Abstract

Frequency upconversion (UC) luminescence was observed in yttrium oxide (Y2O3) powders doped with trivalent europium ions (Eu3+) when the samples were irradiated with a femtosecond laser system operating either at 1275 nm or 1500 nm. The samples, prepared by low temperature combustion synthesis, were characterized by X-ray diffraction, scanning electronic microscopy, spontaneous Raman scattering and photoluminescence. The UC luminescence, corresponding to the 5D07FJ (J = 1, 2, 3, 4) transitions of Eu3+, characterized by measuring the amplitude of the UC signal versus the laser intensity, is attributed to the simultaneous absorption of three, four and five infrared photons. The results indicate that Eu3+ doped Y2O3 powder is an efficient upconverter for excitation using femtosecond near-infrared lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three- and four-photon excited upconversion luminescence in terbium doped lutetium silicate powders by femtosecond laser irradiation

Nikifor Rakov, Whualkuer Lozano B., Edilson L. Falcão-filho, Renato B. Guimarães, Glauco S. Maciel, and Cid B. de Araújo
Opt. Mater. Express 3(11) 1803-1809 (2013)

Multi-photon absorption upconversion luminescence of a Tb3+-doped glass excited by an infrared femtosecond laser

Songmin Zhang, Bin Zhu, Shifeng Zhou, Shiqing Xu, and Jianrong Qiu
Opt. Express 15(11) 6883-6888 (2007)

Ultraviolet and visible upconversion luminescence in Y2O3:Er3+, Gd3+ microcrystals by 1.55  μm excitation

Yuhong Zhang, Shuibing Li, Feng Qin, Zhiguo Zhang, and Zhenwen Dai
J. Opt. Soc. Am. B 32(9) 1856-1860 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
    [Crossref]
  2. J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion Luminescent Materials: Advances and Applications,” Chem. Rev. 115(1), 395–465 (2015).
    [Crossref]
  3. N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators, B 164(1), 96–100 (2012).
    [Crossref]
  4. J. Zhang, H. Zhao, X. Zhang, X. Wang, H. Gao, Z. Zhang, and W. Cao, “Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging,” J. Phys. Chem. C 118(5), 2820–2825 (2014).
    [Crossref]
  5. Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
    [Crossref]
  6. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A Three-Color, Solid-State, Three-Dimensional Display,” Science 273(5279), 1185–1189 (1996).
    [Crossref]
  7. W. Huang, C. Lu, C. Jiang, W. Wang, J. Song, Y. Ni, and Z. Xu, “Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4:Yb, Er (Tm)/FC transparent nanocomposite thin films,” J. Colloid Interface Sci. 376(1), 34–39 (2012).
    [Crossref]
  8. F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref]
  9. M. F. Joubert, “Photon avalanche upconversion in rare earth laser materials,” Opt. Mater. 11(2-3), 181–203 (1999).
    [Crossref]
  10. G. Y. Chen, H. C. Liu, G. Somesfalean, Y. Q. Sheng, H. J. Liang, Z. G. Zhang, Q. Sun, and F. P. Wang, “Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions,” Appl. Phys. Lett. 92(11), 113114 (2008).
    [Crossref]
  11. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).
  12. J. Xu, G. Zhou, G. Zhao, M. Jie, M. L. Yang, L. Su, J. Qiu, W. Feng, and L. Lin, “Blue upconversion luminescence generation in Ce3+:Gd2SiO5 crystals by infrared femtosecond laser irradiation,” Opt. Express 14(5), 1899–1904 (2006).
    [Crossref]
  13. Y. Dong, J. Xu, G. Zhao, C. Yan, G. Zhou, L. Su, L. Yang, J. Qiu, L. Lin, X. Liang, R. Li, and Z. Xu, “Simultaneous three-photon-excited violet upconversion luminescence of Ce3+:Lu2Si2O7 single crystals by femtosecond laser irradiation,”, Opt. Lett. 31(14), 2175–2177 (2006).
    [Crossref]
  14. N. Rakov, W. B. Lozano, E. L. Falcão-Filho, G. S. Maciel, and C. B. de Araújo, “Three- and four-photon excited upconversion luminescence in terbium doped lutetium silicate powders by femtosecond laser irradiation,” Opt. Mater. Express 3(11), 1803–1809 (2013).
    [Crossref]
  15. L. Qiang, A. Li, F. Y. Guo, L. Sun, and L. C. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
    [Crossref]
  16. J. G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+ Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+ Doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
    [Crossref]
  17. D. K. Williams, B. Bihari, and B. M. Tissue, “Preparation and Fluorescence Spectroscopy of Bulk Monoclinic Eu3+:Y2O3 and Comparison to Eu3+:Y2O3 Nanocrystals,” J. Phys. Chem. B 102(6), 916–920 (1998).
    [Crossref]
  18. A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C 2(3), 496–500 (2014).
    [Crossref]
  19. A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
    [Crossref]
  20. J. Christiansen, H. Lakhotiya, E. Eriksen, S. P. Madsen, P. Balling, and B. Julsgaard, “Analytical model for the intensity dependence of 1500 nm to 980 nm upconversion in Er3+: A new tool for material characterization,” J. Appl. Phys. 125(4), 043106 (2019).
    [Crossref]
  21. A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report LAUR 86-748, (1994).
  22. R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Marthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Calcination Temperature on Structural, Photoluminescence, and Thermoluminescence Properties of Y2O3:Eu3+ Nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
    [Crossref]
  23. M. A. F. Monteiro, H. F. Brito, M. C. F. C. M. Felinto, G. E. S. Brito, E. E. S. Teotoniod, F. M. Vichia, and R. Stefani, “Photoluminescence behavior of Eu3+ ion doped into γ-and α-alumina systems prepared by combustion, ceramic and Pechini methods,” Microporous Mesoporous Mater. 108(1-3), 237–246 (2008).
    [Crossref]
  24. S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis,” RSC Adv. 5(87), 70887–70898 (2015).
    [Crossref]
  25. Ž. Antić, R. Krsmanović, V. Ðorđević, T. Dramićanin, and M. D. Dramićanin, “Optical Properties of Y2O3:Eu3+ Red Emitting Phosphor Obtained via Spray Pyrolysis,” Acta Phys. Pol., A 116(4), 622–624 (2009).
    [Crossref]
  26. A. Nayak, K. Goswami, A. Ghosh, and R. Debnath, “Luminescence efficiency of Eu+3 in Y2O3: The effect of reduction of particle size and incorporation of trace hetero-cations in the Y2O3 lattice,” Indian J. Pure Appl. Phys. 47, 775–781 (2009).
  27. D. Hreniak, W. Strek, J. Amami, Y. Guyot, G. Boulon, C. Goutaudier, and R. Pazik, “The size-effect on luminescence properties of BaTiO3:Eu3+ nanocrystallites prepared by the sol-gel method,” J. Alloys Compd. 380(1-2), 348–351 (2004).
    [Crossref]
  28. W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Spec. Rep., Chem. Div., Argonne Nat. Lab., IL, (1977).
  29. G. S. Maciel, A. Biswas, and P. N. Prasad, “Infrared-to-visible Eu3+ energy upconversion due to cooperative energy transfer from an Yb3+ ion pair in a sol gel processed multicomponent silica glass,” Opt. Commun. 178(1-3), 65–69 (2000).
    [Crossref]
  30. H. S. Wang, C. K. Duan, and P. A. Tanner, “Visible Upconversion Luminescence from Y2O3: Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
    [Crossref]
  31. R. Martin-Rodriguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+ Yb3+ and Eu3+ Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
    [Crossref]

2019 (1)

J. Christiansen, H. Lakhotiya, E. Eriksen, S. P. Madsen, P. Balling, and B. Julsgaard, “Analytical model for the intensity dependence of 1500 nm to 980 nm upconversion in Er3+: A new tool for material characterization,” J. Appl. Phys. 125(4), 043106 (2019).
[Crossref]

2015 (3)

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion Luminescent Materials: Advances and Applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis,” RSC Adv. 5(87), 70887–70898 (2015).
[Crossref]

2014 (2)

A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C 2(3), 496–500 (2014).
[Crossref]

J. Zhang, H. Zhao, X. Zhang, X. Wang, H. Gao, Z. Zhang, and W. Cao, “Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging,” J. Phys. Chem. C 118(5), 2820–2825 (2014).
[Crossref]

2013 (3)

Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref]

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Marthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Calcination Temperature on Structural, Photoluminescence, and Thermoluminescence Properties of Y2O3:Eu3+ Nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

N. Rakov, W. B. Lozano, E. L. Falcão-Filho, G. S. Maciel, and C. B. de Araújo, “Three- and four-photon excited upconversion luminescence in terbium doped lutetium silicate powders by femtosecond laser irradiation,” Opt. Mater. Express 3(11), 1803–1809 (2013).
[Crossref]

2012 (2)

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators, B 164(1), 96–100 (2012).
[Crossref]

W. Huang, C. Lu, C. Jiang, W. Wang, J. Song, Y. Ni, and Z. Xu, “Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4:Yb, Er (Tm)/FC transparent nanocomposite thin films,” J. Colloid Interface Sci. 376(1), 34–39 (2012).
[Crossref]

2009 (3)

Ž. Antić, R. Krsmanović, V. Ðorđević, T. Dramićanin, and M. D. Dramićanin, “Optical Properties of Y2O3:Eu3+ Red Emitting Phosphor Obtained via Spray Pyrolysis,” Acta Phys. Pol., A 116(4), 622–624 (2009).
[Crossref]

A. Nayak, K. Goswami, A. Ghosh, and R. Debnath, “Luminescence efficiency of Eu+3 in Y2O3: The effect of reduction of particle size and incorporation of trace hetero-cations in the Y2O3 lattice,” Indian J. Pure Appl. Phys. 47, 775–781 (2009).

R. Martin-Rodriguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+ Yb3+ and Eu3+ Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

2008 (5)

M. A. F. Monteiro, H. F. Brito, M. C. F. C. M. Felinto, G. E. S. Brito, E. E. S. Teotoniod, F. M. Vichia, and R. Stefani, “Photoluminescence behavior of Eu3+ ion doped into γ-and α-alumina systems prepared by combustion, ceramic and Pechini methods,” Microporous Mesoporous Mater. 108(1-3), 237–246 (2008).
[Crossref]

H. S. Wang, C. K. Duan, and P. A. Tanner, “Visible Upconversion Luminescence from Y2O3: Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

G. Y. Chen, H. C. Liu, G. Somesfalean, Y. Q. Sheng, H. J. Liang, Z. G. Zhang, Q. Sun, and F. P. Wang, “Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions,” Appl. Phys. Lett. 92(11), 113114 (2008).
[Crossref]

L. Qiang, A. Li, F. Y. Guo, L. Sun, and L. C. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref]

J. G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+ Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+ Doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
[Crossref]

2006 (2)

2005 (1)

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

2004 (2)

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref]

D. Hreniak, W. Strek, J. Amami, Y. Guyot, G. Boulon, C. Goutaudier, and R. Pazik, “The size-effect on luminescence properties of BaTiO3:Eu3+ nanocrystallites prepared by the sol-gel method,” J. Alloys Compd. 380(1-2), 348–351 (2004).
[Crossref]

2000 (1)

G. S. Maciel, A. Biswas, and P. N. Prasad, “Infrared-to-visible Eu3+ energy upconversion due to cooperative energy transfer from an Yb3+ ion pair in a sol gel processed multicomponent silica glass,” Opt. Commun. 178(1-3), 65–69 (2000).
[Crossref]

1999 (1)

M. F. Joubert, “Photon avalanche upconversion in rare earth laser materials,” Opt. Mater. 11(2-3), 181–203 (1999).
[Crossref]

1998 (1)

D. K. Williams, B. Bihari, and B. M. Tissue, “Preparation and Fluorescence Spectroscopy of Bulk Monoclinic Eu3+:Y2O3 and Comparison to Eu3+:Y2O3 Nanocrystals,” J. Phys. Chem. B 102(6), 916–920 (1998).
[Crossref]

1996 (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A Three-Color, Solid-State, Three-Dimensional Display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Amami, J.

D. Hreniak, W. Strek, J. Amami, Y. Guyot, G. Boulon, C. Goutaudier, and R. Pazik, “The size-effect on luminescence properties of BaTiO3:Eu3+ nanocrystallites prepared by the sol-gel method,” J. Alloys Compd. 380(1-2), 348–351 (2004).
[Crossref]

Antic, Ž.

Ž. Antić, R. Krsmanović, V. Ðorđević, T. Dramićanin, and M. D. Dramićanin, “Optical Properties of Y2O3:Eu3+ Red Emitting Phosphor Obtained via Spray Pyrolysis,” Acta Phys. Pol., A 116(4), 622–624 (2009).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref]

Balling, P.

J. Christiansen, H. Lakhotiya, E. Eriksen, S. P. Madsen, P. Balling, and B. Julsgaard, “Analytical model for the intensity dependence of 1500 nm to 980 nm upconversion in Er3+: A new tool for material characterization,” J. Appl. Phys. 125(4), 043106 (2019).
[Crossref]

Bettinelli, M.

R. Martin-Rodriguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+ Yb3+ and Eu3+ Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

Bihari, B.

D. K. Williams, B. Bihari, and B. M. Tissue, “Preparation and Fluorescence Spectroscopy of Bulk Monoclinic Eu3+:Y2O3 and Comparison to Eu3+:Y2O3 Nanocrystals,” J. Phys. Chem. B 102(6), 916–920 (1998).
[Crossref]

Biswas, A.

G. S. Maciel, A. Biswas, and P. N. Prasad, “Infrared-to-visible Eu3+ energy upconversion due to cooperative energy transfer from an Yb3+ ion pair in a sol gel processed multicomponent silica glass,” Opt. Commun. 178(1-3), 65–69 (2000).
[Crossref]

Blasse, G.

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).

Boulon, G.

D. Hreniak, W. Strek, J. Amami, Y. Guyot, G. Boulon, C. Goutaudier, and R. Pazik, “The size-effect on luminescence properties of BaTiO3:Eu3+ nanocrystallites prepared by the sol-gel method,” J. Alloys Compd. 380(1-2), 348–351 (2004).
[Crossref]

Brito, G. E. S.

M. A. F. Monteiro, H. F. Brito, M. C. F. C. M. Felinto, G. E. S. Brito, E. E. S. Teotoniod, F. M. Vichia, and R. Stefani, “Photoluminescence behavior of Eu3+ ion doped into γ-and α-alumina systems prepared by combustion, ceramic and Pechini methods,” Microporous Mesoporous Mater. 108(1-3), 237–246 (2008).
[Crossref]

Brito, H. F.

M. A. F. Monteiro, H. F. Brito, M. C. F. C. M. Felinto, G. E. S. Brito, E. E. S. Teotoniod, F. M. Vichia, and R. Stefani, “Photoluminescence behavior of Eu3+ ion doped into γ-and α-alumina systems prepared by combustion, ceramic and Pechini methods,” Microporous Mesoporous Mater. 108(1-3), 237–246 (2008).
[Crossref]

Cao, T.

Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref]

Cao, W.

J. Zhang, H. Zhao, X. Zhang, X. Wang, H. Gao, Z. Zhang, and W. Cao, “Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging,” J. Phys. Chem. C 118(5), 2820–2825 (2014).
[Crossref]

Carnall, W. T.

W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Spec. Rep., Chem. Div., Argonne Nat. Lab., IL, (1977).

Chakradhar, R. P. S.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Marthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Calcination Temperature on Structural, Photoluminescence, and Thermoluminescence Properties of Y2O3:Eu3+ Nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Chen, G. Y.

G. Y. Chen, H. C. Liu, G. Somesfalean, Y. Q. Sheng, H. J. Liang, Z. G. Zhang, Q. Sun, and F. P. Wang, “Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions,” Appl. Phys. Lett. 92(11), 113114 (2008).
[Crossref]

Chen, M.

Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref]

Christiansen, J.

J. Christiansen, H. Lakhotiya, E. Eriksen, S. P. Madsen, P. Balling, and B. Julsgaard, “Analytical model for the intensity dependence of 1500 nm to 980 nm upconversion in Er3+: A new tool for material characterization,” J. Appl. Phys. 125(4), 043106 (2019).
[Crossref]

Crosswhite, H.

W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Spec. Rep., Chem. Div., Argonne Nat. Lab., IL, (1977).

Crosswhite, H. M.

W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Spec. Rep., Chem. Div., Argonne Nat. Lab., IL, (1977).

Das, S.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis,” RSC Adv. 5(87), 70887–70898 (2015).
[Crossref]

de Araújo, C. B.

Debnath, R.

A. Nayak, K. Goswami, A. Ghosh, and R. Debnath, “Luminescence efficiency of Eu+3 in Y2O3: The effect of reduction of particle size and incorporation of trace hetero-cations in the Y2O3 lattice,” Indian J. Pure Appl. Phys. 47, 775–781 (2009).

Dong, Y.

Ðordevic, V.

Ž. Antić, R. Krsmanović, V. Ðorđević, T. Dramićanin, and M. D. Dramićanin, “Optical Properties of Y2O3:Eu3+ Red Emitting Phosphor Obtained via Spray Pyrolysis,” Acta Phys. Pol., A 116(4), 622–624 (2009).
[Crossref]

Downing, E.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A Three-Color, Solid-State, Three-Dimensional Display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Dramicanin, M. D.

Ž. Antić, R. Krsmanović, V. Ðorđević, T. Dramićanin, and M. D. Dramićanin, “Optical Properties of Y2O3:Eu3+ Red Emitting Phosphor Obtained via Spray Pyrolysis,” Acta Phys. Pol., A 116(4), 622–624 (2009).
[Crossref]

Dramicanin, T.

Ž. Antić, R. Krsmanović, V. Ðorđević, T. Dramićanin, and M. D. Dramićanin, “Optical Properties of Y2O3:Eu3+ Red Emitting Phosphor Obtained via Spray Pyrolysis,” Acta Phys. Pol., A 116(4), 622–624 (2009).
[Crossref]

Duan, C. K.

H. S. Wang, C. K. Duan, and P. A. Tanner, “Visible Upconversion Luminescence from Y2O3: Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

Dubey, R. K.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis,” RSC Adv. 5(87), 70887–70898 (2015).
[Crossref]

Dutta, S.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis,” RSC Adv. 5(87), 70887–70898 (2015).
[Crossref]

Eriksen, E.

J. Christiansen, H. Lakhotiya, E. Eriksen, S. P. Madsen, P. Balling, and B. Julsgaard, “Analytical model for the intensity dependence of 1500 nm to 980 nm upconversion in Er3+: A new tool for material characterization,” J. Appl. Phys. 125(4), 043106 (2019).
[Crossref]

Falcão-Filho, E. L.

Felinto, M. C. F. C. M.

M. A. F. Monteiro, H. F. Brito, M. C. F. C. M. Felinto, G. E. S. Brito, E. E. S. Teotoniod, F. M. Vichia, and R. Stefani, “Photoluminescence behavior of Eu3+ ion doped into γ-and α-alumina systems prepared by combustion, ceramic and Pechini methods,” Microporous Mesoporous Mater. 108(1-3), 237–246 (2008).
[Crossref]

Feng, W.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion Luminescent Materials: Advances and Applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref]

J. Xu, G. Zhou, G. Zhao, M. Jie, M. L. Yang, L. Su, J. Qiu, W. Feng, and L. Lin, “Blue upconversion luminescence generation in Ce3+:Gd2SiO5 crystals by infrared femtosecond laser irradiation,” Opt. Express 14(5), 1899–1904 (2006).
[Crossref]

Gao, H.

J. Zhang, H. Zhao, X. Zhang, X. Wang, H. Gao, Z. Zhang, and W. Cao, “Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging,” J. Phys. Chem. C 118(5), 2820–2825 (2014).
[Crossref]

Ghosh, A.

A. Nayak, K. Goswami, A. Ghosh, and R. Debnath, “Luminescence efficiency of Eu+3 in Y2O3: The effect of reduction of particle size and incorporation of trace hetero-cations in the Y2O3 lattice,” Indian J. Pure Appl. Phys. 47, 775–781 (2009).

Goswami, K.

A. Nayak, K. Goswami, A. Ghosh, and R. Debnath, “Luminescence efficiency of Eu+3 in Y2O3: The effect of reduction of particle size and incorporation of trace hetero-cations in the Y2O3 lattice,” Indian J. Pure Appl. Phys. 47, 775–781 (2009).

Goutaudier, C.

D. Hreniak, W. Strek, J. Amami, Y. Guyot, G. Boulon, C. Goutaudier, and R. Pazik, “The size-effect on luminescence properties of BaTiO3:Eu3+ nanocrystallites prepared by the sol-gel method,” J. Alloys Compd. 380(1-2), 348–351 (2004).
[Crossref]

Grabmaier, B. C.

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).

Güdel, H. U.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Guo, F. Y.

L. Qiang, A. Li, F. Y. Guo, L. Sun, and L. C. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref]

Guyot, Y.

D. Hreniak, W. Strek, J. Amami, Y. Guyot, G. Boulon, C. Goutaudier, and R. Pazik, “The size-effect on luminescence properties of BaTiO3:Eu3+ nanocrystallites prepared by the sol-gel method,” J. Alloys Compd. 380(1-2), 348–351 (2004).
[Crossref]

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A Three-Color, Solid-State, Three-Dimensional Display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Hreniak, D.

D. Hreniak, W. Strek, J. Amami, Y. Guyot, G. Boulon, C. Goutaudier, and R. Pazik, “The size-effect on luminescence properties of BaTiO3:Eu3+ nanocrystallites prepared by the sol-gel method,” J. Alloys Compd. 380(1-2), 348–351 (2004).
[Crossref]

Huang, W.

W. Huang, C. Lu, C. Jiang, W. Wang, J. Song, Y. Ni, and Z. Xu, “Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4:Yb, Er (Tm)/FC transparent nanocomposite thin films,” J. Colloid Interface Sci. 376(1), 34–39 (2012).
[Crossref]

Ishigaki, T.

J. G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+ Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+ Doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
[Crossref]

Jadhav, A. P.

A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C 2(3), 496–500 (2014).
[Crossref]

Jiang, C.

W. Huang, C. Lu, C. Jiang, W. Wang, J. Song, Y. Ni, and Z. Xu, “Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4:Yb, Er (Tm)/FC transparent nanocomposite thin films,” J. Colloid Interface Sci. 376(1), 34–39 (2012).
[Crossref]

Jie, M.

Jin, D.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Joubert, M. F.

M. F. Joubert, “Photon avalanche upconversion in rare earth laser materials,” Opt. Mater. 11(2-3), 181–203 (1999).
[Crossref]

Julsgaard, B.

J. Christiansen, H. Lakhotiya, E. Eriksen, S. P. Madsen, P. Balling, and B. Julsgaard, “Analytical model for the intensity dependence of 1500 nm to 980 nm upconversion in Er3+: A new tool for material characterization,” J. Appl. Phys. 125(4), 043106 (2019).
[Crossref]

Kang, Y. S.

A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C 2(3), 496–500 (2014).
[Crossref]

Krämer, K. W.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Krishna, R. H.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Marthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Calcination Temperature on Structural, Photoluminescence, and Thermoluminescence Properties of Y2O3:Eu3+ Nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Krsmanovic, R.

Ž. Antić, R. Krsmanović, V. Ðorđević, T. Dramićanin, and M. D. Dramićanin, “Optical Properties of Y2O3:Eu3+ Red Emitting Phosphor Obtained via Spray Pyrolysis,” Acta Phys. Pol., A 116(4), 622–624 (2009).
[Crossref]

Kumar, P.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis,” RSC Adv. 5(87), 70887–70898 (2015).
[Crossref]

Lakhotiya, H.

J. Christiansen, H. Lakhotiya, E. Eriksen, S. P. Madsen, P. Balling, and B. Julsgaard, “Analytical model for the intensity dependence of 1500 nm to 980 nm upconversion in Er3+: A new tool for material characterization,” J. Appl. Phys. 125(4), 043106 (2019).
[Crossref]

Larson, A. C.

A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report LAUR 86-748, (1994).

Li, A.

L. Qiang, A. Li, F. Y. Guo, L. Sun, and L. C. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref]

Li, Ch.

Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref]

Li, F.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion Luminescent Materials: Advances and Applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref]

Li, J. G.

J. G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+ Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+ Doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
[Crossref]

Li, R.

Li, X.

J. G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+ Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+ Doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
[Crossref]

Liang, H. J.

G. Y. Chen, H. C. Liu, G. Somesfalean, Y. Q. Sheng, H. J. Liang, Z. G. Zhang, Q. Sun, and F. P. Wang, “Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions,” Appl. Phys. Lett. 92(11), 113114 (2008).
[Crossref]

Liang, X.

Lin, L.

Liu, H. C.

G. Y. Chen, H. C. Liu, G. Somesfalean, Y. Q. Sheng, H. J. Liang, Z. G. Zhang, Q. Sun, and F. P. Wang, “Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions,” Appl. Phys. Lett. 92(11), 113114 (2008).
[Crossref]

Liu, Q.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion Luminescent Materials: Advances and Applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref]

Liu, X.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Liu, Y.

Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref]

Lozano, W. B.

Lu, C.

W. Huang, C. Lu, C. Jiang, W. Wang, J. Song, Y. Ni, and Z. Xu, “Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4:Yb, Er (Tm)/FC transparent nanocomposite thin films,” J. Colloid Interface Sci. 376(1), 34–39 (2012).
[Crossref]

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A Three-Color, Solid-State, Three-Dimensional Display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Maciel, G. S.

N. Rakov, W. B. Lozano, E. L. Falcão-Filho, G. S. Maciel, and C. B. de Araújo, “Three- and four-photon excited upconversion luminescence in terbium doped lutetium silicate powders by femtosecond laser irradiation,” Opt. Mater. Express 3(11), 1803–1809 (2013).
[Crossref]

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators, B 164(1), 96–100 (2012).
[Crossref]

G. S. Maciel, A. Biswas, and P. N. Prasad, “Infrared-to-visible Eu3+ energy upconversion due to cooperative energy transfer from an Yb3+ ion pair in a sol gel processed multicomponent silica glass,” Opt. Commun. 178(1-3), 65–69 (2000).
[Crossref]

Madsen, S. P.

J. Christiansen, H. Lakhotiya, E. Eriksen, S. P. Madsen, P. Balling, and B. Julsgaard, “Analytical model for the intensity dependence of 1500 nm to 980 nm upconversion in Er3+: A new tool for material characterization,” J. Appl. Phys. 125(4), 043106 (2019).
[Crossref]

Marthy, N. S.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Marthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Calcination Temperature on Structural, Photoluminescence, and Thermoluminescence Properties of Y2O3:Eu3+ Nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Martin-Rodriguez, R.

R. Martin-Rodriguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+ Yb3+ and Eu3+ Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

Monteiro, M. A. F.

M. A. F. Monteiro, H. F. Brito, M. C. F. C. M. Felinto, G. E. S. Brito, E. E. S. Teotoniod, F. M. Vichia, and R. Stefani, “Photoluminescence behavior of Eu3+ ion doped into γ-and α-alumina systems prepared by combustion, ceramic and Pechini methods,” Microporous Mesoporous Mater. 108(1-3), 237–246 (2008).
[Crossref]

Nagabhushana, B. M.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Marthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Calcination Temperature on Structural, Photoluminescence, and Thermoluminescence Properties of Y2O3:Eu3+ Nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Nagabhushana, H.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Marthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Calcination Temperature on Structural, Photoluminescence, and Thermoluminescence Properties of Y2O3:Eu3+ Nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Nayak, A.

A. Nayak, K. Goswami, A. Ghosh, and R. Debnath, “Luminescence efficiency of Eu+3 in Y2O3: The effect of reduction of particle size and incorporation of trace hetero-cations in the Y2O3 lattice,” Indian J. Pure Appl. Phys. 47, 775–781 (2009).

Ni, Y.

W. Huang, C. Lu, C. Jiang, W. Wang, J. Song, Y. Ni, and Z. Xu, “Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4:Yb, Er (Tm)/FC transparent nanocomposite thin films,” J. Colloid Interface Sci. 376(1), 34–39 (2012).
[Crossref]

Pal, U.

A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C 2(3), 496–500 (2014).
[Crossref]

Pandey, M. K.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis,” RSC Adv. 5(87), 70887–70898 (2015).
[Crossref]

Pawar, A. U.

A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C 2(3), 496–500 (2014).
[Crossref]

Pazik, R.

D. Hreniak, W. Strek, J. Amami, Y. Guyot, G. Boulon, C. Goutaudier, and R. Pazik, “The size-effect on luminescence properties of BaTiO3:Eu3+ nanocrystallites prepared by the sol-gel method,” J. Alloys Compd. 380(1-2), 348–351 (2004).
[Crossref]

Piccinelli, F.

R. Martin-Rodriguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+ Yb3+ and Eu3+ Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

Polizzi, S.

R. Martin-Rodriguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+ Yb3+ and Eu3+ Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

Prasad, P. N.

G. S. Maciel, A. Biswas, and P. N. Prasad, “Infrared-to-visible Eu3+ energy upconversion due to cooperative energy transfer from an Yb3+ ion pair in a sol gel processed multicomponent silica glass,” Opt. Commun. 178(1-3), 65–69 (2000).
[Crossref]

Qiang, L.

L. Qiang, A. Li, F. Y. Guo, L. Sun, and L. C. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref]

Qiu, J.

Rakov, N.

N. Rakov, W. B. Lozano, E. L. Falcão-Filho, G. S. Maciel, and C. B. de Araújo, “Three- and four-photon excited upconversion luminescence in terbium doped lutetium silicate powders by femtosecond laser irradiation,” Opt. Mater. Express 3(11), 1803–1809 (2013).
[Crossref]

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators, B 164(1), 96–100 (2012).
[Crossref]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A Three-Color, Solid-State, Three-Dimensional Display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Richards, B. S.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Shalav, A.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Sharma, S. C.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Marthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Calcination Temperature on Structural, Photoluminescence, and Thermoluminescence Properties of Y2O3:Eu3+ Nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Sharma, S. K.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis,” RSC Adv. 5(87), 70887–70898 (2015).
[Crossref]

Sheng, Y. Q.

G. Y. Chen, H. C. Liu, G. Somesfalean, Y. Q. Sheng, H. J. Liang, Z. G. Zhang, Q. Sun, and F. P. Wang, “Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions,” Appl. Phys. Lett. 92(11), 113114 (2008).
[Crossref]

Shi, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Shivakumara, C.

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Marthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Calcination Temperature on Structural, Photoluminescence, and Thermoluminescence Properties of Y2O3:Eu3+ Nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Som, S.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis,” RSC Adv. 5(87), 70887–70898 (2015).
[Crossref]

Somesfalean, G.

G. Y. Chen, H. C. Liu, G. Somesfalean, Y. Q. Sheng, H. J. Liang, Z. G. Zhang, Q. Sun, and F. P. Wang, “Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions,” Appl. Phys. Lett. 92(11), 113114 (2008).
[Crossref]

Song, J.

W. Huang, C. Lu, C. Jiang, W. Wang, J. Song, Y. Ni, and Z. Xu, “Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4:Yb, Er (Tm)/FC transparent nanocomposite thin films,” J. Colloid Interface Sci. 376(1), 34–39 (2012).
[Crossref]

Speghini, A.

R. Martin-Rodriguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+ Yb3+ and Eu3+ Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

Stefani, R.

M. A. F. Monteiro, H. F. Brito, M. C. F. C. M. Felinto, G. E. S. Brito, E. E. S. Teotoniod, F. M. Vichia, and R. Stefani, “Photoluminescence behavior of Eu3+ ion doped into γ-and α-alumina systems prepared by combustion, ceramic and Pechini methods,” Microporous Mesoporous Mater. 108(1-3), 237–246 (2008).
[Crossref]

Strek, W.

D. Hreniak, W. Strek, J. Amami, Y. Guyot, G. Boulon, C. Goutaudier, and R. Pazik, “The size-effect on luminescence properties of BaTiO3:Eu3+ nanocrystallites prepared by the sol-gel method,” J. Alloys Compd. 380(1-2), 348–351 (2004).
[Crossref]

Su, L.

Sun, L.

L. Qiang, A. Li, F. Y. Guo, L. Sun, and L. C. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref]

Sun, Q.

G. Y. Chen, H. C. Liu, G. Somesfalean, Y. Q. Sheng, H. J. Liang, Z. G. Zhang, Q. Sun, and F. P. Wang, “Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions,” Appl. Phys. Lett. 92(11), 113114 (2008).
[Crossref]

Sun, X.

J. G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+ Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+ Doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
[Crossref]

Sun, Y.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion Luminescent Materials: Advances and Applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref]

Tanner, P. A.

H. S. Wang, C. K. Duan, and P. A. Tanner, “Visible Upconversion Luminescence from Y2O3: Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

Teotoniod, E. E. S.

M. A. F. Monteiro, H. F. Brito, M. C. F. C. M. Felinto, G. E. S. Brito, E. E. S. Teotoniod, F. M. Vichia, and R. Stefani, “Photoluminescence behavior of Eu3+ ion doped into γ-and α-alumina systems prepared by combustion, ceramic and Pechini methods,” Microporous Mesoporous Mater. 108(1-3), 237–246 (2008).
[Crossref]

Tissue, B. M.

D. K. Williams, B. Bihari, and B. M. Tissue, “Preparation and Fluorescence Spectroscopy of Bulk Monoclinic Eu3+:Y2O3 and Comparison to Eu3+:Y2O3 Nanocrystals,” J. Phys. Chem. B 102(6), 916–920 (1998).
[Crossref]

Trupke, T.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Valiente, R.

R. Martin-Rodriguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+ Yb3+ and Eu3+ Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

Vichia, F. M.

M. A. F. Monteiro, H. F. Brito, M. C. F. C. M. Felinto, G. E. S. Brito, E. E. S. Teotoniod, F. M. Vichia, and R. Stefani, “Photoluminescence behavior of Eu3+ ion doped into γ-and α-alumina systems prepared by combustion, ceramic and Pechini methods,” Microporous Mesoporous Mater. 108(1-3), 237–246 (2008).
[Crossref]

Visser, H. G.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis,” RSC Adv. 5(87), 70887–70898 (2015).
[Crossref]

Von Dreele, R. B.

A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report LAUR 86-748, (1994).

Wang, F. P.

G. Y. Chen, H. C. Liu, G. Somesfalean, Y. Q. Sheng, H. J. Liang, Z. G. Zhang, Q. Sun, and F. P. Wang, “Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions,” Appl. Phys. Lett. 92(11), 113114 (2008).
[Crossref]

Wang, H. S.

H. S. Wang, C. K. Duan, and P. A. Tanner, “Visible Upconversion Luminescence from Y2O3: Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

Wang, W.

W. Huang, C. Lu, C. Jiang, W. Wang, J. Song, Y. Ni, and Z. Xu, “Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4:Yb, Er (Tm)/FC transparent nanocomposite thin films,” J. Colloid Interface Sci. 376(1), 34–39 (2012).
[Crossref]

Wang, X.

J. Zhang, H. Zhao, X. Zhang, X. Wang, H. Gao, Z. Zhang, and W. Cao, “Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging,” J. Phys. Chem. C 118(5), 2820–2825 (2014).
[Crossref]

Williams, D. K.

D. K. Williams, B. Bihari, and B. M. Tissue, “Preparation and Fluorescence Spectroscopy of Bulk Monoclinic Eu3+:Y2O3 and Comparison to Eu3+:Y2O3 Nanocrystals,” J. Phys. Chem. B 102(6), 916–920 (1998).
[Crossref]

Xu, J.

Xu, Z.

W. Huang, C. Lu, C. Jiang, W. Wang, J. Song, Y. Ni, and Z. Xu, “Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4:Yb, Er (Tm)/FC transparent nanocomposite thin films,” J. Colloid Interface Sci. 376(1), 34–39 (2012).
[Crossref]

Y. Dong, J. Xu, G. Zhao, C. Yan, G. Zhou, L. Su, L. Yang, J. Qiu, L. Lin, X. Liang, R. Li, and Z. Xu, “Simultaneous three-photon-excited violet upconversion luminescence of Ce3+:Lu2Si2O7 single crystals by femtosecond laser irradiation,”, Opt. Lett. 31(14), 2175–2177 (2006).
[Crossref]

Yan, C.

Yang, L.

Yang, M. L.

Yang, T.

Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref]

Yao, L.

Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref]

Zhang, J.

J. Zhang, H. Zhao, X. Zhang, X. Wang, H. Gao, Z. Zhang, and W. Cao, “Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging,” J. Phys. Chem. C 118(5), 2820–2825 (2014).
[Crossref]

Zhang, X.

J. Zhang, H. Zhao, X. Zhang, X. Wang, H. Gao, Z. Zhang, and W. Cao, “Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging,” J. Phys. Chem. C 118(5), 2820–2825 (2014).
[Crossref]

Zhang, Z.

J. Zhang, H. Zhao, X. Zhang, X. Wang, H. Gao, Z. Zhang, and W. Cao, “Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging,” J. Phys. Chem. C 118(5), 2820–2825 (2014).
[Crossref]

Zhang, Z. G.

G. Y. Chen, H. C. Liu, G. Somesfalean, Y. Q. Sheng, H. J. Liang, Z. G. Zhang, Q. Sun, and F. P. Wang, “Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions,” Appl. Phys. Lett. 92(11), 113114 (2008).
[Crossref]

Zhao, G.

Zhao, H.

J. Zhang, H. Zhao, X. Zhang, X. Wang, H. Gao, Z. Zhang, and W. Cao, “Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging,” J. Phys. Chem. C 118(5), 2820–2825 (2014).
[Crossref]

Zhao, L. C.

L. Qiang, A. Li, F. Y. Guo, L. Sun, and L. C. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref]

Zhou, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Zhou, G.

Zhou, J.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion Luminescent Materials: Advances and Applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Acta Phys. Pol., A (1)

Ž. Antić, R. Krsmanović, V. Ðorđević, T. Dramićanin, and M. D. Dramićanin, “Optical Properties of Y2O3:Eu3+ Red Emitting Phosphor Obtained via Spray Pyrolysis,” Acta Phys. Pol., A 116(4), 622–624 (2009).
[Crossref]

Appl. Phys. Lett. (2)

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

G. Y. Chen, H. C. Liu, G. Somesfalean, Y. Q. Sheng, H. J. Liang, Z. G. Zhang, Q. Sun, and F. P. Wang, “Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions,” Appl. Phys. Lett. 92(11), 113114 (2008).
[Crossref]

Chem. Rev. (2)

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion Luminescent Materials: Advances and Applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref]

Indian J. Pure Appl. Phys. (1)

A. Nayak, K. Goswami, A. Ghosh, and R. Debnath, “Luminescence efficiency of Eu+3 in Y2O3: The effect of reduction of particle size and incorporation of trace hetero-cations in the Y2O3 lattice,” Indian J. Pure Appl. Phys. 47, 775–781 (2009).

J. Alloys Compd. (1)

D. Hreniak, W. Strek, J. Amami, Y. Guyot, G. Boulon, C. Goutaudier, and R. Pazik, “The size-effect on luminescence properties of BaTiO3:Eu3+ nanocrystallites prepared by the sol-gel method,” J. Alloys Compd. 380(1-2), 348–351 (2004).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Liu, M. Chen, T. Cao, Y. Sun, Ch. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref]

J. Appl. Phys. (1)

J. Christiansen, H. Lakhotiya, E. Eriksen, S. P. Madsen, P. Balling, and B. Julsgaard, “Analytical model for the intensity dependence of 1500 nm to 980 nm upconversion in Er3+: A new tool for material characterization,” J. Appl. Phys. 125(4), 043106 (2019).
[Crossref]

J. Colloid Interface Sci. (1)

W. Huang, C. Lu, C. Jiang, W. Wang, J. Song, Y. Ni, and Z. Xu, “Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4:Yb, Er (Tm)/FC transparent nanocomposite thin films,” J. Colloid Interface Sci. 376(1), 34–39 (2012).
[Crossref]

J. Mater. Chem. C (1)

A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C 2(3), 496–500 (2014).
[Crossref]

J. Phys. Chem. B (1)

D. K. Williams, B. Bihari, and B. M. Tissue, “Preparation and Fluorescence Spectroscopy of Bulk Monoclinic Eu3+:Y2O3 and Comparison to Eu3+:Y2O3 Nanocrystals,” J. Phys. Chem. B 102(6), 916–920 (1998).
[Crossref]

J. Phys. Chem. C (5)

J. G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+ Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+ Doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
[Crossref]

J. Zhang, H. Zhao, X. Zhang, X. Wang, H. Gao, Z. Zhang, and W. Cao, “Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging,” J. Phys. Chem. C 118(5), 2820–2825 (2014).
[Crossref]

H. S. Wang, C. K. Duan, and P. A. Tanner, “Visible Upconversion Luminescence from Y2O3: Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

R. Martin-Rodriguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+ Yb3+ and Eu3+ Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Marthy, S. C. Sharma, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Calcination Temperature on Structural, Photoluminescence, and Thermoluminescence Properties of Y2O3:Eu3+ Nanophosphor,” J. Phys. Chem. C 117(4), 1915–1924 (2013).
[Crossref]

Microporous Mesoporous Mater. (1)

M. A. F. Monteiro, H. F. Brito, M. C. F. C. M. Felinto, G. E. S. Brito, E. E. S. Teotoniod, F. M. Vichia, and R. Stefani, “Photoluminescence behavior of Eu3+ ion doped into γ-and α-alumina systems prepared by combustion, ceramic and Pechini methods,” Microporous Mesoporous Mater. 108(1-3), 237–246 (2008).
[Crossref]

Nanotechnology (1)

L. Qiang, A. Li, F. Y. Guo, L. Sun, and L. C. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref]

Nat. Nanotechnol. (1)

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Opt. Commun. (1)

G. S. Maciel, A. Biswas, and P. N. Prasad, “Infrared-to-visible Eu3+ energy upconversion due to cooperative energy transfer from an Yb3+ ion pair in a sol gel processed multicomponent silica glass,” Opt. Commun. 178(1-3), 65–69 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

M. F. Joubert, “Photon avalanche upconversion in rare earth laser materials,” Opt. Mater. 11(2-3), 181–203 (1999).
[Crossref]

Opt. Mater. Express (1)

RSC Adv. (1)

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis,” RSC Adv. 5(87), 70887–70898 (2015).
[Crossref]

Science (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A Three-Color, Solid-State, Three-Dimensional Display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Sens. Actuators, B (1)

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators, B 164(1), 96–100 (2012).
[Crossref]

Other (3)

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).

A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report LAUR 86-748, (1994).

W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Spec. Rep., Chem. Div., Argonne Nat. Lab., IL, (1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) SEM image of the Y2O3: Eu3+ (1.0 wt. %) powder prepared by combustion synthesis and heat-treated at 1100 °C for 2 h. (b), (c) and (d), respectively, EDX spectrum of the sample of Y2O3: Eu3+ doped at 0.50, 1.0 and 3.0 wt.
Fig. 2.
Fig. 2. (a) XRPD data of Y2O3: Eu3+ (1.0 wt. %) powder heat-treated at 1100 °C for 2 h. The red line represents the Rietveld fitting trace. (b) Spontaneous Raman spectrum of the heat-treated Y2O3: Eu3+ (1.0 wt. %) powder.
Fig. 3.
Fig. 3. (a) Excitation spectrum of Y2O3:Eu3+ sample measured at 300 K. (b) Stokes luminescence spectrum of Y2O3:Eu3+ powder for excitation at 260 nm.
Fig. 4.
Fig. 4. (a) Temporal behavior of the fluorescence at 611 nm (transition: 5D07F2 for excitation at 260 nm). The data points were fitted using the expression $I(t )= {I_0}\textrm{exp}({ - t/\tau } )$. (b) Energy level diagram, based on the results of Fig. 3, showing the proposed UC pathways. The solid lines represent radiative processes (excitation and luminescence) and dotted lines are nonradiative decay channels.
Fig. 5.
Fig. 5. (a) Upconversion luminescence spectra of Y2O3: Eu3+ (1.0 wt. %) powder for two excitation wavelengths: 1275 nm and 1500 nm. (b) Upconversion luminescence of the Y2O3 powder doped with Eu3+ (0.5, 1.0 and 3.0 wt. %) under femtosecond laser excitation (laser wavelength: 1500 nm; pump peak power: 0.22 GW).
Fig. 6.
Fig. 6. Log-log plot of the UC intensity versus the excitation laser power. The linear best-fit is displayed with the experimental points. Excitation wavelength: 1275 nm (a-c) with maximum peak power of 0.34 GW; 1500 nm (d-f) with maximum peak power of 0.28 GW.

Tables (1)

Tables Icon

Table 1. Parameters associated to the 5D0 energy level: luminescence lifetime (τ), radiative (AR) and nonradiative (ANR) transitions rates and luminescence quantum efficiency (ηQE). Judd-Ofelt intensity parameters: Ω2, Ω4. Excitation performed at 260 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A 0     2 , 4 A 0     1 = I 0     2 , 4 I 0     1 ( h ν 0     1 h ν 0     2 , 4 ) ,
A 0     2 , 4 = 64 π 4 ( ν 0     2 , 4 ) 3 e 2 3 h c 3 ( χ 4 π ϵ 0 ) λ = 2 , 4 , 6 Ω λ 5 D 0 | U ( λ ) | 7 F 2 , 4 2 ,