Krankel, C.

Lee, C. K.

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9(48), 19100–19107 (2017).
[Crossref]

Lee, J. H.

Y. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Lee, P.

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9(48), 19100–19107 (2017).
[Crossref]

Lei, J. C.

J. C. Lei, X. Zhang, and Z. Zhou, “Recent advances in MXene: Preparation, properties, and applications,” Frontiers of Phys. 10(3), 276–286 (2015).
[Crossref]

Li, C.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

C. Li, J. Liu, S. Z. Jiang, S. C. Xu, W. W. Ma, J. Y. Wang, X. D. Xu, and L. B. Su, “2.8 µm passively Q-switched Er:CaF2 diode-pumped laser,” Opt. Mater. Express 6(5), 1570–1575 (2016).
[Crossref]

Li, D. C.

Z. Y. Yan, T. Li, S. Z. Zhao, K. J. Yang, D. C. Li, G. Q. Li, S. Y. Zhang, and Z. J. Gao, “MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at ∼3 µm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

Li, D. H.

Li, G. Q.

Z. Y. Yan, T. Li, S. Z. Zhao, K. J. Yang, D. C. Li, G. Q. Li, S. Y. Zhang, and Z. J. Gao, “MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at ∼3 µm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

Z. Y. Yan, G. Q. Li, T. Li, S. Z. Zhao, K. J. Yang, S. Y. Zhang, M. Q. Fan, L. Guo, and B. T. Zhang, “Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

M. G. Fan, T. Li, S. Z. Zhao, G. Q. Li, H. Y. Ma, X. C. Gao, C. Krankel, and G. Huber, “Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 µm using MoS2,” Opt. Lett. 41(3), 540–543 (2016).
[Crossref]

Li, G. R.

Li, J.

Li, J. F.

Z. Y. You, Y. J. Sun, D. L. Sun, Z. J. Zhu, Y. Wang, J. F. Li, C. Y. Tu, and J. L. Xu, “High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA,” Opt. Lett. 42(4), 871–874 (2017).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Li, J. Q.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

Li, T.

Z. Y. Yan, T. Li, S. Z. Zhao, K. J. Yang, D. C. Li, G. Q. Li, S. Y. Zhang, and Z. J. Gao, “MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at ∼3 µm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

Z. Y. Yan, G. Q. Li, T. Li, S. Z. Zhao, K. J. Yang, S. Y. Zhang, M. Q. Fan, L. Guo, and B. T. Zhang, “Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, K. J. Yang, L. H. Zhang, T. Li, S. Y. Zhang, J. Q. Xu, Y. Hang, and J. L. He, “Diode-end-pumped Ho, Pr: LiLuF4 bulk laser at 2.95 µm,” Opt. Lett. 42(4), 699–702 (2017).
[Crossref]

M. G. Fan, T. Li, S. Z. Zhao, G. Q. Li, H. Y. Ma, X. C. Gao, C. Krankel, and G. Huber, “Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 µm using MoS2,” Opt. Lett. 41(3), 540–543 (2016).
[Crossref]

Li, Y. L.

X. L. Sun, B. T. Zhang, Y. L. Li, X. Y. Luo, G. R. Li, Y. X. Chen, C. Q. Zhang, and J. L. He, “Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS2 van der Waals Heterostructures and Their Application in Solid-State Bulk Lasers,” ACS Nano 12(11), 11376–11385 (2018).
[Crossref]

Liang, W. Y.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

X. Y. Feng, B. Y. Ding, W. Y. Liang, F. Zhang, T. Y. Ning, J. Liu, and H. Zhang, “MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser,” Laser Phys. Lett. 15(8), 085805 (2018).
[Crossref]

Liang, Z. M.

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Liu, H.

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9(48), 19100–19107 (2017).
[Crossref]

Liu, J.

X. Y. Feng, B. Y. Ding, W. Y. Liang, F. Zhang, T. Y. Ning, J. Liu, and H. Zhang, “MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser,” Laser Phys. Lett. 15(8), 085805 (2018).
[Crossref]

C. Li, J. Liu, S. Z. Jiang, S. C. Xu, W. W. Ma, J. Y. Wang, X. D. Xu, and L. B. Su, “2.8 µm passively Q-switched Er:CaF2 diode-pumped laser,” Opt. Mater. Express 6(5), 1570–1575 (2016).
[Crossref]

Liu, J. T.

Liu, S. D.

Liu, S. X.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

Liu, Y.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Loh, K. P.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Lou, F.

Lu, D. Z.

Y. X. Zhang, D. Z. Lu, H. H. Yu, and H. J. Zhang, “Low-Dimensional Saturable Absorbers in the Visible Spectral Region,” Adv. Opt. Mater. 7(1), 1800886 (2019).
[Crossref]

Lu, L.

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Lu, S. B.

Luo, H. Y.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Luo, S. J.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

Luo, X. Y.

X. L. Sun, B. T. Zhang, Y. L. Li, X. Y. Luo, G. R. Li, Y. X. Chen, C. Q. Zhang, and J. L. He, “Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS2 van der Waals Heterostructures and Their Application in Solid-State Bulk Lasers,” ACS Nano 12(11), 11376–11385 (2018).
[Crossref]

Ma, H. Y.

Ma, J.

Ma, W. W.

Maleski, K.

Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Mochalin, V. N.

Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Nähle, L.

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

Ni, Z. H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Nie, H. K.

Ning, J.

Ning, T. Y.

X. Y. Feng, B. Y. Ding, W. Y. Liang, F. Zhang, T. Y. Ning, J. Liu, and H. Zhang, “MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser,” Laser Phys. Lett. 15(8), 085805 (2018).
[Crossref]

Norwood, R. A.

Peyghambarian, N.

Podila, R.

Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Ponraj, J. S.

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Rabinovich, W. S.

S. R. Bowman, W. S. Rabinovich, A. P. Bowman, B. J. Feldman, and G. H. Rosenblatt, “3 µm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

Ramasubramaniam, A.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Ranjbar, A.

M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, “Electronic properties and applications of MXenes: a theoretical review,” J. Mater. Chem. C 5(10), 2488–2503 (2017).
[Crossref]

Rao, A. M.

Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Ren, C. E.

K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, and Y. Gogotsi, “Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties,” Adv. Electron. Mater. 2(6), 1600050 (2016).
[Crossref]

Rines, D. M.

Rose, T. S.

D. W. Chen and T. S. Rose, “Low noise 10-W cw OPO generation near 3 µm MgO doped PPLN,” CThQ2 2005 Conference on Lasers & Electro-Optics (CLEO)1829–1831 (2005).

Rosenblatt, G. H.

S. R. Bowman, W. S. Rabinovich, A. P. Bowman, B. J. Feldman, and G. H. Rosenblatt, “3 µm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

Rouillard, Yves

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

Sang, Y. H.

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9(48), 19100–19107 (2017).
[Crossref]

Sasaki, T.

M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, “Electronic properties and applications of MXenes: a theoretical review,” J. Mater. Chem. C 5(10), 2488–2503 (2017).
[Crossref]

Schunemann, P. G.

Seo, M.

Y. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Shi, B. N.

Song, Y. F.

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Su, L. B.

Su, X. C.

Sun, D. L.

Sun, X. L.

H. K. Nie, X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, Y. R. Wang, J. T. Liu, B. N. Shi, S. D. Liu, and J. L. He, “Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 mum bulk laser,” Opt. Lett. 43(14), 3349–3352 (2018).
[Crossref]

X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, H. K. Nie, K. J. Yang, C. Q. Zhang, and J. L. He, “Few-layer Ti3C2Tx (T = O, OH, or F) saturable absorber for a femtosecond bulk laser,” Opt. Lett. 43(16), 3862–3865 (2018).
[Crossref]

X. L. Sun, B. T. Zhang, Y. L. Li, X. Y. Luo, G. R. Li, Y. X. Chen, C. Q. Zhang, and J. L. He, “Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS2 van der Waals Heterostructures and Their Application in Solid-State Bulk Lasers,” ACS Nano 12(11), 11376–11385 (2018).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, M. Xu, K. J. Yang, X. L. Sun, L. H. Zhang, Y. Hang, and J. L. He, “Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

Sun, Y. J.

Tang, D. Y.

Tong, M. H.

Tu, C. Y.

Urbankowski, P.

K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, and Y. Gogotsi, “Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties,” Adv. Electron. Mater. 2(6), 1600050 (2016).
[Crossref]

Utano, R.

Wang, H.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Wang, H. D.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

Wang, J. F.

Wang, J. Y.

Wang, Q. G.

Wang, Y.

Z. Y. You, Y. J. Sun, D. L. Sun, Z. J. Zhu, Y. Wang, J. F. Li, C. Y. Tu, and J. L. Xu, “High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA,” Opt. Lett. 42(4), 871–874 (2017).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Wang, Y. R.

Wang, Z. T.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

Wei, C.

X. S. Zhu, G. W. Zhu, C. Wei, L. V. Kotov, J. F. Wang, M. H. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 µm,” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Wen, Q.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

Wen, S. C.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

Worschech, L.

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

Wu, L. M.

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Wu, X.

Xia, F. N.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xiang, Y. J.

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Xiao, D.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xie, J. T.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Xie, Y.

Y. Xie and P. R. C. Kent, “Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers,” Phys. Rev. B 87(23), 235441 (2013).
[Crossref]

Xing, F.

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Xu, J. L.

Xu, J. Q.

Xu, M.

H. K. Nie, P. X. Zhang, B. T. Zhang, M. Xu, K. J. Yang, X. L. Sun, L. H. Zhang, Y. Hang, and J. L. He, “Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

Xu, S. C.

Xu, X. D.

Yan, B. Z.

Yan, Y. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yan, Z. Y.

Z. Y. Yan, T. Li, S. Z. Zhao, K. J. Yang, D. C. Li, G. Q. Li, S. Y. Zhang, and Z. J. Gao, “MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at ∼3 µm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

Z. Y. Yan, G. Q. Li, T. Li, S. Z. Zhao, K. J. Yang, S. Y. Zhang, M. Q. Fan, L. Guo, and B. T. Zhang, “Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Yang, K. J.

H. K. Nie, P. X. Zhang, B. T. Zhang, M. Xu, K. J. Yang, X. L. Sun, L. H. Zhang, Y. Hang, and J. L. He, “Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

Z. Y. Yan, T. Li, S. Z. Zhao, K. J. Yang, D. C. Li, G. Q. Li, S. Y. Zhang, and Z. J. Gao, “MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at ∼3 µm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, H. K. Nie, K. J. Yang, C. Q. Zhang, and J. L. He, “Few-layer Ti3C2Tx (T = O, OH, or F) saturable absorber for a femtosecond bulk laser,” Opt. Lett. 43(16), 3862–3865 (2018).
[Crossref]

X. C. Su, H. K. Nie, Y. R. Wang, G. R. Li, B. Z. Yan, B. T. Zhang, K. J. Yang, and J. L. He, “Few-layered ReS2 as saturable absorber for 2.8 µm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
[Crossref]

Z. Y. Yan, G. Q. Li, T. Li, S. Z. Zhao, K. J. Yang, S. Y. Zhang, M. Q. Fan, L. Guo, and B. T. Zhang, “Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, K. J. Yang, L. H. Zhang, T. Li, S. Y. Zhang, J. Q. Xu, Y. Hang, and J. L. He, “Diode-end-pumped Ho, Pr: LiLuF4 bulk laser at 2.95 µm,” Opt. Lett. 42(4), 699–702 (2017).
[Crossref]

B. T. Zhang, F. Lou, R. W. Zhao, J. L. He, J. Li, X. C. Su, J. Ning, and K. J. Yang, “Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser,” Opt. Lett. 40(16), 3691–3694 (2015).
[Crossref]

Yao, Y. P.

You, Z. Y.

Yu, H. H.

Y. X. Zhang, D. Z. Lu, H. H. Yu, and H. J. Zhang, “Low-Dimensional Saturable Absorbers in the Visible Spectral Region,” Adv. Opt. Mater. 7(1), 1800886 (2019).
[Crossref]

Yunoki, S.

M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, “Electronic properties and applications of MXenes: a theoretical review,” J. Mater. Chem. C 5(10), 2488–2503 (2017).
[Crossref]

Zhang, B. T.

Y. P. Yao, N. Cui, Q. G. Wang, L. L. Dong, S. D. Liu, D. L. Sun, H. Y. Zhang, D. H. Li, B. T. Zhang, and J. L. He, “Highly efficient continuous-wave and ReSe2Q-switched ∼3 µm dual-wavelength Er:YAP crystal lasers,” Opt. Lett. 44(11), 2839–2842 (2019).
[Crossref]

X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, H. K. Nie, K. J. Yang, C. Q. Zhang, and J. L. He, “Few-layer Ti3C2Tx (T = O, OH, or F) saturable absorber for a femtosecond bulk laser,” Opt. Lett. 43(16), 3862–3865 (2018).
[Crossref]

H. K. Nie, X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, Y. R. Wang, J. T. Liu, B. N. Shi, S. D. Liu, and J. L. He, “Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 mum bulk laser,” Opt. Lett. 43(14), 3349–3352 (2018).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, M. Xu, K. J. Yang, X. L. Sun, L. H. Zhang, Y. Hang, and J. L. He, “Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

X. L. Sun, B. T. Zhang, Y. L. Li, X. Y. Luo, G. R. Li, Y. X. Chen, C. Q. Zhang, and J. L. He, “Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS2 van der Waals Heterostructures and Their Application in Solid-State Bulk Lasers,” ACS Nano 12(11), 11376–11385 (2018).
[Crossref]

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9(48), 19100–19107 (2017).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, K. J. Yang, L. H. Zhang, T. Li, S. Y. Zhang, J. Q. Xu, Y. Hang, and J. L. He, “Diode-end-pumped Ho, Pr: LiLuF4 bulk laser at 2.95 µm,” Opt. Lett. 42(4), 699–702 (2017).
[Crossref]

X. C. Su, H. K. Nie, Y. R. Wang, G. R. Li, B. Z. Yan, B. T. Zhang, K. J. Yang, and J. L. He, “Few-layered ReS2 as saturable absorber for 2.8 µm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
[Crossref]

Z. Y. Yan, G. Q. Li, T. Li, S. Z. Zhao, K. J. Yang, S. Y. Zhang, M. Q. Fan, L. Guo, and B. T. Zhang, “Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

B. T. Zhang, F. Lou, R. W. Zhao, J. L. He, J. Li, X. C. Su, J. Ning, and K. J. Yang, “Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser,” Opt. Lett. 40(16), 3691–3694 (2015).
[Crossref]

Zhang, C. Q.

X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, H. K. Nie, K. J. Yang, C. Q. Zhang, and J. L. He, “Few-layer Ti3C2Tx (T = O, OH, or F) saturable absorber for a femtosecond bulk laser,” Opt. Lett. 43(16), 3862–3865 (2018).
[Crossref]

X. L. Sun, B. T. Zhang, Y. L. Li, X. Y. Luo, G. R. Li, Y. X. Chen, C. Q. Zhang, and J. L. He, “Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS2 van der Waals Heterostructures and Their Application in Solid-State Bulk Lasers,” ACS Nano 12(11), 11376–11385 (2018).
[Crossref]

Zhang, F.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

X. Y. Feng, B. Y. Ding, W. Y. Liang, F. Zhang, T. Y. Ning, J. Liu, and H. Zhang, “MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser,” Laser Phys. Lett. 15(8), 085805 (2018).
[Crossref]

Zhang, H.

X. Y. Feng, B. Y. Ding, W. Y. Liang, F. Zhang, T. Y. Ning, J. Liu, and H. Zhang, “MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser,” Laser Phys. Lett. 15(8), 085805 (2018).
[Crossref]

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Ma, S. B. Lu, Z. N. Guo, X. D. Xu, H. Zhang, D. Y. Tang, and D. Y. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Zhang, H. J.

Y. X. Zhang, D. Z. Lu, H. H. Yu, and H. J. Zhang, “Low-Dimensional Saturable Absorbers in the Visible Spectral Region,” Adv. Opt. Mater. 7(1), 1800886 (2019).
[Crossref]

Zhang, H. Y.

Zhang, L. H.

H. K. Nie, P. X. Zhang, B. T. Zhang, M. Xu, K. J. Yang, X. L. Sun, L. H. Zhang, Y. Hang, and J. L. He, “Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, K. J. Yang, L. H. Zhang, T. Li, S. Y. Zhang, J. Q. Xu, Y. Hang, and J. L. He, “Diode-end-pumped Ho, Pr: LiLuF4 bulk laser at 2.95 µm,” Opt. Lett. 42(4), 699–702 (2017).
[Crossref]

Zhang, P. X.

H. K. Nie, P. X. Zhang, B. T. Zhang, M. Xu, K. J. Yang, X. L. Sun, L. H. Zhang, Y. Hang, and J. L. He, “Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, K. J. Yang, L. H. Zhang, T. Li, S. Y. Zhang, J. Q. Xu, Y. Hang, and J. L. He, “Diode-end-pumped Ho, Pr: LiLuF4 bulk laser at 2.95 µm,” Opt. Lett. 42(4), 699–702 (2017).
[Crossref]

Zhang, S. Y.

Z. Y. Yan, T. Li, S. Z. Zhao, K. J. Yang, D. C. Li, G. Q. Li, S. Y. Zhang, and Z. J. Gao, “MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at ∼3 µm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

Z. Y. Yan, G. Q. Li, T. Li, S. Z. Zhao, K. J. Yang, S. Y. Zhang, M. Q. Fan, L. Guo, and B. T. Zhang, “Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, K. J. Yang, L. H. Zhang, T. Li, S. Y. Zhang, J. Q. Xu, Y. Hang, and J. L. He, “Diode-end-pumped Ho, Pr: LiLuF4 bulk laser at 2.95 µm,” Opt. Lett. 42(4), 699–702 (2017).
[Crossref]

Zhang, X.

J. C. Lei, X. Zhang, and Z. Zhou, “Recent advances in MXene: Preparation, properties, and applications,” Frontiers of Phys. 10(3), 276–286 (2015).
[Crossref]

Zhang, Y. X.

Y. X. Zhang, D. Z. Lu, H. H. Yu, and H. J. Zhang, “Low-Dimensional Saturable Absorbers in the Visible Spectral Region,” Adv. Opt. Mater. 7(1), 1800886 (2019).
[Crossref]

Zhao, C. J.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

Zhao, L. M.

Zhao, M. Q.

K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, and Y. Gogotsi, “Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties,” Adv. Electron. Mater. 2(6), 1600050 (2016).
[Crossref]

Zhao, R. W.

Zhao, S. Z.

Z. Y. Yan, T. Li, S. Z. Zhao, K. J. Yang, D. C. Li, G. Q. Li, S. Y. Zhang, and Z. J. Gao, “MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at ∼3 µm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

Z. Y. Yan, G. Q. Li, T. Li, S. Z. Zhao, K. J. Yang, S. Y. Zhang, M. Q. Fan, L. Guo, and B. T. Zhang, “Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

M. G. Fan, T. Li, S. Z. Zhao, G. Q. Li, H. Y. Ma, X. C. Gao, C. Krankel, and G. Huber, “Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 µm using MoS2,” Opt. Lett. 41(3), 540–543 (2016).
[Crossref]

Zhou, Z.

J. C. Lei, X. Zhang, and Z. Zhou, “Recent advances in MXene: Preparation, properties, and applications,” Frontiers of Phys. 10(3), 276–286 (2015).
[Crossref]

Zhu, G. W.

Zhu, X. S.

Zhu, Z. J.

ACS Nano (1)

X. L. Sun, B. T. Zhang, Y. L. Li, X. Y. Luo, G. R. Li, Y. X. Chen, C. Q. Zhang, and J. L. He, “Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS2 van der Waals Heterostructures and Their Application in Solid-State Bulk Lasers,” ACS Nano 12(11), 11376–11385 (2018).
[Crossref]

Adv. Electron. Mater. (1)

K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum, and Y. Gogotsi, “Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties,” Adv. Electron. Mater. 2(6), 1600050 (2016).
[Crossref]

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Adv. Mater. (2)

Y. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref]

Adv. Opt. Mater. (1)

Y. X. Zhang, D. Z. Lu, H. H. Yu, and H. J. Zhang, “Low-Dimensional Saturable Absorbers in the Visible Spectral Region,” Adv. Opt. Mater. 7(1), 1800886 (2019).
[Crossref]

Frontiers of Phys. (1)

J. C. Lei, X. Zhang, and Z. Zhou, “Recent advances in MXene: Preparation, properties, and applications,” Frontiers of Phys. 10(3), 276–286 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

S. R. Bowman, W. S. Rabinovich, A. P. Bowman, B. J. Feldman, and G. H. Rosenblatt, “3 µm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. K. Nie, P. X. Zhang, B. T. Zhang, M. Xu, K. J. Yang, X. L. Sun, L. H. Zhang, Y. Hang, and J. L. He, “Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

IEEE Photonics J. (2)

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

Z. Y. Yan, G. Q. Li, T. Li, S. Z. Zhao, K. J. Yang, S. Y. Zhang, M. Q. Fan, L. Guo, and B. T. Zhang, “Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

J. Mater. Chem. C (1)

M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, “Electronic properties and applications of MXenes: a theoretical review,” J. Mater. Chem. C 5(10), 2488–2503 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, “Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1870013 (2018).
[Crossref]

Laser Phys. Lett. (2)

X. Y. Feng, B. Y. Ding, W. Y. Liang, F. Zhang, T. Y. Ning, J. Liu, and H. Zhang, “MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser,” Laser Phys. Lett. 15(8), 085805 (2018).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Nanoscale (1)

Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, “Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein,” Nanoscale 9(48), 19100–19107 (2017).
[Crossref]

Nat. Photonics (1)

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

Z. Y. Yan, T. Li, S. Z. Zhao, K. J. Yang, D. C. Li, G. Q. Li, S. Y. Zhang, and Z. J. Gao, “MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at ∼3 µm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

Opt. Lett. (12)

Y. P. Yao, N. Cui, Q. G. Wang, L. L. Dong, S. D. Liu, D. L. Sun, H. Y. Zhang, D. H. Li, B. T. Zhang, and J. L. He, “Highly efficient continuous-wave and ReSe2Q-switched ∼3 µm dual-wavelength Er:YAP crystal lasers,” Opt. Lett. 44(11), 2839–2842 (2019).
[Crossref]

H. K. Nie, X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, Y. R. Wang, J. T. Liu, B. N. Shi, S. D. Liu, and J. L. He, “Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 mum bulk laser,” Opt. Lett. 43(14), 3349–3352 (2018).
[Crossref]

X. C. Su, H. K. Nie, Y. R. Wang, G. R. Li, B. Z. Yan, B. T. Zhang, K. J. Yang, and J. L. He, “Few-layered ReS2 as saturable absorber for 2.8 µm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
[Crossref]

M. G. Fan, T. Li, S. Z. Zhao, G. Q. Li, H. Y. Ma, X. C. Gao, C. Krankel, and G. Huber, “Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 µm using MoS2,” Opt. Lett. 41(3), 540–543 (2016).
[Crossref]

Z. Y. You, Y. J. Sun, D. L. Sun, Z. J. Zhu, Y. Wang, J. F. Li, C. Y. Tu, and J. L. Xu, “High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA,” Opt. Lett. 42(4), 871–874 (2017).
[Crossref]

X. L. Sun, B. T. Zhang, B. Z. Yan, G. R. Li, H. K. Nie, K. J. Yang, C. Q. Zhang, and J. L. He, “Few-layer Ti3C2Tx (T = O, OH, or F) saturable absorber for a femtosecond bulk laser,” Opt. Lett. 43(16), 3862–3865 (2018).
[Crossref]

H. K. Nie, P. X. Zhang, B. T. Zhang, K. J. Yang, L. H. Zhang, T. Li, S. Y. Zhang, J. Q. Xu, Y. Hang, and J. L. He, “Diode-end-pumped Ho, Pr: LiLuF4 bulk laser at 2.95 µm,” Opt. Lett. 42(4), 699–702 (2017).
[Crossref]

S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
[Crossref]

S. D. Jackson, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 29(4), 334–336 (2004).
[Crossref]

T. H. Allik, S. Chandra, D. M. Rines, P. G. Schunemann, J. A. Hutchinson, and R. Utano, “Tunable 7–12-µm optical parametric oscillator using a Cr, Er: YSGG laser to pump CdSe and ZnGeP2 crystals,” Opt. Lett. 22(9), 597–599 (1997).
[Crossref]

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
[Crossref]

B. T. Zhang, F. Lou, R. W. Zhao, J. L. He, J. Li, X. C. Su, J. Ning, and K. J. Yang, “Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser,” Opt. Lett. 40(16), 3691–3694 (2015).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

Y. Xie and P. R. C. Kent, “Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers,” Phys. Rev. B 87(23), 235441 (2013).
[Crossref]

Proc. SPIE (1)

M. O. Fischer, M. Edlinger, L. Nähle, J. Koeth, A. Bauer, M. Dallner, S. Höfling, L. Worschech, A. W. B. Forchel, S. Belahsene, and Yves Rouillard, “DFB lasers for sensing applications in the 3.0-3.5 µm wavelength range,” Proc. SPIE 7945, 79450E (2011).
[Crossref]

Other (1)

D. W. Chen and T. S. Rose, “Low noise 10-W cw OPO generation near 3 µm MgO doped PPLN,” CThQ2 2005 Conference on Lasers & Electro-Optics (CLEO)1829–1831 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) SEM image of the prepared Ti3C2Tx nanosheets with a scalar bar of 5.0 µm; (b) AFM measurement of the Ti3C2Tx nanosheets, giving the average thickness of 6.9 nm; (c) TEM and HRTEM (inset) images of the Ti3C2Tx nanosheets; (d) Visible-MIR absorptivity of the Ti3C2Tx-SA, pure sapphire is served for the reference.
Fig. 2.
Fig. 2. (a) The nonlinear transmission as a function of the incident light energy intensity; (b) The experimental setup of the PQS Ho,Pr:LLF laser.
Fig. 3.
Fig. 3. (a) CW and PQS output power versus the absorbed pump power; (b) Laser spectrum of the CW and PQS lasers; (c) and (d) are the pulse width (c), pulse repartition rate (c), pulse energy (d), and pulse peak power (d) as a function of the absorbed pump power.
Fig. 4.
Fig. 4. The typical pulse profile with the shortest pulse width and pulse train of the largest repletion rate.

Tables (1)

Tables Icon

Table 1. Comparison of ∼3 µm PQS Laser Performance Based on 2D Materials as SA

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Fsat,AΔRτ2hcωeff,L2mλσem,Lωeff,A2TR