Abstract

Titanium nitride is widely used in plasmonic applications, due to its robustness and optical properties which resemble those of gold. Despite this interest, the nonlinear properties have only recently begun to be investigated. In this work, beam deflection and non-degenerate femtosecond pump-probe spectroscopy (800 nm pump and 650 nm probe) were used to measure the real and imaginary transient nonlinear response of 30-nm-thick TiN films on sapphire and fused silica in the metallic region governed by Fermi-smearing nonlinearities. In contrast to other metals, it is found that TiN exhibits non-instantaneous positive refraction and reverse saturable absorption whose relaxation is dominated by slow thermal diffusion into the substrate lasting several hundred picoseconds. Ultrafast contributions arising from hot-electron excitations are found to be a small part of the overall response, only appearing significant in the TiN on fused silica at irradiance levels above 100 GW-cm-2. The modeling and origin of this response is discussed, and TiN is found to be adept at achieving ultrafast (below 1 ps) lattice heating which, combined with the robustness and low-cost of the material may prove useful in various thermo-optical applications such as local heating, heat-assisted processes, and nanoscale heat transfer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effective third-order nonlinearities in metallic refractory titanium nitride thin films

Nathaniel Kinsey, Akbar Ali Syed, Devon Courtwright, Clayton DeVault, Carl E. Bonner, Vladimir I. Gavrilenko, Vladimir M. Shalaev, David J. Hagan, Eric W. Van Stryland, and Alexandra Boltasseva
Opt. Mater. Express 5(11) 2395-2403 (2015)

Temperature stability of thin film refractory plasmonic materials

Matthew P. Wells, Ryan Bower, Rebecca Kilmurray, Bin Zou, Andrei P. Mihai, Gomathi Gobalakrichenane, Neil McN. Alford, Rupert F. M. Oulton, Lesley F. Cohen, Stefan A. Maier, Anatoly V. Zayats, and Peter K. Petrov
Opt. Express 26(12) 15726-15744 (2018)

Optical properties of refractory metal based thin films

Archan Banerjee, Robert M. Heath, Dmitry Morozov, Dilini Hemakumara, Umberto Nasti, Iain Thayne, and Robert H. Hadfield
Opt. Mater. Express 8(8) 2072-2088 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).
  2. R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, 2003).
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. A. A. Maradudin, J. R. Sambles, and W. Barnes, Modern Plasmonics (Elsevier, 2014).
  5. M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
    [Crossref]
  6. M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear Plasmonic Sensing,” Nano Lett. 16(5), 3155–3159 (2016).
    [Crossref]
  7. K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref]
  8. S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
    [Crossref]
  9. J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
    [Crossref]
  10. D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
    [Crossref]
  11. C. T. DeVault, V. A. Zenin, A. Pors, K. Chaudhuri, J. Kim, A. Boltasseva, V. M. Shalaev, and S. I. Bozhevolnyi, “Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates,” Optica 5(12), 1557 (2018).
    [Crossref]
  12. S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
    [Crossref]
  13. S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting,” J. Phys. Chem. B 109(8), 3104–3111 (2005).
    [Crossref]
  14. W. Li, U. Guler, N. Kinsey, G. V. V. Naik, A. Boltasseva, J. Guan, V. M. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref]
  15. U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
    [Crossref]
  16. M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
    [Crossref]
  17. L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
    [Crossref]
  18. M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  19. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
    [Crossref]
  20. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
    [Crossref]
  21. S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun, “Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review,” RSC Adv. 5(19), 14610–14630 (2015).
    [Crossref]
  22. J. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8(9), 9035–9043 (2014).
    [Crossref]
  23. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  24. H. M. L. Robert, F. Kundrat, E. Bermúdez-Ureña, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles,” ACS Omega 1(1), 2–8 (2016).
    [Crossref]
  25. A. A. Golubev, B. N. Khlebtsov, R. D. Rodriguez, Y. Chen, and D. R. T. Zahn, “Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol,” J. Phys. Chem. C 122(10), 5657–5663 (2018).
    [Crossref]
  26. S. Ishii, S. L. Shinde, W. Jevasuwan, N. Fukata, and T. Nagao, “Hot Electron Excitation from Titanium Nitride Using Visible Light,” ACS Photonics 3(9), 1552–1557 (2016).
    [Crossref]
  27. H. Xia, X. Wen, Y. Feng, R. Patterson, S. Chung, N. Gupta, S. Shrestha, and G. Conibeer, “Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy,” Sol. Energy Mater. Sol. Cells 150, 51–56 (2016).
    [Crossref]
  28. U. Guler, J. C. Ndukaife, G. V Naik, A. G. A. Nnanna, A. V Kildishev, V. M. Shalaev, and A. Boltasseva, “Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles,” (2013).
  29. R. W. Boyd, Z. Shi, and I. De Leon, “The third-order nonlinear susceptibility of gold,” Opt. Commun. 326, 74–79 (2014).
    [Crossref]
  30. N. Bloembergen, W. K. Burns, and M. Matsuoka, “Reflected third harmonic generated by picosecond laser pulses,” Opt. Commun. 1(1), 1–2 (1969).
    [Crossref]
  31. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-InfraredSpectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
    [Crossref]
  32. N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
    [Crossref]
  33. B. Doiron, Y. Li, A. P. Mihai, L. F. Cohen, P. K. Petrov, N. M. Alford, R. F. Oulton, and S. A. Maier, “Comparison of the ultrafast hot electron dynamics of titanium nitride and gold for plasmonic applications,” in Proc. SPIE, T. Tanaka and D. P. Tsai, eds. (SPIE, 2017), p. 3.
  34. B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).
  35. N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
    [Crossref]
  36. D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
    [Crossref]
  37. M. R. Ferdinandus, H. Hu, M. Reichert, D. J. Hagan, and E. W. Van Stryland, “Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction,” Opt. Lett. 38(18), 3518–3521 (2013).
    [Crossref]
  38. M. R. Ferdinandus, J. M. Reed, K. L. Averett, F. K. Hopkins, and A. Urbas, “Analysis of beam deflection measurements in the presence of linear absorption,” Opt. Mater. Express 7(5), 1598 (2017).
    [Crossref]
  39. E. Xenogiannopoulou and P. Aloukos, “Third-order nonlinear optical properties of thin sputtered gold films,” Opt. Commun. 275(1), 217–222 (2007).
    [Crossref]
  40. D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film,” J. Appl. Phys. 86(11), 6200–6205 (1999).
    [Crossref]
  41. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Kronig relations in nonlinear optics,” Opt. Quantum Electron. 24(1), 1–30 (1992).
    [Crossref]
  42. M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
    [Crossref]
  43. M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitride system Ti1-x ZrxN for plasmonic applications,” Opt. Mater. Express 6(1), 29 (2016).
    [Crossref]
  44. P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey, and A. N. Smith, “Femtosecond pump-probe nondestructive examination of materials (invited),” Rev. Sci. Instrum. 74(1), 400–406 (2003).
    [Crossref]
  45. C.-K. Sun, F. Vallée, S. Keller, J. E. Bowers, and S. P. DenBaars, “Femtosecond studies of carrier dynamics in InGaN,” Appl. Phys. Lett. 70(15), 2004–2006 (1997).
    [Crossref]
  46. C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
    [Crossref]
  47. H. Elsayed-Ali, T. Norris, M. Pessot, and G. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
    [Crossref]
  48. J. Hohlfeld, S. S. Wellerschoof, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
    [Crossref]
  49. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” JETP 39, 375 (1974).
  50. Y. Zhang, D. Y. Tzou, and J. K. Chen, “Micro- and Nanoscale Heat Transfer in Femtosecond Laser Processing of Metals,” in High-Power and Femtosecond Lasers: Properties, Materials and Applications, P. H. Barret and M. Palmerm, eds. (Nova Science Publishers, 2009), pp. 159–206.
  51. P. G. Klemens and R. K. Williams, “Thermal conductivity of metals and alloys,” Int. Mater. Rev. 31(1), 197–215 (1986).
    [Crossref]
  52. S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
    [Crossref]
  53. P. B. Allen, “Theory of thermal relaxation of electrons in metals,” Phys. Rev. Lett. 59(13), 1460–1463 (1987).
    [Crossref]
  54. L. Guo and X. Xu, “Ultrafast Spectroscopy of Electron-Phonon Coupling in Gold,” J. Heat Transfer 136(12), 122401 (2014).
    [Crossref]
  55. R. M. Costescu, M. A. Wall, and D. G. Cahill, “Thermal conductance of epitaxial interfaces,” Phys. Rev. B 67(5), 054302 (2003).
    [Crossref]
  56. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials 8(6), 3128–3154 (2015).
    [Crossref]
  57. M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1(6), 436 (2014).
    [Crossref]
  58. P. Roedhammer, W. Weber, E. Gmelin, and K. H. Rieder, “Low temperature specific heat and phonon anomalies in transition metal compounds,” 581, (1976).
  59. V. A. Lovchinov, H. Mädge, and N. A. Christensen, “Low Temperature Specific Heat of TiNx,” Phys. Scr. 25(5), 649–650 (1982).
    [Crossref]
  60. B. Altintas, “On the high pressure superconductivity of transition metal nitride: TiN,” Phys. C Supercond. 487, 37–41 (2013).
    [Crossref]
  61. S. K. Gupta, S. D. Gupta, H. R. Soni, V. Mankad, and P. K. Jha, “First-principles studies of the superconductivity and vibrational properties of transition-metal nitrides TMN (TM = Ti, V, and Cr),” Mater. Chem. Phys. 143(2), 503–513 (2014).
    [Crossref]
  62. E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, and A. I. Lichtenstein, “Phonon related properties of transition metals, their carbides, and nitrides: A first- principles study,” J. Appl. Phys. 101(12), 123519 (2007).
    [Crossref]
  63. W. Spengler, R. Kaiser, A. N. Christensen, and G. Muller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
    [Crossref]
  64. H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
    [Crossref]
  65. J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook (CRC Press, 2001).
  66. R. Lide, CRC Handbook of Chemistry and Physics, 86th ed. (CRC Press, 2005).
  67. B. F. Naylor, “High-temperature heat contents of Titanium Carbide and Titanium Nitride,” J. Am. Chem. Soc. 68(3), 370–371 (1946).
    [Crossref]
  68. P. Howard, “Partial Differential Equations in MATLAB 7 . 0 PDE in One Space Dimension,” 1, 1–23 (2005).
  69. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  70. J. Shackelford, Y.-H. Han, S. Kim, and S.-H. Kwon, Materials Science and Engineering Handbook (CRC Press, 2015).

