Abstract

The synthesis, crystal structure, photoluminescence (PL) and cathodoluminescence (CL) spectra of Ba1-xCaxAl2O4 doped with 3 mol% Eu2+ between x = 0 and x = 1 are described. The molar fractions of the alkaline earth elements were varied in steps of 0.1. The materials have been synthesized by all solid state reactions at 1300°C in mixed gas (H2/N2). The identification of the crystal phases in the samples was based on analyses of the X-ray diffraction patterns. The Ba1-xCaxAl2O4 system contains one dominant monoclinic phase, one dominant hexagonal phase and two different cubic phases that were present in low concentrations. The main characteristic of the PL spectra was that the intensity of the Eu2+ photoluminescence decreased upon adding a second alkaline earth ion in the aluminate lattice. The hexagonal and monoclinic phases in the Ba1-xCaxAl2O4 samples showed an unexpected behaviour, namely increasing their unit cell volumes upon decreasing the mole fraction of Ba2+. For the hexagonal phase this behaviour has been explained qualitatively in terms of enhanced spontaneous polarization of the uncompensated anti-ferroelectric state.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+

Liping Yu, Daniel den Engelsen, Jürgen Gorobez, George R. Fern, Terry G. Ireland, Chris Frampton, and Jack Silver
Opt. Mater. Express 9(5) 2175-2195 (2019)

Valence states of europium in CaAl2O4:Eu phosphors

Nursen Avci, Katleen Korthout, Mark A. Newton, Philippe F. Smet, and Dirk Poelman
Opt. Mater. Express 2(3) 321-330 (2012)

Extending the afterglow in CaAl2O4:Eu,Nd persistent phosphors by electron beam annealing

Philippe F. Smet, Nursen Avci, Koen Van den Eeckhout, and Dirk Poelman
Opt. Mater. Express 2(10) 1306-1313 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
    [Crossref]
  2. M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.
  3. A. Shukla, Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides, Thesis, University of Montreal, July 2012.
  4. P. Ptáček, Strontium Aluminate - Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Application (InTech, 2014), Chapter 1.
  5. R. C. Ropp, Encyclopedia of the Alkaline Earth Compounds (Elsevier, 2013), Chapter 6.
  6. W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
    [Crossref]
  7. S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
    [Crossref]
  8. A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
    [Crossref]
  9. S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
    [Crossref]
  10. W. Hörkner and H. Müller-Buschbaum, “Zur Kristallstruktur von CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983–984 (1976).
    [Crossref]
  11. P. Mondal and J. W. Jeffery, “The Crystal Structure of Tricalcium Aluminate, Ca3Al2O6,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 31(3), 689–697 (1975).
    [Crossref]
  12. H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Crystallogr., Sect. B: Struct. Sci. 63(5), 675–682 (2007).
    [Crossref]
  13. U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
    [Crossref]
  14. J. Ueda, T. Shinoda, and S. Tanabe, “Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+,” Opt. Mater. 41, 84–89 (2015).
    [Crossref]
  15. G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).
  16. S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
    [Crossref]
  17. B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500(C),” Phys. B 404(22), 4440–4444 (2009).
    [Crossref]
  18. B. P. Kore, N. S. Doble, and S. J. Doble, “Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate,” J. Lumin. 150, 59–67 (2014).
    [Crossref]
  19. R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
    [Crossref]
  20. Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Lumin. 30(2), 235–239 (2015).
    [Crossref]
  21. M. Peng and G. Hong, “Reduction of Eu3+ to Eu2+ in BaAl2O4 phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
    [Crossref]
  22. F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
    [Crossref]
  23. D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Photoluminescence and Cathodoluminescence Spectra of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
    [Crossref]
  24. D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
    [Crossref]
  25. S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
    [Crossref]
  26. M. V. dos S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
    [Crossref]
  27. S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
    [Crossref]
  28. C. Kittel, “Introduction to Solid State Physics”, 4th Ed (J. Wiley Inc., 1971), p483.
  29. G. Bizarri and B. Moine, “On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin. 113(3-4), 199–213 (2005).
    [Crossref]
  30. T. Onimaru, S. Fukuta, T. Misawa, K. Sakita, and K. Betsui, “Study of the effect of water on thermal and operating degradation of BaMgAl10O17:Eu2+ (BAM) blue phosphor,” J. Soc. Inf. Disp. 13(1), 45–50 (2005).
    [Crossref]
  31. B. Dawson, M. Ferguson, G. Marking, and A. L. Diaz, “Mechanisms of VUV Damage in BaMgAl10O17:Eu2+,” Chem. Mater. 16(25), 5311–5317 (2004).
    [Crossref]
  32. P. Boolchand, K. C. Mishra, M. Raukas, A. Ellens, and P. C. Schmidt, “Occupancy and site distribution of europium in barium magnesium aluminate by 151Eu Mössbauer spectroscopy,” Phys. Rev. B 66(13), 134429 (2002).
    [Crossref]

2019 (1)

2016 (1)

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

2015 (4)

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Photoluminescence and Cathodoluminescence Spectra of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

J. Ueda, T. Shinoda, and S. Tanabe, “Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+,” Opt. Mater. 41, 84–89 (2015).
[Crossref]

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Lumin. 30(2), 235–239 (2015).
[Crossref]

2014 (2)

B. P. Kore, N. S. Doble, and S. J. Doble, “Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate,” J. Lumin. 150, 59–67 (2014).
[Crossref]

M. V. dos S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
[Crossref]

2009 (2)

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500(C),” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

2007 (2)

M. Peng and G. Hong, “Reduction of Eu3+ to Eu2+ in BaAl2O4 phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
[Crossref]

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Crystallogr., Sect. B: Struct. Sci. 63(5), 675–682 (2007).
[Crossref]

2005 (2)

G. Bizarri and B. Moine, “On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin. 113(3-4), 199–213 (2005).
[Crossref]

T. Onimaru, S. Fukuta, T. Misawa, K. Sakita, and K. Betsui, “Study of the effect of water on thermal and operating degradation of BaMgAl10O17:Eu2+ (BAM) blue phosphor,” J. Soc. Inf. Disp. 13(1), 45–50 (2005).
[Crossref]

2004 (1)

B. Dawson, M. Ferguson, G. Marking, and A. L. Diaz, “Mechanisms of VUV Damage in BaMgAl10O17:Eu2+,” Chem. Mater. 16(25), 5311–5317 (2004).
[Crossref]

2003 (1)

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

2002 (1)

P. Boolchand, K. C. Mishra, M. Raukas, A. Ellens, and P. C. Schmidt, “Occupancy and site distribution of europium in barium magnesium aluminate by 151Eu Mössbauer spectroscopy,” Phys. Rev. B 66(13), 134429 (2002).
[Crossref]

2000 (2)

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

1995 (1)

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

1994 (2)

S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

1979 (1)

W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

1976 (1)

W. Hörkner and H. Müller-Buschbaum, “Zur Kristallstruktur von CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983–984 (1976).
[Crossref]

1975 (1)

P. Mondal and J. W. Jeffery, “The Crystal Structure of Tricalcium Aluminate, Ca3Al2O6,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 31(3), 689–697 (1975).
[Crossref]

1968 (2)

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

Abakumov, A. M.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Amelinkx, S.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Andrade, A. B.

M. V. dos S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
[Crossref]

Betsui, K.

T. Onimaru, S. Fukuta, T. Misawa, K. Sakita, and K. Betsui, “Study of the effect of water on thermal and operating degradation of BaMgAl10O17:Eu2+ (BAM) blue phosphor,” J. Soc. Inf. Disp. 13(1), 45–50 (2005).
[Crossref]

Bizarri, G.

G. Bizarri and B. Moine, “On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin. 113(3-4), 199–213 (2005).
[Crossref]

Blasse, G.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

Blokpoel, W. P.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Boolchand, P.

P. Boolchand, K. C. Mishra, M. Raukas, A. Ellens, and P. C. Schmidt, “Occupancy and site distribution of europium in barium magnesium aluminate by 151Eu Mössbauer spectroscopy,” Phys. Rev. B 66(13), 134429 (2002).
[Crossref]

Botha, J. R.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500(C),” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

Boysen, H.

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Crystallogr., Sect. B: Struct. Sci. 63(5), 675–682 (2007).
[Crossref]

Bril, A.

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

Brito, H. F.

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Carpenter, M. A.

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Carvalho, C. A. A.

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Chaminade, J. P.

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

Choi, J. C.

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Couzi, M.

S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

Dawson, B.

B. Dawson, M. Ferguson, G. Marking, and A. L. Diaz, “Mechanisms of VUV Damage in BaMgAl10O17:Eu2+,” Chem. Mater. 16(25), 5311–5317 (2004).
[Crossref]

den Engelsen, D.

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Photoluminescence and Cathodoluminescence Spectra of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

Diaz, A. L.

B. Dawson, M. Ferguson, G. Marking, and A. L. Diaz, “Mechanisms of VUV Damage in BaMgAl10O17:Eu2+,” Chem. Mater. 16(25), 5311–5317 (2004).
[Crossref]

Doble, N. S.

B. P. Kore, N. S. Doble, and S. J. Doble, “Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate,” J. Lumin. 150, 59–67 (2014).
[Crossref]

Doble, S. J.

B. P. Kore, N. S. Doble, and S. J. Doble, “Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate,” J. Lumin. 150, 59–67 (2014).
[Crossref]

dos S. Rezende, M. V.

M. V. dos S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
[Crossref]

Ellens, A.

P. Boolchand, K. C. Mishra, M. Raukas, A. Ellens, and P. C. Schmidt, “Occupancy and site distribution of europium in barium magnesium aluminate by 151Eu Mössbauer spectroscopy,” Phys. Rev. B 66(13), 134429 (2002).
[Crossref]

Felinto, M. C. F. C.

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Ferguson, M.

B. Dawson, M. Ferguson, G. Marking, and A. L. Diaz, “Mechanisms of VUV Damage in BaMgAl10O17:Eu2+,” Chem. Mater. 16(25), 5311–5317 (2004).
[Crossref]

Fern, G.

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Photoluminescence and Cathodoluminescence Spectra of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

Fern, G. R.

Frampton, C.

Fukuta, S.

T. Onimaru, S. Fukuta, T. Misawa, K. Sakita, and K. Betsui, “Study of the effect of water on thermal and operating degradation of BaMgAl10O17:Eu2+ (BAM) blue phosphor,” J. Soc. Inf. Disp. 13(1), 45–50 (2005).
[Crossref]

Gorobez, J.

Hagenmuller, P.

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

Harris, P. G.

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Photoluminescence and Cathodoluminescence Spectra of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

He, Q.

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Lumin. 30(2), 235–239 (2015).
[Crossref]

Henderson, C. M.

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Hölsä, J.

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Hong, G.

M. Peng and G. Hong, “Reduction of Eu3+ to Eu2+ in BaAl2O4 phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
[Crossref]

Hörkner, W.

W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

W. Hörkner and H. Müller-Buschbaum, “Zur Kristallstruktur von CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983–984 (1976).
[Crossref]

Huang, S. Y.

S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

Ireland, T.

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

Ireland, T. G.

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Photoluminescence and Cathodoluminescence Spectra of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

Ishii, Y.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Jeffery, J. W.

P. Mondal and J. W. Jeffery, “The Crystal Structure of Tricalcium Aluminate, Ca3Al2O6,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 31(3), 689–697 (1975).
[Crossref]

Ju, S. H.

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Kawaguchi, S.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Kim, C. D.

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Kim, T. W.

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Kittel, C.

C. Kittel, “Introduction to Solid State Physics”, 4th Ed (J. Wiley Inc., 1971), p483.

Kore, B. P.

B. P. Kore, N. S. Doble, and S. J. Doble, “Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate,” J. Lumin. 150, 59–67 (2014).
[Crossref]

Kubota, Y.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Lastusaari, M.

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Lebedev, O. I.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Lerch, M.

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Crystallogr., Sect. B: Struct. Sci. 63(5), 675–682 (2007).
[Crossref]

Levine, A. K.

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

Marion, S.

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Marking, G.

B. Dawson, M. Ferguson, G. Marking, and A. L. Diaz, “Mechanisms of VUV Damage in BaMgAl10O17:Eu2+,” Chem. Mater. 16(25), 5311–5317 (2004).
[Crossref]

Misawa, T.

T. Onimaru, S. Fukuta, T. Misawa, K. Sakita, and K. Betsui, “Study of the effect of water on thermal and operating degradation of BaMgAl10O17:Eu2+ (BAM) blue phosphor,” J. Soc. Inf. Disp. 13(1), 45–50 (2005).
[Crossref]

Mishra, K. C.

P. Boolchand, K. C. Mishra, M. Raukas, A. Ellens, and P. C. Schmidt, “Occupancy and site distribution of europium in barium magnesium aluminate by 151Eu Mössbauer spectroscopy,” Phys. Rev. B 66(13), 134429 (2002).
[Crossref]

Moine, B.

G. Bizarri and B. Moine, “On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin. 113(3-4), 199–213 (2005).
[Crossref]

Mondal, P.

P. Mondal and J. W. Jeffery, “The Crystal Structure of Tricalcium Aluminate, Ca3Al2O6,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 31(3), 689–697 (1975).
[Crossref]

Montes, P. J. R.

M. V. dos S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
[Crossref]

Mori, S.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Mothudi, B. M.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500(C),” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

Müller-Buschbaum, H.

W. Hörkner and H. Müller-Buschbaum, “Zur Kristallstruktur von CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983–984 (1976).
[Crossref]

Müller-Buschbaum, H. K.

W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

Nistor, L.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Ntwaeaborwa, O. M.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500(C),” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

Oh, U. S.

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Onimaru, T.

T. Onimaru, S. Fukuta, T. Misawa, K. Sakita, and K. Betsui, “Study of the effect of water on thermal and operating degradation of BaMgAl10O17:Eu2+ (BAM) blue phosphor,” J. Soc. Inf. Disp. 13(1), 45–50 (2005).
[Crossref]

Palilla, F. C.

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

Park, H. L.

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Peng, M.

M. Peng and G. Hong, “Reduction of Eu3+ to Eu2+ in BaAl2O4 phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
[Crossref]

Poort, S. H. M.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Ptácek, P.

P. Ptáček, Strontium Aluminate - Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Application (InTech, 2014), Chapter 1.

Qiu, G.

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Lumin. 30(2), 235–239 (2015).
[Crossref]

Qiu, J.

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Lumin. 30(2), 235–239 (2015).
[Crossref]

Raukas, M.

P. Boolchand, K. C. Mishra, M. Raukas, A. Ellens, and P. C. Schmidt, “Occupancy and site distribution of europium in barium magnesium aluminate by 151Eu Mössbauer spectroscopy,” Phys. Rev. B 66(13), 134429 (2002).
[Crossref]

Ravez, J.

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

Rodehorst, U.

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Rodrigues, L. C. V.

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Ropp, R. C.

R. C. Ropp, Encyclopedia of the Alkaline Earth Compounds (Elsevier, 2013), Chapter 6.

Sakita, K.

T. Onimaru, S. Fukuta, T. Misawa, K. Sakita, and K. Betsui, “Study of the effect of water on thermal and operating degradation of BaMgAl10O17:Eu2+ (BAM) blue phosphor,” J. Soc. Inf. Disp. 13(1), 45–50 (2005).
[Crossref]

Schmidt, P. C.

P. Boolchand, K. C. Mishra, M. Raukas, A. Ellens, and P. C. Schmidt, “Occupancy and site distribution of europium in barium magnesium aluminate by 151Eu Mössbauer spectroscopy,” Phys. Rev. B 66(13), 134429 (2002).
[Crossref]

Senyshyn, A.

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Crystallogr., Sect. B: Struct. