Abstract

Advances in photomedicine and optogenetics have defined the problem of efficient light delivery in vivo. Recently, hydrogels have been proposed as alternatives to glass or polymer fibers. These materials provide remarkable versatility, biocompatibility and easy fabrication protocols. Here, we investigate the usability of waveguides from poly(ethylene glycol) dimethacrylate for targeted light delivery and diffusion. Different hydrogel compositions were characterized with regard to water content, chemical stability, elasticity, refractive index and optical losses. Differences in refractive index were introduced to achieve targeted light delivery, and scattering polystyrene particles were dispersed in the hydrogel samples to diffuse the incident light. Complex constructs were produced to demonstrate the versatility of hydrogel waveguides.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spatially-targeted laser fabrication of multi-metal microstructures inside a hydrogel

Manan Machida, Takuro Niidome, Hiroaki Onoe, Alexander Heisterkamp, and Mitsuhiro Terakawa
Opt. Express 27(10) 14657-14666 (2019)

Biocompatible silk step-index optical waveguides

Matthew B. Applegate, Giovanni Perotto, David L. Kaplan, and Fiorenzo G. Omenetto
Biomed. Opt. Express 6(11) 4221-4227 (2015)

Light scattering in poly(vinyl alcohol) hydrogels reinforced with nanocellulose for ophthalmic use

Gopi Krishna Tummala, Nadja Felde, Simon Gustafsson, Adrian Bubholz, Sven Schröder, and Albert Mihranyan
Opt. Mater. Express 7(8) 2824-2837 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Bruegmann, T. van Bremen, C. C. Vogt, T. Send, B. K. Fleischmann, and P. Sasse, “Optogenetic control of contractile function in skeletal muscle,” Nat. Commun. 6(1), 7153 (2015).
    [Crossref]
  2. T. Bruegmann, P. M. Boyle, C. C. Vogt, T. V. Karathanos, H. J. Arevalo, B. K. Fleischmann, N. A. Trayanova, and P. Sasse, “Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations,” J. Clin. Invest. 126(10), 3894–3904 (2016).
    [Crossref]
  3. R. C. Wykes, D. M. Kullmann, I. Pavlov, and V. Magloire, “Optogenetic approaches to treat epilepsy,” J. Neurosci. Methods 260, 215–220 (2016).
    [Crossref]
  4. J. C. Williams and T. Denison, “From Optogenetic Technologies to Neuromodulation Therapies,” Sci. Transl. Med. 5(177), 177ps6 (2013).
    [Crossref]
  5. R. R. Allison and K. Moghissi, “Photodynamic therapy (PDT): PDT mechanisms,” Clin. Endosc. 46(1), 24–29 (2013).
    [Crossref]
  6. H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The Nuts and Bolts of Low-level Laser (Light) Therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
    [Crossref]
  7. N. McAlinden, D. Massoubre, E. Richardson, E. Gu, S. Sakata, M. D. Dawson, and K. Mathieson, “Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation,” Opt. Lett. 38(6), 992 (2013).
    [Crossref]
  8. R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials 11(8), 1283 (2018).
    [Crossref]
  9. L. Wang, C. Zhong, D. Ke, F. Ye, J. Tu, L. Wang, and Y. Lu, “Ultrasoft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations,” Adv. Opt. Mater. 6(16), 1800427 (2018).
    [Crossref]
  10. M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27(27), 4081–4086 (2015).
    [Crossref]
  11. J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, and S.-H. Yun, “Highly Stretchable, Strain Sensing Hydrogel Optical Fibers,” Adv. Mater. 28(46), 10244–10249 (2016).
    [Crossref]
  12. M. Hahn, L. Taite, J. Moon, M. Rowland, K. Ruffino, and J. West, “Photolithographic patterning of polyethylene glycol hydrogels,” Biomaterials 27(12), 2519–2524 (2006).
    [Crossref]
  13. A. L. Rutz, K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah, “A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels,” Adv. Mater. 27(9), 1607–1614 (2015).
    [Crossref]
  14. S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures,” Adv. Mater. 27(27), 4035–4040 (2015).
    [Crossref]
  15. C. W. Peak, J. J. Wilker, and G. Schmidt, “A review on tough and sticky hydrogels,” Colloid Polym. Sci. 291(9), 2031–2047 (2013).
    [Crossref]
  16. M. B. Browning, S. N. Cereceres, P. T. Luong, and E. M. Cosgriff-Hernandez, “Determination of the in vivo degradation mechanism of PEGDA hydrogels,” J. Biomed. Mater. Res., Part A 102(12), 4244–4251 (2014).
    [Crossref]
  17. M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
    [Crossref]
  18. Y. Park, J. Liang, Z. Yang, and V. C. Yang, “Controlled release of clot-dissolving tissue-type plasminogen activator from a poly(l-glutamic acid) semi-interpenetrating polymer network hydrogel,” J. Controlled Release 75(1-2), 37–44 (2001).
    [Crossref]
  19. F. Yang, C. G. Williams, D. Wang, H. Lee, P. N. Manson, and J. Elisseeff, “The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells,” Biomaterials 26(30), 5991–5998 (2005).
    [Crossref]
  20. N. R. Patel, A. K. Whitehead, J. J. Newman, and M. E. Caldorera-Moore, “Poly(ethylene glycol) Hydrogels with Tailorable Surface and Mechanical Properties for Tissue Engineering Applications,” ACS Biomater. Sci. Eng. 3(8), 1494–1498 (2017).
    [Crossref]
  21. R. Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
  22. H. Wickham, R. Francois, L. Henry, and K. Müller, “dplyr: A Grammar of Data Manipulation,” (2017).
  23. H. Wickham, Ggplot2: Elegant Graphics for Data Analysis (Springer-VerlagNew York, 2009).
  24. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
    [Crossref]
  25. Y. Mao, “Nearest Neighbor Distances Calculation with ImageJ,” https://icme.hpc.msstate.edu/mediawiki/index.php/Nearest_Neighbor_Distances_Calculation_with_ImageJ .
  26. J. A. Killion, L. M. Geever, D. M. Devine, J. E. Kennedy, and C. L. Higginbotham, “Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application,” J. Mech. Behav. Biomed. Mater. 4(7), 1219–1227 (2011).
    [Crossref]
  27. L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
    [Crossref]
  28. W. Norde, F. G. Gonzalez, and C. A. Haynes, “Protein adsorption on polystyrene latex particles,” Polym. Adv. Technol. 6(7), 518–525 (1995).
    [Crossref]
  29. C. Fournier, M. Leonard, I. Le Coq-Leonard, and E. Dellacherie, “Coating Polystyrene Particles by Adsorption of Hydrophobically Modified Dextran,” Langmuir 11(7), 2344–2347 (1995).
    [Crossref]
  30. J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Semin. Immunol. 20(2), 86–100 (2008).
    [Crossref]
  31. M. B. Browning, T. Wilems, M. Hahn, and E. Cosgriff-Hernandez, “Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size,” J. Biomed. Mater. Res., Part A 98A(2), 268–273 (2011).
    [Crossref]
  32. S. Lee, X. Tong, and F. Yang, “The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels,” Acta Biomater. 10(10), 4167–4174 (2014).
    [Crossref]
  33. V. B. Morris, S. Nimbalkar, M. Younesi, P. McClellan, and O. Akkus, “Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography,” Ann. Biomed. Eng. 45(1), 286–296 (2017).
    [Crossref]
  34. M. Khandaker, A. Orock, S. Tarantini, J. White, and O. Yasar, “Biomechanical Performances of Networked Polyethylene Glycol Diacrylate: Effect of Photoinitiator Concentration, Temperature, and Incubation Time,” Int. J. Biomater. 2016, 1–8 (2016).
    [Crossref]

2018 (2)

R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials 11(8), 1283 (2018).
[Crossref]

L. Wang, C. Zhong, D. Ke, F. Ye, J. Tu, L. Wang, and Y. Lu, “Ultrasoft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations,” Adv. Opt. Mater. 6(16), 1800427 (2018).
[Crossref]

2017 (2)

N. R. Patel, A. K. Whitehead, J. J. Newman, and M. E. Caldorera-Moore, “Poly(ethylene glycol) Hydrogels with Tailorable Surface and Mechanical Properties for Tissue Engineering Applications,” ACS Biomater. Sci. Eng. 3(8), 1494–1498 (2017).
[Crossref]

V. B. Morris, S. Nimbalkar, M. Younesi, P. McClellan, and O. Akkus, “Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography,” Ann. Biomed. Eng. 45(1), 286–296 (2017).
[Crossref]

2016 (4)

M. Khandaker, A. Orock, S. Tarantini, J. White, and O. Yasar, “Biomechanical Performances of Networked Polyethylene Glycol Diacrylate: Effect of Photoinitiator Concentration, Temperature, and Incubation Time,” Int. J. Biomater. 2016, 1–8 (2016).
[Crossref]

J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, and S.-H. Yun, “Highly Stretchable, Strain Sensing Hydrogel Optical Fibers,” Adv. Mater. 28(46), 10244–10249 (2016).
[Crossref]

T. Bruegmann, P. M. Boyle, C. C. Vogt, T. V. Karathanos, H. J. Arevalo, B. K. Fleischmann, N. A. Trayanova, and P. Sasse, “Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations,” J. Clin. Invest. 126(10), 3894–3904 (2016).
[Crossref]

R. C. Wykes, D. M. Kullmann, I. Pavlov, and V. Magloire, “Optogenetic approaches to treat epilepsy,” J. Neurosci. Methods 260, 215–220 (2016).
[Crossref]

2015 (4)

M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27(27), 4081–4086 (2015).
[Crossref]

T. Bruegmann, T. van Bremen, C. C. Vogt, T. Send, B. K. Fleischmann, and P. Sasse, “Optogenetic control of contractile function in skeletal muscle,” Nat. Commun. 6(1), 7153 (2015).
[Crossref]

A. L. Rutz, K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah, “A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels,” Adv. Mater. 27(9), 1607–1614 (2015).
[Crossref]

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures,” Adv. Mater. 27(27), 4035–4040 (2015).
[Crossref]

2014 (3)

M. B. Browning, S. N. Cereceres, P. T. Luong, and E. M. Cosgriff-Hernandez, “Determination of the in vivo degradation mechanism of PEGDA hydrogels,” J. Biomed. Mater. Res., Part A 102(12), 4244–4251 (2014).
[Crossref]

S. Lee, X. Tong, and F. Yang, “The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels,” Acta Biomater. 10(10), 4167–4174 (2014).
[Crossref]

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

2013 (5)

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

C. W. Peak, J. J. Wilker, and G. Schmidt, “A review on tough and sticky hydrogels,” Colloid Polym. Sci. 291(9), 2031–2047 (2013).
[Crossref]

N. McAlinden, D. Massoubre, E. Richardson, E. Gu, S. Sakata, M. D. Dawson, and K. Mathieson, “Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation,” Opt. Lett. 38(6), 992 (2013).
[Crossref]

J. C. Williams and T. Denison, “From Optogenetic Technologies to Neuromodulation Therapies,” Sci. Transl. Med. 5(177), 177ps6 (2013).
[Crossref]

R. R. Allison and K. Moghissi, “Photodynamic therapy (PDT): PDT mechanisms,” Clin. Endosc. 46(1), 24–29 (2013).
[Crossref]

2012 (2)

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The Nuts and Bolts of Low-level Laser (Light) Therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

2011 (2)

J. A. Killion, L. M. Geever, D. M. Devine, J. E. Kennedy, and C. L. Higginbotham, “Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application,” J. Mech. Behav. Biomed. Mater. 4(7), 1219–1227 (2011).
[Crossref]

M. B. Browning, T. Wilems, M. Hahn, and E. Cosgriff-Hernandez, “Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size,” J. Biomed. Mater. Res., Part A 98A(2), 268–273 (2011).
[Crossref]

2008 (1)

J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Semin. Immunol. 20(2), 86–100 (2008).
[Crossref]

2006 (1)

M. Hahn, L. Taite, J. Moon, M. Rowland, K. Ruffino, and J. West, “Photolithographic patterning of polyethylene glycol hydrogels,” Biomaterials 27(12), 2519–2524 (2006).
[Crossref]

2005 (1)

F. Yang, C. G. Williams, D. Wang, H. Lee, P. N. Manson, and J. Elisseeff, “The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells,” Biomaterials 26(30), 5991–5998 (2005).
[Crossref]

2001 (1)

Y. Park, J. Liang, Z. Yang, and V. C. Yang, “Controlled release of clot-dissolving tissue-type plasminogen activator from a poly(l-glutamic acid) semi-interpenetrating polymer network hydrogel,” J. Controlled Release 75(1-2), 37–44 (2001).
[Crossref]

1995 (2)

W. Norde, F. G. Gonzalez, and C. A. Haynes, “Protein adsorption on polystyrene latex particles,” Polym. Adv. Technol. 6(7), 518–525 (1995).
[Crossref]

C. Fournier, M. Leonard, I. Le Coq-Leonard, and E. Dellacherie, “Coating Polystyrene Particles by Adsorption of Hydrophobically Modified Dextran,” Langmuir 11(7), 2344–2347 (1995).
[Crossref]

Akkus, O.

V. B. Morris, S. Nimbalkar, M. Younesi, P. McClellan, and O. Akkus, “Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography,” Ann. Biomed. Eng. 45(1), 286–296 (2017).
[Crossref]

Allison, R. R.

R. R. Allison and K. Moghissi, “Photodynamic therapy (PDT): PDT mechanisms,” Clin. Endosc. 46(1), 24–29 (2013).
[Crossref]

Anderson, J. M.

J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Semin. Immunol. 20(2), 86–100 (2008).
[Crossref]

Arevalo, H. J.

T. Bruegmann, P. M. Boyle, C. C. Vogt, T. V. Karathanos, H. J. Arevalo, B. K. Fleischmann, N. A. Trayanova, and P. Sasse, “Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations,” J. Clin. Invest. 126(10), 3894–3904 (2016).
[Crossref]

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Barabaschi, G.

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

Bertassoni, L. E.

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

Boyle, P. M.

T. Bruegmann, P. M. Boyle, C. C. Vogt, T. V. Karathanos, H. J. Arevalo, B. K. Fleischmann, N. A. Trayanova, and P. Sasse, “Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations,” J. Clin. Invest. 126(10), 3894–3904 (2016).
[Crossref]

Browning, M. B.

M. B. Browning, S. N. Cereceres, P. T. Luong, and E. M. Cosgriff-Hernandez, “Determination of the in vivo degradation mechanism of PEGDA hydrogels,” J. Biomed. Mater. Res., Part A 102(12), 4244–4251 (2014).
[Crossref]

M. B. Browning, T. Wilems, M. Hahn, and E. Cosgriff-Hernandez, “Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size,” J. Biomed. Mater. Res., Part A 98A(2), 268–273 (2011).
[Crossref]

Bruegmann, T.

T. Bruegmann, P. M. Boyle, C. C. Vogt, T. V. Karathanos, H. J. Arevalo, B. K. Fleischmann, N. A. Trayanova, and P. Sasse, “Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations,” J. Clin. Invest. 126(10), 3894–3904 (2016).
[Crossref]

T. Bruegmann, T. van Bremen, C. C. Vogt, T. Send, B. K. Fleischmann, and P. Sasse, “Optogenetic control of contractile function in skeletal muscle,” Nat. Commun. 6(1), 7153 (2015).
[Crossref]

Burghardt, W. R.

A. L. Rutz, K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah, “A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels,” Adv. Mater. 27(9), 1607–1614 (2015).
[Crossref]

Caldorera-Moore, M. E.

N. R. Patel, A. K. Whitehead, J. J. Newman, and M. E. Caldorera-Moore, “Poly(ethylene glycol) Hydrogels with Tailorable Surface and Mechanical Properties for Tissue Engineering Applications,” ACS Biomater. Sci. Eng. 3(8), 1494–1498 (2017).
[Crossref]

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Carroll, J. D.

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The Nuts and Bolts of Low-level Laser (Light) Therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Cecconi, M.

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

Cereceres, S. N.

M. B. Browning, S. N. Cereceres, P. T. Luong, and E. M. Cosgriff-Hernandez, “Determination of the in vivo degradation mechanism of PEGDA hydrogels,” J. Biomed. Mater. Res., Part A 102(12), 4244–4251 (2014).
[Crossref]

Chan, H. F.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures,” Adv. Mater. 27(27), 4035–4040 (2015).
[Crossref]

Chang, D. T.

J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Semin. Immunol. 20(2), 86–100 (2008).
[Crossref]

Choi, J. W.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Choi, M.

M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27(27), 4081–4086 (2015).
[Crossref]

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Chung, H.

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The Nuts and Bolts of Low-level Laser (Light) Therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Core Team, R.

R. Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

Cosgriff-Hernandez, E.

M. B. Browning, T. Wilems, M. Hahn, and E. Cosgriff-Hernandez, “Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size,” J. Biomed. Mater. Res., Part A 98A(2), 268–273 (2011).
[Crossref]

Cosgriff-Hernandez, E. M.

M. B. Browning, S. N. Cereceres, P. T. Luong, and E. M. Cosgriff-Hernandez, “Determination of the in vivo degradation mechanism of PEGDA hydrogels,” J. Biomed. Mater. Res., Part A 102(12), 4244–4251 (2014).
[Crossref]

Cristino, A. L.

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

Dai, T.

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The Nuts and Bolts of Low-level Laser (Light) Therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Dawson, M. D.

Dellacherie, E.

C. Fournier, M. Leonard, I. Le Coq-Leonard, and E. Dellacherie, “Coating Polystyrene Particles by Adsorption of Hydrophobically Modified Dextran,” Langmuir 11(7), 2344–2347 (1995).
[Crossref]

Demarchi, D.

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

Denison, T.

J. C. Williams and T. Denison, “From Optogenetic Technologies to Neuromodulation Therapies,” Sci. Transl. Med. 5(177), 177ps6 (2013).
[Crossref]

Devine, D. M.

J. A. Killion, L. M. Geever, D. M. Devine, J. E. Kennedy, and C. L. Higginbotham, “Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application,” J. Mech. Behav. Biomed. Mater. 4(7), 1219–1227 (2011).
[Crossref]

Dokmeci, M. R.

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Elisseeff, J.

F. Yang, C. G. Williams, D. Wang, H. Lee, P. N. Manson, and J. Elisseeff, “The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells,” Biomaterials 26(30), 5991–5998 (2005).
[Crossref]

Fleischmann, B. K.

T. Bruegmann, P. M. Boyle, C. C. Vogt, T. V. Karathanos, H. J. Arevalo, B. K. Fleischmann, N. A. Trayanova, and P. Sasse, “Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations,” J. Clin. Invest. 126(10), 3894–3904 (2016).
[Crossref]

T. Bruegmann, T. van Bremen, C. C. Vogt, T. Send, B. K. Fleischmann, and P. Sasse, “Optogenetic control of contractile function in skeletal muscle,” Nat. Commun. 6(1), 7153 (2015).
[Crossref]

Fournier, C.

C. Fournier, M. Leonard, I. Le Coq-Leonard, and E. Dellacherie, “Coating Polystyrene Particles by Adsorption of Hydrophobically Modified Dextran,” Langmuir 11(7), 2344–2347 (1995).
[Crossref]

Francois, R.

H. Wickham, R. Francois, L. Henry, and K. Müller, “dplyr: A Grammar of Data Manipulation,” (2017).

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Fu, R.

R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials 11(8), 1283 (2018).
[Crossref]

Geever, L. M.

J. A. Killion, L. M. Geever, D. M. Devine, J. E. Kennedy, and C. L. Higginbotham, “Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application,” J. Mech. Behav. Biomed. Mater. 4(7), 1219–1227 (2011).
[Crossref]

Gonzalez, F. G.

W. Norde, F. G. Gonzalez, and C. A. Haynes, “Protein adsorption on polystyrene latex particles,” Polym. Adv. Technol. 6(7), 518–525 (1995).
[Crossref]

Gu, E.

Guilak, F.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures,” Adv. Mater. 27(27), 4035–4040 (2015).
[Crossref]

Guo, J.

J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, and S.-H. Yun, “Highly Stretchable, Strain Sensing Hydrogel Optical Fibers,” Adv. Mater. 28(46), 10244–10249 (2016).
[Crossref]

Hahn, M.

M. B. Browning, T. Wilems, M. Hahn, and E. Cosgriff-Hernandez, “Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size,” J. Biomed. Mater. Res., Part A 98A(2), 268–273 (2011).
[Crossref]

M. Hahn, L. Taite, J. Moon, M. Rowland, K. Ruffino, and J. West, “Photolithographic patterning of polyethylene glycol hydrogels,” Biomaterials 27(12), 2519–2524 (2006).
[Crossref]

Hahn, S. K.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Hamblin, M. R.

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The Nuts and Bolts of Low-level Laser (Light) Therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Haynes, C. A.

W. Norde, F. G. Gonzalez, and C. A. Haynes, “Protein adsorption on polystyrene latex particles,” Polym. Adv. Technol. 6(7), 518–525 (1995).
[Crossref]

Henry, L.

H. Wickham, R. Francois, L. Henry, and K. Müller, “dplyr: A Grammar of Data Manipulation,” (2017).

Higginbotham, C. L.

J. A. Killion, L. M. Geever, D. M. Devine, J. E. Kennedy, and C. L. Higginbotham, “Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application,” J. Mech. Behav. Biomed. Mater. 4(7), 1219–1227 (2011).
[Crossref]

Hjortnaes, J.

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

Hong, S.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures,” Adv. Mater. 27(27), 4035–4040 (2015).
[Crossref]

Huang, Y.-Y.

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The Nuts and Bolts of Low-level Laser (Light) Therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Humar, M.

M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27(27), 4081–4086 (2015).
[Crossref]

Hyland, K. E.

A. L. Rutz, K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah, “A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels,” Adv. Mater. 27(9), 1607–1614 (2015).
[Crossref]

Jakus, A. E.

A. L. Rutz, K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah, “A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels,” Adv. Mater. 27(9), 1607–1614 (2015).
[Crossref]

Jiang, N.

J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, and S.-H. Yun, “Highly Stretchable, Strain Sensing Hydrogel Optical Fibers,” Adv. Mater. 28(46), 10244–10249 (2016).
[Crossref]

Karathanos, T. V.

T. Bruegmann, P. M. Boyle, C. C. Vogt, T. V. Karathanos, H. J. Arevalo, B. K. Fleischmann, N. A. Trayanova, and P. Sasse, “Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations,” J. Clin. Invest. 126(10), 3894–3904 (2016).
[Crossref]

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Ke, D.

L. Wang, C. Zhong, D. Ke, F. Ye, J. Tu, L. Wang, and Y. Lu, “Ultrasoft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations,” Adv. Opt. Mater. 6(16), 1800427 (2018).
[Crossref]

Kennedy, J. E.

J. A. Killion, L. M. Geever, D. M. Devine, J. E. Kennedy, and C. L. Higginbotham, “Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application,” J. Mech. Behav. Biomed. Mater. 4(7), 1219–1227 (2011).
[Crossref]

Khademhosseini, A.

J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, and S.-H. Yun, “Highly Stretchable, Strain Sensing Hydrogel Optical Fibers,” Adv. Mater. 28(46), 10244–10249 (2016).
[Crossref]

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

Khandaker, M.

M. Khandaker, A. Orock, S. Tarantini, J. White, and O. Yasar, “Biomechanical Performances of Networked Polyethylene Glycol Diacrylate: Effect of Photoinitiator Concentration, Temperature, and Incubation Time,” Int. J. Biomater. 2016, 1–8 (2016).
[Crossref]

Killion, J. A.

J. A. Killion, L. M. Geever, D. M. Devine, J. E. Kennedy, and C. L. Higginbotham, “Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application,” J. Mech. Behav. Biomed. Mater. 4(7), 1219–1227 (2011).
[Crossref]

Kim, S.

M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27(27), 4081–4086 (2015).
[Crossref]

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Kullmann, D. M.

R. C. Wykes, D. M. Kullmann, I. Pavlov, and V. Magloire, “Optogenetic approaches to treat epilepsy,” J. Neurosci. Methods 260, 215–220 (2016).
[Crossref]

Le Coq-Leonard, I.

C. Fournier, M. Leonard, I. Le Coq-Leonard, and E. Dellacherie, “Coating Polystyrene Particles by Adsorption of Hydrophobically Modified Dextran,” Langmuir 11(7), 2344–2347 (1995).
[Crossref]

Lee, H.

F. Yang, C. G. Williams, D. Wang, H. Lee, P. N. Manson, and J. Elisseeff, “The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells,” Biomaterials 26(30), 5991–5998 (2005).
[Crossref]

Lee, S.

S. Lee, X. Tong, and F. Yang, “The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels,” Acta Biomater. 10(10), 4167–4174 (2014).
[Crossref]

Leonard, M.

C. Fournier, M. Leonard, I. Le Coq-Leonard, and E. Dellacherie, “Coating Polystyrene Particles by Adsorption of Hydrophobically Modified Dextran,” Langmuir 11(7), 2344–2347 (1995).
[Crossref]

Leong, K. W.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures,” Adv. Mater. 27(27), 4035–4040 (2015).
[Crossref]

Liang, J.

Y. Park, J. Liang, Z. Yang, and V. C. Yang, “Controlled release of clot-dissolving tissue-type plasminogen activator from a poly(l-glutamic acid) semi-interpenetrating polymer network hydrogel,” J. Controlled Release 75(1-2), 37–44 (2001).
[Crossref]

Lin, S.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures,” Adv. Mater. 27(27), 4035–4040 (2015).
[Crossref]

Liu, X.

J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, and S.-H. Yun, “Highly Stretchable, Strain Sensing Hydrogel Optical Fibers,” Adv. Mater. 28(46), 10244–10249 (2016).
[Crossref]

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Lopez, G. P.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures,” Adv. Mater. 27(27), 4035–4040 (2015).
[Crossref]

Lu, Y.

L. Wang, C. Zhong, D. Ke, F. Ye, J. Tu, L. Wang, and Y. Lu, “Ultrasoft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations,” Adv. Opt. Mater. 6(16), 1800427 (2018).
[Crossref]

Luong, P. T.

M. B. Browning, S. N. Cereceres, P. T. Luong, and E. M. Cosgriff-Hernandez, “Determination of the in vivo degradation mechanism of PEGDA hydrogels,” J. Biomed. Mater. Res., Part A 102(12), 4244–4251 (2014).
[Crossref]

Magloire, V.

R. C. Wykes, D. M. Kullmann, I. Pavlov, and V. Magloire, “Optogenetic approaches to treat epilepsy,” J. Neurosci. Methods 260, 215–220 (2016).
[Crossref]

Manoharan, V.

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

Manson, P. N.

F. Yang, C. G. Williams, D. Wang, H. Lee, P. N. Manson, and J. Elisseeff, “The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells,” Biomaterials 26(30), 5991–5998 (2005).
[Crossref]

Mao, Y.

Y. Mao, “Nearest Neighbor Distances Calculation with ImageJ,” https://icme.hpc.msstate.edu/mediawiki/index.php/Nearest_Neighbor_Distances_Calculation_with_ImageJ .

Massoubre, D.

Mathieson, K.

McAlinden, N.

McClellan, P.

V. B. Morris, S. Nimbalkar, M. Younesi, P. McClellan, and O. Akkus, “Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography,” Ann. Biomed. Eng. 45(1), 286–296 (2017).
[Crossref]

Moghissi, K.

R. R. Allison and K. Moghissi, “Photodynamic therapy (PDT): PDT mechanisms,” Clin. Endosc. 46(1), 24–29 (2013).
[Crossref]

Moon, J.

M. Hahn, L. Taite, J. Moon, M. Rowland, K. Ruffino, and J. West, “Photolithographic patterning of polyethylene glycol hydrogels,” Biomaterials 27(12), 2519–2524 (2006).
[Crossref]

Morris, V. B.

V. B. Morris, S. Nimbalkar, M. Younesi, P. McClellan, and O. Akkus, “Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography,” Ann. Biomed. Eng. 45(1), 286–296 (2017).
[Crossref]

Müller, K.

H. Wickham, R. Francois, L. Henry, and K. Müller, “dplyr: A Grammar of Data Manipulation,” (2017).

Nazempour, R.

R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials 11(8), 1283 (2018).
[Crossref]

Newman, J. J.

N. R. Patel, A. K. Whitehead, J. J. Newman, and M. E. Caldorera-Moore, “Poly(ethylene glycol) Hydrogels with Tailorable Surface and Mechanical Properties for Tissue Engineering Applications,” ACS Biomater. Sci. Eng. 3(8), 1494–1498 (2017).
[Crossref]

Nikkhah, M.

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

Nimbalkar, S.

V. B. Morris, S. Nimbalkar, M. Younesi, P. McClellan, and O. Akkus, “Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography,” Ann. Biomed. Eng. 45(1), 286–296 (2017).
[Crossref]

Nizamoglu, S.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Norde, W.

W. Norde, F. G. Gonzalez, and C. A. Haynes, “Protein adsorption on polystyrene latex particles,” Polym. Adv. Technol. 6(7), 518–525 (1995).
[Crossref]

Orock, A.

M. Khandaker, A. Orock, S. Tarantini, J. White, and O. Yasar, “Biomechanical Performances of Networked Polyethylene Glycol Diacrylate: Effect of Photoinitiator Concentration, Temperature, and Incubation Time,” Int. J. Biomater. 2016, 1–8 (2016).
[Crossref]

Park, Y.

Y. Park, J. Liang, Z. Yang, and V. C. Yang, “Controlled release of clot-dissolving tissue-type plasminogen activator from a poly(l-glutamic acid) semi-interpenetrating polymer network hydrogel,” J. Controlled Release 75(1-2), 37–44 (2001).
[Crossref]

Patel, N. R.

N. R. Patel, A. K. Whitehead, J. J. Newman, and M. E. Caldorera-Moore, “Poly(ethylene glycol) Hydrogels with Tailorable Surface and Mechanical Properties for Tissue Engineering Applications,” ACS Biomater. Sci. Eng. 3(8), 1494–1498 (2017).
[Crossref]

Pavlov, I.

R. C. Wykes, D. M. Kullmann, I. Pavlov, and V. Magloire, “Optogenetic approaches to treat epilepsy,” J. Neurosci. Methods 260, 215–220 (2016).
[Crossref]

Peak, C. W.

C. W. Peak, J. J. Wilker, and G. Schmidt, “A review on tough and sticky hydrogels,” Colloid Polym. Sci. 291(9), 2031–2047 (2013).
[Crossref]

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Richardson, E.

Rodriguez, A.

J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Semin. Immunol. 20(2), 86–100 (2008).
[Crossref]

Rowland, M.

M. Hahn, L. Taite, J. Moon, M. Rowland, K. Ruffino, and J. West, “Photolithographic patterning of polyethylene glycol hydrogels,” Biomaterials 27(12), 2519–2524 (2006).
[Crossref]

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Ruffino, K.

M. Hahn, L. Taite, J. Moon, M. Rowland, K. Ruffino, and J. West, “Photolithographic patterning of polyethylene glycol hydrogels,” Biomaterials 27(12), 2519–2524 (2006).
[Crossref]

Rutz, A. L.

A. L. Rutz, K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah, “A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels,” Adv. Mater. 27(9), 1607–1614 (2015).
[Crossref]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Sakata, S.

Sasse, P.

T. Bruegmann, P. M. Boyle, C. C. Vogt, T. V. Karathanos, H. J. Arevalo, B. K. Fleischmann, N. A. Trayanova, and P. Sasse, “Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations,” J. Clin. Invest. 126(10), 3894–3904 (2016).
[Crossref]

T. Bruegmann, T. van Bremen, C. C. Vogt, T. Send, B. K. Fleischmann, and P. Sasse, “Optogenetic control of contractile function in skeletal muscle,” Nat. Commun. 6(1), 7153 (2015).
[Crossref]

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Schmidt, G.

C. W. Peak, J. J. Wilker, and G. Schmidt, “A review on tough and sticky hydrogels,” Colloid Polym. Sci. 291(9), 2031–2047 (2013).
[Crossref]

Send, T.

T. Bruegmann, T. van Bremen, C. C. Vogt, T. Send, B. K. Fleischmann, and P. Sasse, “Optogenetic control of contractile function in skeletal muscle,” Nat. Commun. 6(1), 7153 (2015).
[Crossref]

Shah, R. N.

A. L. Rutz, K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah, “A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels,” Adv. Mater. 27(9), 1607–1614 (2015).
[Crossref]

Sharma, S. K.

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The Nuts and Bolts of Low-level Laser (Light) Therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Sheng, X.

R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials 11(8), 1283 (2018).
[Crossref]

Sycks, D.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures,” Adv. Mater. 27(27), 4035–4040 (2015).
[Crossref]

Taite, L.

M. Hahn, L. Taite, J. Moon, M. Rowland, K. Ruffino, and J. West, “Photolithographic patterning of polyethylene glycol hydrogels,” Biomaterials 27(12), 2519–2524 (2006).
[Crossref]

Tarantini, S.

M. Khandaker, A. Orock, S. Tarantini, J. White, and O. Yasar, “Biomechanical Performances of Networked Polyethylene Glycol Diacrylate: Effect of Photoinitiator Concentration, Temperature, and Incubation Time,” Int. J. Biomater. 2016, 1–8 (2016).
[Crossref]

Tinevez, J.-Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Tong, X.

S. Lee, X. Tong, and F. Yang, “The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels,” Acta Biomater. 10(10), 4167–4174 (2014).
[Crossref]

Trayanova, N. A.

T. Bruegmann, P. M. Boyle, C. C. Vogt, T. V. Karathanos, H. J. Arevalo, B. K. Fleischmann, N. A. Trayanova, and P. Sasse, “Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations,” J. Clin. Invest. 126(10), 3894–3904 (2016).
[Crossref]

Tu, J.

L. Wang, C. Zhong, D. Ke, F. Ye, J. Tu, L. Wang, and Y. Lu, “Ultrasoft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations,” Adv. Opt. Mater. 6(16), 1800427 (2018).
[Crossref]

van Bremen, T.

T. Bruegmann, T. van Bremen, C. C. Vogt, T. Send, B. K. Fleischmann, and P. Sasse, “Optogenetic control of contractile function in skeletal muscle,” Nat. Commun. 6(1), 7153 (2015).
[Crossref]

Vogt, C. C.

T. Bruegmann, P. M. Boyle, C. C. Vogt, T. V. Karathanos, H. J. Arevalo, B. K. Fleischmann, N. A. Trayanova, and P. Sasse, “Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations,” J. Clin. Invest. 126(10), 3894–3904 (2016).
[Crossref]

T. Bruegmann, T. van Bremen, C. C. Vogt, T. Send, B. K. Fleischmann, and P. Sasse, “Optogenetic control of contractile function in skeletal muscle,” Nat. Commun. 6(1), 7153 (2015).
[Crossref]

Wang, D.

F. Yang, C. G. Williams, D. Wang, H. Lee, P. N. Manson, and J. Elisseeff, “The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells,” Biomaterials 26(30), 5991–5998 (2005).
[Crossref]

Wang, L.

L. Wang, C. Zhong, D. Ke, F. Ye, J. Tu, L. Wang, and Y. Lu, “Ultrasoft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations,” Adv. Opt. Mater. 6(16), 1800427 (2018).
[Crossref]

L. Wang, C. Zhong, D. Ke, F. Ye, J. Tu, L. Wang, and Y. Lu, “Ultrasoft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations,” Adv. Opt. Mater. 6(16), 1800427 (2018).
[Crossref]

West, J.

M. Hahn, L. Taite, J. Moon, M. Rowland, K. Ruffino, and J. West, “Photolithographic patterning of polyethylene glycol hydrogels,” Biomaterials 27(12), 2519–2524 (2006).
[Crossref]

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

White, J.

M. Khandaker, A. Orock, S. Tarantini, J. White, and O. Yasar, “Biomechanical Performances of Networked Polyethylene Glycol Diacrylate: Effect of Photoinitiator Concentration, Temperature, and Incubation Time,” Int. J. Biomater. 2016, 1–8 (2016).
[Crossref]

Whitehead, A. K.

N. R. Patel, A. K. Whitehead, J. J. Newman, and M. E. Caldorera-Moore, “Poly(ethylene glycol) Hydrogels with Tailorable Surface and Mechanical Properties for Tissue Engineering Applications,” ACS Biomater. Sci. Eng. 3(8), 1494–1498 (2017).
[Crossref]

Wickham, H.

H. Wickham, R. Francois, L. Henry, and K. Müller, “dplyr: A Grammar of Data Manipulation,” (2017).

H. Wickham, Ggplot2: Elegant Graphics for Data Analysis (Springer-VerlagNew York, 2009).

Wilems, T.

M. B. Browning, T. Wilems, M. Hahn, and E. Cosgriff-Hernandez, “Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size,” J. Biomed. Mater. Res., Part A 98A(2), 268–273 (2011).
[Crossref]

Wilker, J. J.

C. W. Peak, J. J. Wilker, and G. Schmidt, “A review on tough and sticky hydrogels,” Colloid Polym. Sci. 291(9), 2031–2047 (2013).
[Crossref]

Williams, C. G.

F. Yang, C. G. Williams, D. Wang, H. Lee, P. N. Manson, and J. Elisseeff, “The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells,” Biomaterials 26(30), 5991–5998 (2005).
[Crossref]

Williams, J. C.

J. C. Williams and T. Denison, “From Optogenetic Technologies to Neuromodulation Therapies,” Sci. Transl. Med. 5(177), 177ps6 (2013).
[Crossref]

Wykes, R. C.

R. C. Wykes, D. M. Kullmann, I. Pavlov, and V. Magloire, “Optogenetic approaches to treat epilepsy,” J. Neurosci. Methods 260, 215–220 (2016).
[Crossref]

Yang, C.

J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, and S.-H. Yun, “Highly Stretchable, Strain Sensing Hydrogel Optical Fibers,” Adv. Mater. 28(46), 10244–10249 (2016).
[Crossref]

Yang, F.

S. Lee, X. Tong, and F. Yang, “The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels,” Acta Biomater. 10(10), 4167–4174 (2014).
[Crossref]

F. Yang, C. G. Williams, D. Wang, H. Lee, P. N. Manson, and J. Elisseeff, “The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells,” Biomaterials 26(30), 5991–5998 (2005).
[Crossref]

Yang, V. C.

Y. Park, J. Liang, Z. Yang, and V. C. Yang, “Controlled release of clot-dissolving tissue-type plasminogen activator from a poly(l-glutamic acid) semi-interpenetrating polymer network hydrogel,” J. Controlled Release 75(1-2), 37–44 (2001).
[Crossref]

Yang, Y.

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

Yang, Z.

Y. Park, J. Liang, Z. Yang, and V. C. Yang, “Controlled release of clot-dissolving tissue-type plasminogen activator from a poly(l-glutamic acid) semi-interpenetrating polymer network hydrogel,” J. Controlled Release 75(1-2), 37–44 (2001).
[Crossref]

Yasar, O.

M. Khandaker, A. Orock, S. Tarantini, J. White, and O. Yasar, “Biomechanical Performances of Networked Polyethylene Glycol Diacrylate: Effect of Photoinitiator Concentration, Temperature, and Incubation Time,” Int. J. Biomater. 2016, 1–8 (2016).
[Crossref]

Ye, F.

L. Wang, C. Zhong, D. Ke, F. Ye, J. Tu, L. Wang, and Y. Lu, “Ultrasoft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations,” Adv. Opt. Mater. 6(16), 1800427 (2018).
[Crossref]

Yetisen, A. K.

J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, and S.-H. Yun, “Highly Stretchable, Strain Sensing Hydrogel Optical Fibers,” Adv. Mater. 28(46), 10244–10249 (2016).
[Crossref]

Younesi, M.

V. B. Morris, S. Nimbalkar, M. Younesi, P. McClellan, and O. Akkus, “Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography,” Ann. Biomed. Eng. 45(1), 286–296 (2017).
[Crossref]

Yuk, H.

J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, and S.-H. Yun, “Highly Stretchable, Strain Sensing Hydrogel Optical Fibers,” Adv. Mater. 28(46), 10244–10249 (2016).
[Crossref]

Yun, S. H.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Yun, S.-H.

J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, and S.-H. Yun, “Highly Stretchable, Strain Sensing Hydrogel Optical Fibers,” Adv. Mater. 28(46), 10244–10249 (2016).
[Crossref]

M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27(27), 4081–4086 (2015).
[Crossref]

Zhang, Q.

R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials 11(8), 1283 (2018).
[Crossref]

Zhao, X.

J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, and S.-H. Yun, “Highly Stretchable, Strain Sensing Hydrogel Optical Fibers,” Adv. Mater. 28(46), 10244–10249 (2016).
[Crossref]

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures,” Adv. Mater. 27(27), 4035–4040 (2015).
[Crossref]

Zhong, C.

L. Wang, C. Zhong, D. Ke, F. Ye, J. Tu, L. Wang, and Y. Lu, “Ultrasoft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations,” Adv. Opt. Mater. 6(16), 1800427 (2018).
[Crossref]

ACS Biomater. Sci. Eng. (1)

N. R. Patel, A. K. Whitehead, J. J. Newman, and M. E. Caldorera-Moore, “Poly(ethylene glycol) Hydrogels with Tailorable Surface and Mechanical Properties for Tissue Engineering Applications,” ACS Biomater. Sci. Eng. 3(8), 1494–1498 (2017).
[Crossref]

Acta Biomater. (1)

S. Lee, X. Tong, and F. Yang, “The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels,” Acta Biomater. 10(10), 4167–4174 (2014).
[Crossref]

Adv. Mater. (4)

A. L. Rutz, K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah, “A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels,” Adv. Mater. 27(9), 1607–1614 (2015).
[Crossref]

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures,” Adv. Mater. 27(27), 4035–4040 (2015).
[Crossref]

M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27(27), 4081–4086 (2015).
[Crossref]

J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, and S.-H. Yun, “Highly Stretchable, Strain Sensing Hydrogel Optical Fibers,” Adv. Mater. 28(46), 10244–10249 (2016).
[Crossref]

Adv. Opt. Mater. (1)

L. Wang, C. Zhong, D. Ke, F. Ye, J. Tu, L. Wang, and Y. Lu, “Ultrasoft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations,” Adv. Opt. Mater. 6(16), 1800427 (2018).
[Crossref]

Ann. Biomed. Eng. (2)

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The Nuts and Bolts of Low-level Laser (Light) Therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

V. B. Morris, S. Nimbalkar, M. Younesi, P. McClellan, and O. Akkus, “Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography,” Ann. Biomed. Eng. 45(1), 286–296 (2017).
[Crossref]

Biomaterials (2)

M. Hahn, L. Taite, J. Moon, M. Rowland, K. Ruffino, and J. West, “Photolithographic patterning of polyethylene glycol hydrogels,” Biomaterials 27(12), 2519–2524 (2006).
[Crossref]

F. Yang, C. G. Williams, D. Wang, H. Lee, P. N. Manson, and J. Elisseeff, “The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells,” Biomaterials 26(30), 5991–5998 (2005).
[Crossref]

Clin. Endosc. (1)

R. R. Allison and K. Moghissi, “Photodynamic therapy (PDT): PDT mechanisms,” Clin. Endosc. 46(1), 24–29 (2013).
[Crossref]

Colloid Polym. Sci. (1)

C. W. Peak, J. J. Wilker, and G. Schmidt, “A review on tough and sticky hydrogels,” Colloid Polym. Sci. 291(9), 2031–2047 (2013).
[Crossref]

Int. J. Biomater. (1)

M. Khandaker, A. Orock, S. Tarantini, J. White, and O. Yasar, “Biomechanical Performances of Networked Polyethylene Glycol Diacrylate: Effect of Photoinitiator Concentration, Temperature, and Incubation Time,” Int. J. Biomater. 2016, 1–8 (2016).
[Crossref]

J. Biomed. Mater. Res., Part A (2)

M. B. Browning, T. Wilems, M. Hahn, and E. Cosgriff-Hernandez, “Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size,” J. Biomed. Mater. Res., Part A 98A(2), 268–273 (2011).
[Crossref]

M. B. Browning, S. N. Cereceres, P. T. Luong, and E. M. Cosgriff-Hernandez, “Determination of the in vivo degradation mechanism of PEGDA hydrogels,” J. Biomed. Mater. Res., Part A 102(12), 4244–4251 (2014).
[Crossref]

J. Clin. Invest. (1)

T. Bruegmann, P. M. Boyle, C. C. Vogt, T. V. Karathanos, H. J. Arevalo, B. K. Fleischmann, N. A. Trayanova, and P. Sasse, “Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations,” J. Clin. Invest. 126(10), 3894–3904 (2016).
[Crossref]

J. Controlled Release (1)

Y. Park, J. Liang, Z. Yang, and V. C. Yang, “Controlled release of clot-dissolving tissue-type plasminogen activator from a poly(l-glutamic acid) semi-interpenetrating polymer network hydrogel,” J. Controlled Release 75(1-2), 37–44 (2001).
[Crossref]

J. Mech. Behav. Biomed. Mater. (1)

J. A. Killion, L. M. Geever, D. M. Devine, J. E. Kennedy, and C. L. Higginbotham, “Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application,” J. Mech. Behav. Biomed. Mater. 4(7), 1219–1227 (2011).
[Crossref]

J. Neurosci. Methods (1)

R. C. Wykes, D. M. Kullmann, I. Pavlov, and V. Magloire, “Optogenetic approaches to treat epilepsy,” J. Neurosci. Methods 260, 215–220 (2016).
[Crossref]

Lab Chip (1)

L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, “Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs,” Lab Chip 14(13), 2202–2211 (2014).
[Crossref]

Langmuir (1)

C. Fournier, M. Leonard, I. Le Coq-Leonard, and E. Dellacherie, “Coating Polystyrene Particles by Adsorption of Hydrophobically Modified Dextran,” Langmuir 11(7), 2344–2347 (1995).
[Crossref]

Materials (1)

R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials 11(8), 1283 (2018).
[Crossref]

Nat. Commun. (1)

T. Bruegmann, T. van Bremen, C. C. Vogt, T. Send, B. K. Fleischmann, and P. Sasse, “Optogenetic control of contractile function in skeletal muscle,” Nat. Commun. 6(1), 7153 (2015).
[Crossref]

Nat. Methods (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Nat. Photonics (1)

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Opt. Lett. (1)

Polym. Adv. Technol. (1)

W. Norde, F. G. Gonzalez, and C. A. Haynes, “Protein adsorption on polystyrene latex particles,” Polym. Adv. Technol. 6(7), 518–525 (1995).
[Crossref]

Sci. Transl. Med. (1)

J. C. Williams and T. Denison, “From Optogenetic Technologies to Neuromodulation Therapies,” Sci. Transl. Med. 5(177), 177ps6 (2013).
[Crossref]

Semin. Immunol. (1)

J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Semin. Immunol. 20(2), 86–100 (2008).
[Crossref]

Other (4)

Y. Mao, “Nearest Neighbor Distances Calculation with ImageJ,” https://icme.hpc.msstate.edu/mediawiki/index.php/Nearest_Neighbor_Distances_Calculation_with_ImageJ .

R. Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

H. Wickham, R. Francois, L. Henry, and K. Müller, “dplyr: A Grammar of Data Manipulation,” (2017).

H. Wickham, Ggplot2: Elegant Graphics for Data Analysis (Springer-VerlagNew York, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Mass swelling ratio of PEGD(M)A hydrogels of different compositions stored under various conditions. a: Effect of chain length and concentration. b: Effect of PS-particles with different diameters embedded in the hydrogels (PEGDMA 8000 10%). c: PEGDMA 8000 10% stored under different pH-conditions for 1 or 14 days. Data points show mean values ± standard deviation of three samples each (five samples for pH 4, 14 days).
Fig. 2.
Fig. 2. Refractive index measurements of PEGD(M)A hydrogels of different compositions. Each data point represents the average of three measurements ± standard deviation for one sample. Three samples were measured for each composition.
Fig. 3.
Fig. 3. Transmission and reflection measured for different hydrogel compositions. Losses and attenuation coefficients were calculated from the measurement data. a-c: PEGDA 700; d-f: PEGDMA 8000; g-i: PEGDMA 20000. At 860 nm, a detector change occurred in the spectrophotometer, resulting in small measurement artifacts. Negative loss values of PEGDA 700, 25% (c) should be regarded as statistical noise. Each data point represents the average of three samples ± standard deviation.
Fig. 4.
Fig. 4. a-c: Transmission, reflection and loss measurements of PEGDMA 8000 10% containing PS-particles, each curve normalized to its maximum value. Normalization inflated the standard deviations as well as the measurement artifacts at 860 nm (b, c). These artifacts originate from a detector change in the spectrophotometer. The curves can only be compared qualitatively. d-f: Transmission, reflection and losses for PEGDMA 8000 10% saturated with TiO2-particles. Each data point represents the average of three samples ± standard deviation.
Fig. 5.
Fig. 5. Confocal images of PS-particles in PEGDMA-hydrogels at different time points after sample production. a-c: PS-particles with 1 µm diameter. d-h: PS-particles with 10 µm diameter. Occasionally, 10 µm particles formed clusters in the bottom layer of a hydrogel (g-h, arrows). Scale bar 150 µm for all images.
Fig. 6.
Fig. 6. Pseudocolor images of light distribution within PEGDMA 8000 10%, imaged from above. The color scale is shown in a and is the same for all pseudocolor images in this work. Numbers indicate the corresponding gray value. The glass fiber was inserted from the left and is indicated as a grey line. Dashed white lines mark the dimensions of the samples. a: Schema of sample setup. Light output from the surface was imaged perpendicularly from above. b,c: particle-free gel. The path of light distribution from the fiber ending (arrowheads) is clearly visible at an exposure time of 5 ms (c), but not 1 ms (b). d-l: Particle diameter and concentration are given in the images. The arrowhead in j marks light exiting the sample after being scattered in forward direction from the fiber tip. All images were taken with an exposure time of 0.05 ms. Samples in b,c are 10 × 10 mm, all others are 6 × 8 mm.
Fig. 7.
Fig. 7. Pseudocolor images and photographs of PEGDMA 8000 10% containing 2 mg/mL of 1 µm PS-particles (a-f) or no particles (g, h). Dashed white lines mark the sample borders, and the grey line (a) indicates the position of the fiber. a, b: The same fiber as in Fig. 6 was used for illumination. c, d: A polymer fiber with a roughened surface was used that radiated light from its final 4 cm segment. e-g: A bundle of three structured fibers was inserted into one sample. Samples in a-d are 10 × 20 mm (scale bars 3 mm), samples in e-h are 10 × 10 mm. Exposure time (pseudocolor images) was 0.1 ms.
Fig. 8.
Fig. 8. Pseudocolor images and photographs of PEGDMA 8000 10% containing high concentrations of TiO2 in the bottom layer. Grey lines indicate positioning of the fiber, and white dashed lines mark the hydrogel borders. a: Schema for sample setup in b,c. The TiO2-layer is represented in blue. b: particle-free hydrogel with TiO2-containing bottom layer, upper surface. c: Sample containing 1 mg/mL of 0.625 µm PS-particles, upper surface. d: Schema for sample setup in e,f. e,f: The same samples as in b,c, from below. Light exiting to the right is visible in the particle-free sample in e. g-i: particle-free samples with (h,i) and without (g) a reflective TiO2-layer. j-l: Hydrogels with 1 mg/mL 0.625 PS-particles with (k,l) and without (j) a TiO2-layer. m: Schema for sample in n,o. n,o: Sample from two hydrogel wedges, the bottom wedge containing TiO2-particles. The arrowheads mark the fiber ending. Light reflected from the sloped TiO2-layer is visible from above. All samples are 6 × 8 mm. Pseudocolor images were recorded with exposure times of 0.05 ms (c,f), 1 ms (b,e) or 0.1 ms (n).
Fig. 9.
Fig. 9. a: Schema for compound samples in b-j, consisting of PEGDMA 8000 (10%) blocks containing 20 mg/mL of 10 µm PS-particles with a short cylindrical gel inside. Grey lines mark the fiber positions, and white dashed lines indicate the sample edges. b-e: cylinders from PEGDA 700 50%, without (b,c) or with (d,e) 20 mg/mL 10 µm PS-particles. f-j: The same samples with the cylindrical gel made from PEGDMA 8000 10%. The sample in f-h contains no particles in the inner cylinder. The arrowhead in f marks the fiber ending within the hydrogel cylinder. Scattering starts where the light enters the gel block containing PS-particles. Scale bar for f and pseudocolor images: 5 mm. All pseudocolor images where captured with an exposure time of 0.1 ms, the image in f was taken with an exposure time of 1 ms.
Fig. 10.
Fig. 10. Pseudocolor images and photographs of Y-shaped PEGDA 700 50% (particle-free) inside of PEGDMA 8000 10% containing 0.5 mg/mL of 0.625 µm PS-particles (a,b,d,e) or no particles (c,f). Illumination occurred from the left. Dashed white lines indicate the sample borders. a,d: Light coupled into the construct at 90° travelled straight into the PEGDMA-block. Scattered light was refracted back into the block by the branches of PEGDA 700. b,e: The fiber was tilted towards one of the branches. c,f: The same setup as in b,e with particle-free PEGDMA. Pseudocolor images were captured with an exposure time of 5 ms. Scale bar (d-f) 3 mm. g: PEGDMA 20000 20% block containing a longer, curved cylinder from PEGDA 700 20%, indicated by the dashed grey line. At the bend, light leaves the cylinder and propagates into the gel block (arrow). Bright spots at the top mark the exit site of the light travelling within the cylinder. Scale bar 10 mm.
Fig. 11.
Fig. 11. Pseudocolor images and photographs of light coupled into PEGDMA 8000 (10%) cylinders containing no particles (a,b), evenly distributed 1 µm PS-particles (1 mg/mL; c,d) or ascending concentrations of 1 µm PS-particles (0.25/0.5/1 mg/mL; e,f). The fiber was inserted from the left. Pseudocolor images were captured with an exposure time of 1 ms. Scale bar (a,c,e) 3 mm. Samples in a,b were shorter (approx. 1 cm) than the others (approx. 3 cm).

Tables (2)

Tables Icon

Table 1. Hydrogel compositions measured with spectrophotometer

Tables Icon

Table 2. Mean distances between neighboring particles in PEGDMA 8000 10% after 1 and 28 days of incubation in water.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q m = w s w d w d
loss = 100 % transmission ( % ) reflection ( % )
α = ( 10 log 10 P ( 0 ) P ( z ) ) / z