2018 (3)

A. A. Golubev, B. N. Khlebtsov, R. D. Rodriguez, Y. Chen, and D. R. T. Zahn, “Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol,” J. Phys. Chem. C 122(10), 5657–5663 (2018).
[Crossref]

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

C. T. DeVault, V. A. Zenin, A. Pors, K. Chaudhuri, J. Kim, A. Boltasseva, V. M. Shalaev, and S. I. Bozhevolnyi, “Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates,” Optica 5(12), 1557 (2018).
[Crossref]

2017 (3)

M. R. Ferdinandus, J. M. Reed, K. L. Averett, F. K. Hopkins, and A. Urbas, “Analysis of beam deflection measurements in the presence of linear absorption,” Opt. Mater. Express 7(5), 1598 (2017).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

2016 (9)

M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitride system Ti1-x ZrxN for plasmonic applications,” Opt. Mater. Express 6(1), 29 (2016).
[Crossref]

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear Plasmonic Sensing,” Nano Lett. 16(5), 3155–3159 (2016).
[Crossref]

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

S. Ishii, S. L. Shinde, W. Jevasuwan, N. Fukata, and T. Nagao, “Hot Electron Excitation from Titanium Nitride Using Visible Light,” ACS Photonics 3(9), 1552–1557 (2016).
[Crossref]

H. Xia, X. Wen, Y. Feng, R. Patterson, S. Chung, N. Gupta, S. Shrestha, and G. Conibeer, “Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy,” Sol. Energy Mater. Sol. Cells 150, 51–56 (2016).
[Crossref]

H. M. L. Robert, F. Kundrat, E. Bermúdez-Ureña, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
[Crossref]

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

2015 (4)

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-InfraredSpectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun, “Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review,” RSC Adv. 5(19), 14610–14630 (2015).
[Crossref]

N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
[Crossref]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials 8(6), 3128–3154 (2015).
[Crossref]

2014 (9)

L. Guo and X. Xu, “Ultrafast Spectroscopy of Electron-Phonon Coupling in Gold,” J. Heat Transfer 136(12), 122401 (2014).
[Crossref]

S. K. Gupta, S. D. Gupta, H. R. Soni, V. Mankad, and P. K. Jha, “First-principles studies of the superconductivity and vibrational properties of transition-metal nitrides TMN (TM = Ti, V, and Cr),” Mater. Chem. Phys. 143(2), 503–513 (2014).
[Crossref]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1(6), 436 (2014).
[Crossref]

J. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8(9), 9035–9043 (2014).
[Crossref]

R. W. Boyd, Z. Shi, and I. De Leon, “The third-order nonlinear susceptibility of gold,” Opt. Commun. 326, 74–79 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. V. Naik, A. Boltasseva, J. Guan, V. M. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref]

2013 (3)

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

M. R. Ferdinandus, H. Hu, M. Reichert, D. J. Hagan, and E. W. Van Stryland, “Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction,” Opt. Lett. 38(18), 3518–3521 (2013).
[Crossref]

B. Altintas, “On the high pressure superconductivity of transition metal nitride: TiN,” Phys. C Supercond. 487, 37–41 (2013).
[Crossref]

2012 (1)

M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

2011 (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

2008 (2)

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref]

2007 (2)

E. Xenogiannopoulou and P. Aloukos, “Third-order nonlinear optical properties of thin sputtered gold films,” Opt. Commun. 275(1), 217–222 (2007).
[Crossref]

E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, and A. I. Lichtenstein, “Phonon related properties of transition metals, their carbides, and nitrides: A first- principles study,” J. Appl. Phys. 101(12), 123519 (2007).
[Crossref]

2005 (1)

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting,” J. Phys. Chem. B 109(8), 3104–3111 (2005).
[Crossref]

2003 (2)

P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey, and A. N. Smith, “Femtosecond pump-probe nondestructive examination of materials (invited),” Rev. Sci. Instrum. 74(1), 400–406 (2003).
[Crossref]

R. M. Costescu, M. A. Wall, and D. G. Cahill, “Thermal conductance of epitaxial interfaces,” Phys. Rev. B 67(5), 054302 (2003).
[Crossref]

2000 (2)

J. Hohlfeld, S. S. Wellerschoof, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
[Crossref]

1999 (1)

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film,” J. Appl. Phys. 86(11), 6200–6205 (1999).
[Crossref]

1997 (1)

C.-K. Sun, F. Vallée, S. Keller, J. E. Bowers, and S. P. DenBaars, “Femtosecond studies of carrier dynamics in InGaN,” Appl. Phys. Lett. 70(15), 2004–2006 (1997).
[Crossref]

1994 (1)

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

1992 (1)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Kronig relations in nonlinear optics,” Opt. Quantum Electron. 24(1), 1–30 (1992).
[Crossref]

1990 (1)

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[Crossref]

1987 (2)

P. B. Allen, “Theory of thermal relaxation of electrons in metals,” Phys. Rev. Lett. 59(13), 1460–1463 (1987).
[Crossref]

H. Elsayed-Ali, T. Norris, M. Pessot, and G. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
[Crossref]

1986 (1)

P. G. Klemens and R. K. Williams, “Thermal conductivity of metals and alloys,” Int. Mater. Rev. 31(1), 197–215 (1986).
[Crossref]

1982 (1)

V. A. Lovchinov, H. Mädge, and N. A. Christensen, “Low Temperature Specific Heat of TiNx,” Phys. Scr. 25(5), 649–650 (1982).
[Crossref]

1978 (1)

W. Spengler, R. Kaiser, A. N. Christensen, and G. Muller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

1974 (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” JETP 39, 375 (1974).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1969 (1)

N. Bloembergen, W. K. Burns, and M. Matsuoka, “Reflected third harmonic generated by picosecond laser pulses,” Opt. Commun. 1(1), 1–2 (1969).
[Crossref]

1946 (1)

B. F. Naylor, “High-temperature heat contents of Titanium Carbide and Titanium Nitride,” J. Am. Chem. Soc. 68(3), 370–371 (1946).
[Crossref]

Abb, M.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

Abrikosov, I. A.

E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, and A. I. Lichtenstein, “Phonon related properties of transition metals, their carbides, and nitrides: A first- principles study,” J. Appl. Phys. 101(12), 123519 (2007).
[Crossref]

Accanto, N.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Acioli, L. H.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

Ahuja, R.

E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, and A. I. Lichtenstein, “Phonon related properties of transition metals, their carbides, and nitrides: A first- principles study,” J. Appl. Phys. 101(12), 123519 (2007).
[Crossref]

Aizpurua, J.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Alam, M. Z.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

Alexander, W.

J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook (CRC Press, 2001).

Alford, N. M.

B. Doiron, Y. Li, A. P. Mihai, L. F. Cohen, P. K. Petrov, N. M. Alford, R. F. Oulton, and S. A. Maier, “Comparison of the ultrafast hot electron dynamics of titanium nitride and gold for plasmonic applications,” in Proc. SPIE, T. Tanaka and D. P. Tsai, eds. (SPIE, 2017), p. 3.

B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).

Allen, P. B.

P. B. Allen, “Theory of thermal relaxation of electrons in metals,” Phys. Rev. Lett. 59(13), 1460–1463 (1987).
[Crossref]

Aloukos, P.

E. Xenogiannopoulou and P. Aloukos, “Third-order nonlinear optical properties of thin sputtered gold films,” Opt. Commun. 275(1), 217–222 (2007).
[Crossref]

Altintas, B.

B. Altintas, “On the high pressure superconductivity of transition metal nitride: TiN,” Phys. C Supercond. 487, 37–41 (2013).
[Crossref]

Alu, A.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref]

Amann, M. C.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref]

Anisimov, S. I.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” JETP 39, 375 (1974).

Argyropoulos, C.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref]

Averett, K. L.

Babicheva, V. E.

Baffou, G.

H. M. L. Robert, F. Kundrat, E. Bermúdez-Ureña, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

Bagheri, S.

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Baker, L. A.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film,” J. Appl. Phys. 86(11), 6200–6205 (1999).
[Crossref]

Barnes, W.

A. A. Maradudin, J. R. Sambles, and W. Barnes, Modern Plasmonics (Elsevier, 2014).

Barton, D. R.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Belkin, M. A.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref]

Bermúdez-Ureña, E.

H. M. L. Robert, F. Kundrat, E. Bermúdez-Ureña, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

Bloembergen, N.

N. Bloembergen, W. K. Burns, and M. Matsuoka, “Reflected third harmonic generated by picosecond laser pulses,” Opt. Commun. 1(1), 1–2 (1969).
[Crossref]

Boehm, G.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref]

Boltasseva, A.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

C. T. DeVault, V. A. Zenin, A. Pors, K. Chaudhuri, J. Kim, A. Boltasseva, V. M. Shalaev, and S. I. Bozhevolnyi, “Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates,” Optica 5(12), 1557 (2018).
[Crossref]

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
[Crossref]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref]

J. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8(9), 9035–9043 (2014).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. V. Naik, A. Boltasseva, J. Guan, V. M. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

U. Guler, J. C. Ndukaife, G. V Naik, A. G. A. Nnanna, A. V Kildishev, V. M. Shalaev, and A. Boltasseva, “Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles,” (2013).

Bonner, C. E.

Boriskina, S. V.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Bowers, J. E.

C.-K. Sun, F. Vallée, S. Keller, J. E. Bowers, and S. P. DenBaars, “Femtosecond studies of carrier dynamics in InGaN,” Appl. Phys. Lett. 70(15), 2004–2006 (1997).
[Crossref]

Boyd, R.

R. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).

Boyd, R. W.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

R. W. Boyd, Z. Shi, and I. De Leon, “The third-order nonlinear susceptibility of gold,” Opt. Commun. 326, 74–79 (2014).
[Crossref]

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film,” J. Appl. Phys. 86(11), 6200–6205 (1999).
[Crossref]

Bozhevolnyi, S. I.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

C. T. DeVault, V. A. Zenin, A. Pors, K. Chaudhuri, J. Kim, A. Boltasseva, V. M. Shalaev, and S. I. Bozhevolnyi, “Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates,” Optica 5(12), 1557 (2018).
[Crossref]

Brorson, S. D.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[Crossref]

Bruck, R.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

Burns, W. K.

N. Bloembergen, W. K. Burns, and M. Matsuoka, “Reflected third harmonic generated by picosecond laser pulses,” Opt. Commun. 1(1), 1–2 (1969).
[Crossref]

Caffrey, A. P.

P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey, and A. N. Smith, “Femtosecond pump-probe nondestructive examination of materials (invited),” Rev. Sci. Instrum. 74(1), 400–406 (2003).
[Crossref]

Cahill, D. G.

R. M. Costescu, M. A. Wall, and D. G. Cahill, “Thermal conductance of epitaxial interfaces,” Phys. Rev. B 67(5), 054302 (2003).
[Crossref]

Campbell, J. K.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film,” J. Appl. Phys. 86(11), 6200–6205 (1999).
[Crossref]

Capretti, A.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-InfraredSpectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

Chaudhuri, K.

Chen, J. K.

Y. Zhang, D. Y. Tzou, and J. K. Chen, “Micro- and Nanoscale Heat Transfer in Femtosecond Laser Processing of Metals,” in High-Power and Femtosecond Lasers: Properties, Materials and Applications, P. H. Barret and M. Palmerm, eds. (Nova Science Publishers, 2009), pp. 159–206.

Chen, P. Y.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref]

Chen, Y.

A. A. Golubev, B. N. Khlebtsov, R. D. Rodriguez, Y. Chen, and D. R. T. Zahn, “Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol,” J. Phys. Chem. C 122(10), 5657–5663 (2018).
[Crossref]

Cheng, T. K.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[Crossref]

Christensen, A. N.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Muller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

Christensen, N. A.

V. A. Lovchinov, H. Mädge, and N. A. Christensen, “Low Temperature Specific Heat of TiNx,” Phys. Scr. 25(5), 649–650 (1982).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chung, S.

H. Xia, X. Wen, Y. Feng, R. Patterson, S. Chung, N. Gupta, S. Shrestha, and G. Conibeer, “Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy,” Sol. Energy Mater. Sol. Cells 150, 51–56 (2016).
[Crossref]

Clare, S. E.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref]

Cohen, L. F.

B. Doiron, Y. Li, A. P. Mihai, L. F. Cohen, P. K. Petrov, N. M. Alford, R. F. Oulton, and S. A. Maier, “Comparison of the ultrafast hot electron dynamics of titanium nitride and gold for plasmonic applications,” in Proc. SPIE, T. Tanaka and D. P. Tsai, eds. (SPIE, 2017), p. 3.

B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).

Conibeer, G.

H. Xia, X. Wen, Y. Feng, R. Patterson, S. Chung, N. Gupta, S. Shrestha, and G. Conibeer, “Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy,” Sol. Energy Mater. Sol. Cells 150, 51–56 (2016).
[Crossref]

Conrad, U.

J. Hohlfeld, S. S. Wellerschoof, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Costescu, R. M.

R. M. Costescu, M. A. Wall, and D. G. Cahill, “Thermal conductance of epitaxial interfaces,” Phys. Rev. B 67(5), 054302 (2003).
[Crossref]

Courtwright, D.

Crooks, R. M.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film,” J. Appl. Phys. 86(11), 6200–6205 (1999).
[Crossref]

Dal Negro, L.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-InfraredSpectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

De Leon, I.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

R. W. Boyd, Z. Shi, and I. De Leon, “The third-order nonlinear susceptibility of gold,” Opt. Commun. 326, 74–79 (2014).
[Crossref]

de Roque, P. M.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Demmerle, F.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref]

DenBaars, S. P.

C.-K. Sun, F. Vallée, S. Keller, J. E. Bowers, and S. P. DenBaars, “Femtosecond studies of carrier dynamics in InGaN,” Appl. Phys. Lett. 70(15), 2004–2006 (1997).
[Crossref]

DeVault, C.

DeVault, C. T.

Ding, S.-Y.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Dionne, J. A.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Doiron, B.

B. Doiron, Y. Li, A. P. Mihai, L. F. Cohen, P. K. Petrov, N. M. Alford, R. F. Oulton, and S. A. Maier, “Comparison of the ultrafast hot electron dynamics of titanium nitride and gold for plasmonic applications,” in Proc. SPIE, T. Tanaka and D. P. Tsai, eds. (SPIE, 2017), p. 3.

B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).

Dong, S.

S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun, “Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review,” RSC Adv. 5(19), 14610–14630 (2015).
[Crossref]

Dresselhaus, G.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[Crossref]

Dresselhaus, M. S.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[Crossref]

Dutta, A.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref]

El-Sayed, M. A.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref]

Elsayed-Ali, H.

H. Elsayed-Ali, T. Norris, M. Pessot, and G. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
[Crossref]

Engheta, N.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-InfraredSpectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

Ensley, T. R.

Esteban, R.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Face, D. W.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[Crossref]

Fan, M.

S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun, “Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review,” RSC Adv. 5(19), 14610–14630 (2015).
[Crossref]

Fearn, S.

B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).

Feng, J.

S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun, “Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review,” RSC Adv. 5(19), 14610–14630 (2015).
[Crossref]

Feng, Y.

H. Xia, X. Wen, Y. Feng, R. Patterson, S. Chung, N. Gupta, S. Shrestha, and G. Conibeer, “Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy,” Sol. Energy Mater. Sol. Cells 150, 51–56 (2016).
[Crossref]

Ferdinandus, M. R.

Ferrera, M.

Fishman, D. A.

Forno, S. D.

B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).

Fujimoto, J. G.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

Fukata, N.

S. Ishii, S. L. Shinde, W. Jevasuwan, N. Fukata, and T. Nagao, “Hot Electron Excitation from Titanium Nitride Using Visible Light,” ACS Photonics 3(9), 1552–1557 (2016).
[Crossref]

Gavrilenko, V. I.

George, M.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film,” J. Appl. Phys. 86(11), 6200–6205 (1999).
[Crossref]

Gholipour, B.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Giessen, H.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear Plasmonic Sensing,” Nano Lett. 16(5), 3155–3159 (2016).
[Crossref]

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Gmelin, E.

P. Roedhammer, W. Weber, E. Gmelin, and K. H. Rieder, “Low temperature specific heat and phonon anomalies in transition metal compounds,” 581, (1976).

Golubev, A. A.

A. A. Golubev, B. N. Khlebtsov, R. D. Rodriguez, Y. Chen, and D. R. T. Zahn, “Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol,” J. Phys. Chem. C 122(10), 5657–5663 (2018).
[Crossref]

Groß, P.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. V. Naik, A. Boltasseva, J. Guan, V. M. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Güdde, J.

J. Hohlfeld, S. S. Wellerschoof, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Gui, L.

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Guler, U.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. V. Naik, A. Boltasseva, J. Guan, V. M. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

J. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8(9), 9035–9043 (2014).
[Crossref]

U. Guler, J. C. Ndukaife, G. V Naik, A. G. A. Nnanna, A. V Kildishev, V. M. Shalaev, and A. Boltasseva, “Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles,” (2013).

Guo, L.

L. Guo and X. Xu, “Ultrafast Spectroscopy of Electron-Phonon Coupling in Gold,” J. Heat Transfer 136(12), 122401 (2014).
[Crossref]

Gupta, N.

H. Xia, X. Wen, Y. Feng, R. Patterson, S. Chung, N. Gupta, S. Shrestha, and G. Conibeer, “Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy,” Sol. Energy Mater. Sol. Cells 150, 51–56 (2016).
[Crossref]

Gupta, S. D.

S. K. Gupta, S. D. Gupta, H. R. Soni, V. Mankad, and P. K. Jha, “First-principles studies of the superconductivity and vibrational properties of transition-metal nitrides TMN (TM = Ti, V, and Cr),” Mater. Chem. Phys. 143(2), 503–513 (2014).
[Crossref]

Gupta, S. K.

S. K. Gupta, S. D. Gupta, H. R. Soni, V. Mankad, and P. K. Jha, “First-principles studies of the superconductivity and vibrational properties of transition-metal nitrides TMN (TM = Ti, V, and Cr),” Mater. Chem. Phys. 143(2), 503–513 (2014).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

Hagan, D. J.

Halas, N. J.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref]

Han, X.

S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun, “Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review,” RSC Adv. 5(19), 14610–14630 (2015).
[Crossref]

Han, Y.-H.

J. Shackelford, Y.-H. Han, S. Kim, and S.-H. Kwon, Materials Science and Engineering Handbook (CRC Press, 2015).

Hancu, I. M.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Hentschel, M.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear Plasmonic Sensing,” Nano Lett. 16(5), 3155–3159 (2016).
[Crossref]

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Hohlfeld, J.

J. Hohlfeld, S. S. Wellerschoof, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Hopkins, F. K.

Howard, P.

P. Howard, “Partial Differential Equations in MATLAB 7 . 0 PDE in One Space Dimension,” 1, 1–23 (2005).

Hu, E. L.

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Hu, H.

Hu, L.

S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun, “Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review,” RSC Adv. 5(19), 14610–14630 (2015).
[Crossref]

Huang, X.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref]

Hutchings, D. C.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Kronig relations in nonlinear optics,” Opt. Quantum Electron. 24(1), 1–30 (1992).
[Crossref]

Inasawa, S.

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting,” J. Phys. Chem. B 109(8), 3104–3111 (2005).
[Crossref]

Ippen, E. P.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[Crossref]

Isaev, E. I.

E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, and A. I. Lichtenstein, “Phonon related properties of transition metals, their carbides, and nitrides: A first- principles study,” J. Appl. Phys. 101(12), 123519 (2007).
[Crossref]

Ishii, S.

S. Ishii, S. L. Shinde, W. Jevasuwan, N. Fukata, and T. Nagao, “Hot Electron Excitation from Titanium Nitride Using Visible Light,” ACS Photonics 3(9), 1552–1557 (2016).
[Crossref]

M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
[Crossref]

M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitride system Ti1-x ZrxN for plasmonic applications,” Opt. Mater. Express 6(1), 29 (2016).
[Crossref]

Jähnke, V.

J. Hohlfeld, S. S. Wellerschoof, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref]

Jevasuwan, W.

S. Ishii, S. L. Shinde, W. Jevasuwan, N. Fukata, and T. Nagao, “Hot Electron Excitation from Titanium Nitride Using Visible Light,” ACS Photonics 3(9), 1552–1557 (2016).
[Crossref]

Jha, P. K.

S. K. Gupta, S. D. Gupta, H. R. Soni, V. Mankad, and P. K. Jha, “First-principles studies of the superconductivity and vibrational properties of transition-metal nitrides TMN (TM = Ti, V, and Cr),” Mater. Chem. Phys. 143(2), 503–513 (2014).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Kaiser, R.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Muller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

Kalfagiannis, N.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials 8(6), 3128–3154 (2015).
[Crossref]

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” JETP 39, 375 (1974).

Kassavetis, S.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials 8(6), 3128–3154 (2015).
[Crossref]

Katsnelson, M. I.

E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, and A. I. Lichtenstein, “Phonon related properties of transition metals, their carbides, and nitrides: A first- principles study,” J. Appl. Phys. 101(12), 123519 (2007).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kazeroonian, A.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[Crossref]

Keller, S.

C.-K. Sun, F. Vallée, S. Keller, J. E. Bowers, and S. P. DenBaars, “Femtosecond studies of carrier dynamics in InGaN,” Appl. Phys. Lett. 70(15), 2004–2006 (1997).
[Crossref]

Khlebtsov, B. N.

A. A. Golubev, B. N. Khlebtsov, R. D. Rodriguez, Y. Chen, and D. R. T. Zahn, “Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol,” J. Phys. Chem. C 122(10), 5657–5663 (2018).
[Crossref]

Kildishev, A. V

U. Guler, J. C. Ndukaife, G. V Naik, A. G. A. Nnanna, A. V Kildishev, V. M. Shalaev, and A. Boltasseva, “Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles,” (2013).

Kildishev, A. V.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. V. Naik, A. Boltasseva, J. Guan, V. M. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Kim, J.

Kim, S.

J. Shackelford, Y.-H. Han, S. Kim, and S.-H. Kwon, Materials Science and Engineering Handbook (CRC Press, 2015).

Kinsey, N.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
[Crossref]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. V. Naik, A. Boltasseva, J. Guan, V. M. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Kirkpatrick, S.

R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, 2003).

Klemens, P. G.

P. G. Klemens and R. K. Williams, “Thermal conductivity of metals and alloys,” Int. Mater. Rev. 31(1), 197–215 (1986).
[Crossref]

Kling, M. F.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Klopf, J. M.

P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey, and A. N. Smith, “Femtosecond pump-probe nondestructive examination of materials (invited),” Rev. Sci. Instrum. 74(1), 400–406 (2003).
[Crossref]

Kneipp, K.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Krishnamoorthy, H. N. S.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Kudyshev, Z.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

Kumar, M.

M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
[Crossref]

M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitride system Ti1-x ZrxN for plasmonic applications,” Opt. Mater. Express 6(1), 29 (2016).
[Crossref]

Kundrat, F.

H. M. L. Robert, F. Kundrat, E. Bermúdez-Ureña, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

Kwon, S.-H.

J. Shackelford, Y.-H. Han, S. Kim, and S.-H. Kwon, Materials Science and Engineering Handbook (CRC Press, 2015).

Lal, S.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref]

Lawrence, M.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Lee, J.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref]

Li, J.-F.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. V. Naik, A. Boltasseva, J. Guan, V. M. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Li, Y.

B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).

B. Doiron, Y. Li, A. P. Mihai, L. F. Cohen, P. K. Petrov, N. M. Alford, R. F. Oulton, and S. A. Maier, “Comparison of the ultrafast hot electron dynamics of titanium nitride and gold for plasmonic applications,” in Proc. SPIE, T. Tanaka and D. P. Tsai, eds. (SPIE, 2017), p. 3.

Lichtenstein, A. I.

E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, and A. I. Lichtenstein, “Phonon related properties of transition metals, their carbides, and nitrides: A first- principles study,” J. Appl. Phys. 101(12), 123519 (2007).
[Crossref]

Lide, R.

R. Lide, CRC Handbook of Chemistry and Physics, 86th ed. (CRC Press, 2005).

Lienau, C.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Linnenbank, H.

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Lischner, J.

B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).

Liu, M.

S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun, “Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review,” RSC Adv. 5(19), 14610–14630 (2015).
[Crossref]

Lovchinov, V. A.

V. A. Lovchinov, H. Mädge, and N. A. Christensen, “Low Temperature Specific Heat of TiNx,” Phys. Scr. 25(5), 649–650 (1982).
[Crossref]

Lu, F.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref]

MacDonald, K. F.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Mädge, H.

V. A. Lovchinov, H. Mädge, and N. A. Christensen, “Low Temperature Specific Heat of TiNx,” Phys. Scr. 25(5), 649–650 (1982).
[Crossref]

Maier, S. A.

B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).

B. Doiron, Y. Li, A. P. Mihai, L. F. Cohen, P. K. Petrov, N. M. Alford, R. F. Oulton, and S. A. Maier, “Comparison of the ultrafast hot electron dynamics of titanium nitride and gold for plasmonic applications,” in Proc. SPIE, T. Tanaka and D. P. Tsai, eds. (SPIE, 2017), p. 3.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mankad, V.

S. K. Gupta, S. D. Gupta, H. R. Soni, V. Mankad, and P. K. Jha, “First-principles studies of the superconductivity and vibrational properties of transition-metal nitrides TMN (TM = Ti, V, and Cr),” Mater. Chem. Phys. 143(2), 503–513 (2014).
[Crossref]

Maradudin, A. A.

A. A. Maradudin, J. R. Sambles, and W. Barnes, Modern Plasmonics (Elsevier, 2014).

Marlo, M.

M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
[Crossref]

Matsuoka, M.

N. Bloembergen, W. K. Burns, and M. Matsuoka, “Reflected third harmonic generated by picosecond laser pulses,” Opt. Commun. 1(1), 1–2 (1969).
[Crossref]

Matthias, E.

J. Hohlfeld, S. S. Wellerschoof, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

Mclean, D. G.

R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, 2003).

McLeskey, J. T.

P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey, and A. N. Smith, “Femtosecond pump-probe nondestructive examination of materials (invited),” Rev. Sci. Instrum. 74(1), 400–406 (2003).
[Crossref]

Mesch, M.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear Plasmonic Sensing,” Nano Lett. 16(5), 3155–3159 (2016).
[Crossref]

Metzger, B.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear Plasmonic Sensing,” Nano Lett. 16(5), 3155–3159 (2016).
[Crossref]

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Mihai, A.

B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).

Mihai, A. P.

B. Doiron, Y. Li, A. P. Mihai, L. F. Cohen, P. K. Petrov, N. M. Alford, R. F. Oulton, and S. A. Maier, “Comparison of the ultrafast hot electron dynamics of titanium nitride and gold for plasmonic applications,” in Proc. SPIE, T. Tanaka and D. P. Tsai, eds. (SPIE, 2017), p. 3.

Mills, B.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

Milman, V.

M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
[Crossref]

Mishra, A.

J. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8(9), 9035–9043 (2014).
[Crossref]

Monneret, S.

H. M. L. Robert, F. Kundrat, E. Bermúdez-Ureña, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

Moodera, J. S.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[Crossref]

Mourou, G.

H. Elsayed-Ali, T. Norris, M. Pessot, and G. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
[Crossref]

Muller-Vogt, G.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Muller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

Muskens, O. L.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

Nagao, T.

M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
[Crossref]

S. Ishii, S. L. Shinde, W. Jevasuwan, N. Fukata, and T. Nagao, “Hot Electron Excitation from Titanium Nitride Using Visible Light,” ACS Photonics 3(9), 1552–1557 (2016).
[Crossref]

M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitride system Ti1-x ZrxN for plasmonic applications,” Opt. Mater. Express 6(1), 29 (2016).
[Crossref]

Naik, G. V

U. Guler, J. C. Ndukaife, G. V Naik, A. G. A. Nnanna, A. V Kildishev, V. M. Shalaev, and A. Boltasseva, “Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles,” (2013).

Naik, G. V.

Naik, G. V. V.

W. Li, U. Guler, N. Kinsey, G. V. V. Naik, A. Boltasseva, J. Guan, V. M. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Naylor, B. F.

B. F. Naylor, “High-temperature heat contents of Titanium Carbide and Titanium Nitride,” J. Am. Chem. Soc. 68(3), 370–371 (1946).
[Crossref]

Ndukaife, J.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

J. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8(9), 9035–9043 (2014).
[Crossref]

Ndukaife, J. C.

U. Guler, J. C. Ndukaife, G. V Naik, A. G. A. Nnanna, A. V Kildishev, V. M. Shalaev, and A. Boltasseva, “Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles,” (2013).

Nnanna, A. G. A.

J. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8(9), 9035–9043 (2014).
[Crossref]

U. Guler, J. C. Ndukaife, G. V Naik, A. G. A. Nnanna, A. V Kildishev, V. M. Shalaev, and A. Boltasseva, “Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles,” (2013).

Norris, P. M.

P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey, and A. N. Smith, “Femtosecond pump-probe nondestructive examination of materials (invited),” Rev. Sci. Instrum. 74(1), 400–406 (2003).
[Crossref]

Norris, T.

H. Elsayed-Ali, T. Norris, M. Pessot, and G. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
[Crossref]

Odom, T. W.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Oulton, R. F.

B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).

B. Doiron, Y. Li, A. P. Mihai, L. F. Cohen, P. K. Petrov, N. M. Alford, R. F. Oulton, and S. A. Maier, “Comparison of the ultrafast hot electron dynamics of titanium nitride and gold for plasmonic applications,” in Proc. SPIE, T. Tanaka and D. P. Tsai, eds. (SPIE, 2017), p. 3.

Panneerselvam, R.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Patsalas, P.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials 8(6), 3128–3154 (2015).
[Crossref]

Patterson, R.

H. Xia, X. Wen, Y. Feng, R. Patterson, S. Chung, N. Gupta, S. Shrestha, and G. Conibeer, “Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy,” Sol. Energy Mater. Sol. Cells 150, 51–56 (2016).
[Crossref]

Peceli, D.

Perel’man, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” JETP 39, 375 (1974).

Pessot, M.

H. Elsayed-Ali, T. Norris, M. Pessot, and G. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
[Crossref]

Petrov, P.

B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).

Petrov, P. K.

B. Doiron, Y. Li, A. P. Mihai, L. F. Cohen, P. K. Petrov, N. M. Alford, R. F. Oulton, and S. A. Maier, “Comparison of the ultrafast hot electron dynamics of titanium nitride and gold for plasmonic applications,” in Proc. SPIE, T. Tanaka and D. P. Tsai, eds. (SPIE, 2017), p. 3.

Pi, Y.

S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun, “Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review,” RSC Adv. 5(19), 14610–14630 (2015).
[Crossref]

Piatkowski, L.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Polleux, J.

H. M. L. Robert, F. Kundrat, E. Bermúdez-Ureña, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

Pors, A.

Quidant, R.

H. M. L. Robert, F. Kundrat, E. Bermúdez-Ureña, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Reddy, H.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Reed, J. M.

Reichert, M.

Ren, B.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Rieder, K. H.

P. Roedhammer, W. Weber, E. Gmelin, and K. H. Rieder, “Low temperature specific heat and phonon anomalies in transition metal compounds,” 581, (1976).

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rigneault, H.

H. M. L. Robert, F. Kundrat, E. Bermúdez-Ureña, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

Robert, H. M. L.

H. M. L. Robert, F. Kundrat, E. Bermúdez-Ureña, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

Rodriguez, R. D.

A. A. Golubev, B. N. Khlebtsov, R. D. Rodriguez, Y. Chen, and D. R. T. Zahn, “Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol,” J. Phys. Chem. C 122(10), 5657–5663 (2018).
[Crossref]

Roedhammer, P.

P. Roedhammer, W. Weber, E. Gmelin, and K. H. Rieder, “Low temperature specific heat and phonon anomalies in transition metal compounds,” 581, (1976).

Saha, S.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Sambles, J. R.

A. A. Maradudin, J. R. Sambles, and W. Barnes, Modern Plasmonics (Elsevier, 2014).

Savinov, V.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Schulz, S. A.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

Seidel, M.

Shackelford, J.

J. Shackelford, Y.-H. Han, S. Kim, and S.-H. Kwon, Materials Science and Engineering Handbook (CRC Press, 2015).

Shackelford, J. F.

J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook (CRC Press, 2001).

Shah, D.

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Shalaev, V. M.

C. T. DeVault, V. A. Zenin, A. Pors, K. Chaudhuri, J. Kim, A. Boltasseva, V. M. Shalaev, and S. I. Bozhevolnyi, “Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates,” Optica 5(12), 1557 (2018).
[Crossref]

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
[Crossref]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

U. Guler, J. C. Ndukaife, G. V Naik, A. G. A. Nnanna, A. V Kildishev, V. M. Shalaev, and A. Boltasseva, “Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles,” (2013).

Shalaev, V. M. M.

W. Li, U. Guler, N. Kinsey, G. V. V. Naik, A. Boltasseva, J. Guan, V. M. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Sheik-Bahae, M.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Kronig relations in nonlinear optics,” Opt. Quantum Electron. 24(1), 1–30 (1992).
[Crossref]

Shi, Z.

R. W. Boyd, Z. Shi, and I. De Leon, “The third-order nonlinear susceptibility of gold,” Opt. Commun. 326, 74–79 (2014).
[Crossref]

Shinde, S. L.

S. Ishii, S. L. Shinde, W. Jevasuwan, N. Fukata, and T. Nagao, “Hot Electron Excitation from Titanium Nitride Using Visible Light,” ACS Photonics 3(9), 1552–1557 (2016).
[Crossref]

Shrestha, S.

H. Xia, X. Wen, Y. Feng, R. Patterson, S. Chung, N. Gupta, S. Shrestha, and G. Conibeer, “Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy,” Sol. Energy Mater. Sol. Cells 150, 51–56 (2016).
[Crossref]

Simak, S. I.

E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, and A. I. Lichtenstein, “Phonon related properties of transition metals, their carbides, and nitrides: A first- principles study,” J. Appl. Phys. 101(12), 123519 (2007).
[Crossref]

Singh, R.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Smith, A. N.

P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey, and A. N. Smith, “Femtosecond pump-probe nondestructive examination of materials (invited),” Rev. Sci. Instrum. 74(1), 400–406 (2003).
[Crossref]

Smith, D. D.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film,” J. Appl. Phys. 86(11), 6200–6205 (1999).
[Crossref]

Soci, C.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Solomon, M. L.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Soni, H. R.

S. K. Gupta, S. D. Gupta, H. R. Soni, V. Mankad, and P. K. Jha, “First-principles studies of the superconductivity and vibrational properties of transition-metal nitrides TMN (TM = Ti, V, and Cr),” Mater. Chem. Phys. 143(2), 503–513 (2014).
[Crossref]

Spengler, W.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Muller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

Stevens, R. J.

P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey, and A. N. Smith, “Femtosecond pump-probe nondestructive examination of materials (invited),” Rev. Sci. Instrum. 74(1), 400–406 (2003).
[Crossref]

Stockman, M. I.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Strohfeldt, N.

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Sugiyama, M.

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting,” J. Phys. Chem. B 109(8), 3104–3111 (2005).
[Crossref]

Sun, C.-K.

C.-K. Sun, F. Vallée, S. Keller, J. E. Bowers, and S. P. DenBaars, “Femtosecond studies of carrier dynamics in InGaN,” Appl. Phys. Lett. 70(15), 2004–2006 (1997).
[Crossref]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

Sun, J.

S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun, “Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review,” RSC Adv. 5(19), 14610–14630 (2015).
[Crossref]

S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun, “Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review,” RSC Adv. 5(19), 14610–14630 (2015).
[Crossref]

Sutherland, R. L.

R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, 2003).

Syed, A. A.

Tahir, A. A.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

Tian, Z.-Q.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Traviss, D.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

Tymchenko, M.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref]

Tzou, D. Y.

Y. Zhang, D. Y. Tzou, and J. K. Chen, “Micro- and Nanoscale Heat Transfer in Femtosecond Laser Processing of Metals,” in High-Power and Femtosecond Lasers: Properties, Materials and Applications, P. H. Barret and M. Palmerm, eds. (Nova Science Publishers, 2009), pp. 159–206.

Umezawa, N.

M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
[Crossref]

M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitride system Ti1-x ZrxN for plasmonic applications,” Opt. Mater. Express 6(1), 29 (2016).
[Crossref]

Upham, J.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

Urbas, A.

Vadai, M.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Vallée, F.

C.-K. Sun, F. Vallée, S. Keller, J. E. Bowers, and S. P. DenBaars, “Femtosecond studies of carrier dynamics in InGaN,” Appl. Phys. Lett. 70(15), 2004–2006 (1997).
[Crossref]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

van Hulst, N. F.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Van Stryland, E. W.

Vekilov, Y. K.

E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, and A. I. Lichtenstein, “Phonon related properties of transition metals, their carbides, and nitrides: A first- principles study,” J. Appl. Phys. 101(12), 123519 (2007).
[Crossref]

Wall, M. A.

R. M. Costescu, M. A. Wall, and D. G. Cahill, “Thermal conductance of epitaxial interfaces,” Phys. Rev. B 67(5), 054302 (2003).
[Crossref]

Wang, D.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Wang, W.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Wang, Y.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-InfraredSpectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

Weber, W.

P. Roedhammer, W. Weber, E. Gmelin, and K. H. Rieder, “Low temperature specific heat and phonon anomalies in transition metal compounds,” 581, (1976).

Webster, S.

Wellerschoof, S. S.

J. Hohlfeld, S. S. Wellerschoof, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Wen, X.

H. Xia, X. Wen, Y. Feng, R. Patterson, S. Chung, N. Gupta, S. Shrestha, and G. Conibeer, “Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy,” Sol. Energy Mater. Sol. Cells 150, 51–56 (2016).
[Crossref]

Wereley, S. T.

J. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8(9), 9035–9043 (2014).
[Crossref]

Williams, R. K.

P. G. Klemens and R. K. Williams, “Thermal conductivity of metals and alloys,” Int. Mater. Rev. 31(1), 197–215 (1986).
[Crossref]

Wu, D.-Y.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Xenogiannopoulou, E.

E. Xenogiannopoulou and P. Aloukos, “Third-order nonlinear optical properties of thin sputtered gold films,” Opt. Commun. 275(1), 217–222 (2007).
[Crossref]

Xia, H.

H. Xia, X. Wen, Y. Feng, R. Patterson, S. Chung, N. Gupta, S. Shrestha, and G. Conibeer, “Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy,” Sol. Energy Mater. Sol. Cells 150, 51–56 (2016).
[Crossref]

Xu, X.

L. Guo and X. Xu, “Ultrafast Spectroscopy of Electron-Phonon Coupling in Gold,” J. Heat Transfer 136(12), 122401 (2014).
[Crossref]

Yamaguchi, Y.

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting,” J. Phys. Chem. B 109(8), 3104–3111 (2005).
[Crossref]

Yang, S.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Yi, J.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Yoon, Y.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film,” J. Appl. Phys. 86(11), 6200–6205 (1999).
[Crossref]

Zahn, D. R. T.

A. A. Golubev, B. N. Khlebtsov, R. D. Rodriguez, Y. Chen, and D. R. T. Zahn, “Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol,” J. Phys. Chem. C 122(10), 5657–5663 (2018).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zenin, V. A.

Zgrabik, C. M.

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

Zhang, X.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Zhang, Y.

Y. Zhang, D. Y. Tzou, and J. K. Chen, “Micro- and Nanoscale Heat Transfer in Femtosecond Laser Processing of Metals,” in High-Power and Femtosecond Lasers: Properties, Materials and Applications, P. H. Barret and M. Palmerm, eds. (Nova Science Publishers, 2009), pp. 159–206.

Zhao, P.

Zheludev, N. I.

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

Acc. Chem. Res. (1)

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref]

ACS Nano (1)

J. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8(9), 9035–9043 (2014).
[Crossref]

ACS Omega (1)

H. M. L. Robert, F. Kundrat, E. Bermúdez-Ureña, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

ACS Photonics (4)

S. Ishii, S. L. Shinde, W. Jevasuwan, N. Fukata, and T. Nagao, “Hot Electron Excitation from Titanium Nitride Using Visible Light,” ACS Photonics 3(9), 1552–1557 (2016).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-InfraredSpectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, “Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach,” ACS Photonics 3(1), 43–50 (2016).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

Adv. Mater. (1)

W. Li, U. Guler, N. Kinsey, G. V. V. Naik, A. Boltasseva, J. Guan, V. M. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Adv. Opt. Mater. (1)

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Plasmonic Ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Appl. Phys. Lett. (2)

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

C.-K. Sun, F. Vallée, S. Keller, J. E. Bowers, and S. P. DenBaars, “Femtosecond studies of carrier dynamics in InGaN,” Appl. Phys. Lett. 70(15), 2004–2006 (1997).
[Crossref]

Chem. Phys. (1)

J. Hohlfeld, S. S. Wellerschoof, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

Int. Mater. Rev. (1)

P. G. Klemens and R. K. Williams, “Thermal conductivity of metals and alloys,” Int. Mater. Rev. 31(1), 197–215 (1986).
[Crossref]

J. Am. Chem. Soc. (1)

B. F. Naylor, “High-temperature heat contents of Titanium Carbide and Titanium Nitride,” J. Am. Chem. Soc. 68(3), 370–371 (1946).
[Crossref]

J. Appl. Phys. (2)

E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, and A. I. Lichtenstein, “Phonon related properties of transition metals, their carbides, and nitrides: A first- principles study,” J. Appl. Phys. 101(12), 123519 (2007).
[Crossref]

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film,” J. Appl. Phys. 86(11), 6200–6205 (1999).
[Crossref]

J. Heat Transfer (1)

L. Guo and X. Xu, “Ultrafast Spectroscopy of Electron-Phonon Coupling in Gold,” J. Heat Transfer 136(12), 122401 (2014).
[Crossref]

J. Opt. (1)

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V. M. Shalaev, A. Boltasseva, B. Gholipour, H. N. S. Krishnamoorthy, K. F. MacDonald, C. Soci, N. I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M. L. Solomon, D. R. Barton, M. Lawrence, J. A. Dionne, S. V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T. W. Odom, N. Accanto, P. M. de Roque, I. M. Hancu, L. Piatkowski, N. F. van Hulst, and M. F. Kling, “Roadmap on plasmonics,” J. Opt. 20(4), 043001 (2018).
[Crossref]

J. Phys. Chem. B (1)

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting,” J. Phys. Chem. B 109(8), 3104–3111 (2005).
[Crossref]

J. Phys. Chem. C (1)

A. A. Golubev, B. N. Khlebtsov, R. D. Rodriguez, Y. Chen, and D. R. T. Zahn, “Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol,” J. Phys. Chem. C 122(10), 5657–5663 (2018).
[Crossref]

JETP (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” JETP 39, 375 (1974).

Lasers Med. Sci. (1)

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref]

Mater. Chem. Phys. (1)

S. K. Gupta, S. D. Gupta, H. R. Soni, V. Mankad, and P. K. Jha, “First-principles studies of the superconductivity and vibrational properties of transition-metal nitrides TMN (TM = Ti, V, and Cr),” Mater. Chem. Phys. 143(2), 503–513 (2014).
[Crossref]

Materials (1)

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials 8(6), 3128–3154 (2015).
[Crossref]

Nano Lett. (2)

L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H. Linnenbank, E. L. Hu, and H. Giessen, “Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas,” Nano Lett. 16(9), 5708–5713 (2016).
[Crossref]

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear Plasmonic Sensing,” Nano Lett. 16(5), 3155–3159 (2016).
[Crossref]

Nat. Photonics (2)

M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Nat. Rev. Mater. (1)

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Nature (1)

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alu, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref]

Opt. Commun. (3)

R. W. Boyd, Z. Shi, and I. De Leon, “The third-order nonlinear susceptibility of gold,” Opt. Commun. 326, 74–79 (2014).
[Crossref]

N. Bloembergen, W. K. Burns, and M. Matsuoka, “Reflected third harmonic generated by picosecond laser pulses,” Opt. Commun. 1(1), 1–2 (1969).
[Crossref]

E. Xenogiannopoulou and P. Aloukos, “Third-order nonlinear optical properties of thin sputtered gold films,” Opt. Commun. 275(1), 217–222 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (3)

Opt. Quantum Electron. (1)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Kronig relations in nonlinear optics,” Opt. Quantum Electron. 24(1), 1–30 (1992).
[Crossref]

Optica (2)

Phys. C Supercond. (1)

B. Altintas, “On the high pressure superconductivity of transition metal nitride: TiN,” Phys. C Supercond. 487, 37–41 (2013).
[Crossref]

Phys. Rev. A (1)

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

Phys. Rev. B (5)

W. Spengler, R. Kaiser, A. N. Christensen, and G. Muller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

R. M. Costescu, M. A. Wall, and D. G. Cahill, “Thermal conductance of epitaxial interfaces,” Phys. Rev. B 67(5), 054302 (2003).
[Crossref]

M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
[Crossref]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

Phys. Rev. Lett. (3)

H. Elsayed-Ali, T. Norris, M. Pessot, and G. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
[Crossref]

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[Crossref]

P. B. Allen, “Theory of thermal relaxation of electrons in metals,” Phys. Rev. Lett. 59(13), 1460–1463 (1987).
[Crossref]

Phys. Scr. (1)

V. A. Lovchinov, H. Mädge, and N. A. Christensen, “Low Temperature Specific Heat of TiNx,” Phys. Scr. 25(5), 649–650 (1982).
[Crossref]

Rev. Sci. Instrum. (1)

P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey, and A. N. Smith, “Femtosecond pump-probe nondestructive examination of materials (invited),” Rev. Sci. Instrum. 74(1), 400–406 (2003).
[Crossref]

RSC Adv. (1)

S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun, “Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review,” RSC Adv. 5(19), 14610–14630 (2015).
[Crossref]

Science (1)

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

H. Xia, X. Wen, Y. Feng, R. Patterson, S. Chung, N. Gupta, S. Shrestha, and G. Conibeer, “Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy,” Sol. Energy Mater. Sol. Cells 150, 51–56 (2016).
[Crossref]

Other (13)

U. Guler, J. C. Ndukaife, G. V Naik, A. G. A. Nnanna, A. V Kildishev, V. M. Shalaev, and A. Boltasseva, “Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles,” (2013).

B. Doiron, Y. Li, A. P. Mihai, L. F. Cohen, P. K. Petrov, N. M. Alford, R. F. Oulton, and S. A. Maier, “Comparison of the ultrafast hot electron dynamics of titanium nitride and gold for plasmonic applications,” in Proc. SPIE, T. Tanaka and D. P. Tsai, eds. (SPIE, 2017), p. 3.

B. Doiron, Y. Li, A. Mihai, S. D. Forno, S. Fearn, L. F. Cohen, N. M. Alford, J. Lischner, P. Petrov, S. A. Maier, and R. F. Oulton, “Optimizing hot electron harvesting at planar metal-semiconductor interfaces with titanium oxynitride thin films,” ArXiv:1807.03702 (2018).

R. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).

R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, 2003).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

A. A. Maradudin, J. R. Sambles, and W. Barnes, Modern Plasmonics (Elsevier, 2014).

Y. Zhang, D. Y. Tzou, and J. K. Chen, “Micro- and Nanoscale Heat Transfer in Femtosecond Laser Processing of Metals,” in High-Power and Femtosecond Lasers: Properties, Materials and Applications, P. H. Barret and M. Palmerm, eds. (Nova Science Publishers, 2009), pp. 159–206.

P. Roedhammer, W. Weber, E. Gmelin, and K. H. Rieder, “Low temperature specific heat and phonon anomalies in transition metal compounds,” 581, (1976).

J. Shackelford, Y.-H. Han, S. Kim, and S.-H. Kwon, Materials Science and Engineering Handbook (CRC Press, 2015).

P. Howard, “Partial Differential Equations in MATLAB 7 . 0 PDE in One Space Dimension,” 1, 1–23 (2005).

J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook (CRC Press, 2001).

R. Lide, CRC Handbook of Chemistry and Physics, 86th ed. (CRC Press, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. a) SEM image of the high-quality TiN surface illustrating a smooth, well-ordered cubic grains. b) SEM image of the low-quality TiN surface illustrating randomly oriented cubic grains. Linear permittivity of the TiN samples.
Fig. 2.
Fig. 2. Beam deflection measurements of the a) beam displacement and b) total power transmitted for high-quality TiN on fused sapphire at 800° C and the measurements of the c) beam displacement and d) total power transmitted for low-quality TiN on fused silica at 350° C. Note that the red and blue signal traces are shifted (2% in panels a, c, d and 0.5% in b) in order to facilitate visibility. Circles represent experimental data and solid lines represent numerical fitting. Pump excitation is centered at time zero.
Fig. 3.
Fig. 3. a) Comparison of the normalized beam deflection and time-resolved differential transmission (TRDT) measurements for the high-quality sample (red) and low-quality sample (blue) on a short time scale, showing excellent agreement. Data was normalized by dividing by the absolute value of the peak change in transmission. b) Change in transmission over long time scales using TRDT. All data in panel a) were normalized.
Fig. 4.
Fig. 4. Time-resolved differential transmission measurements for the high-quality film modeled using the parabolic two step approach over a) the short time window and b) the long-time window for different values of G. G is listed in units of W-K-1-m-3.
Fig. 5.
Fig. 5. The temperature rise in gold (dashed lines) and the high-quality (HQ) TiN (solid lines) for a 6 µJ-cm-2 pump pulse.
Fig. 6.
Fig. 6. Normalized lattice temperature as obtained from simulation, solid lines, (which is proportional to the change in sample transmission) overlaid with the normalized experimental transmission data, data points, versus time. This demonstrates that for times beyond 10 ps the response is described by heat transfer between the TiN film and substrate. The experimental data was normalized by dividing by the change in transmission at 10 ps (approximate time where COMSOL becomes a valid estimate) while simulation was normalized by dividing by peak rise in temperature. The simulation data was then inverted for comparison with experimental data.
Fig. 7.
Fig. 7. Electron and lattice temperatures of a thin gold film following a 6 µJ-cm-2 optical pump at time zero, illustrating a typical ultrafast decay due to hot-electrons and long-lived offset due to lattice heating.

Tables (5)

Tables Icon

Table 1. Nonlinear Coefficients from Beam Deflection

Tables Icon

Table 2. Summary of the Drude-Lorentz model parameters used to fit the spectroscopic ellipsometry data for the two TiN films.

Tables Icon

Table 3. TiN Constants from Literature

Tables Icon

Table 4. Summary of Material Properties used in the Finite Element Simulations

Tables Icon

Table 5. Summary of the Material Properties used in the Numerical Calculations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C e ( T e ) T e t = [ κ e   T e ] G ( T e T l ) + S ( z , t )
C l ( T l ) T l t = [ κ l   T l ] + G ( T e T l )
G = 3 γ λ   ω 2 π k B  
C e ( T e ) T e t = [ κ e   T e ] G ( T e T l ) + S ( z , t )
C l ( T l ) T l t = [ κ l   T l ] + G ( T e T l )
C e = γ T e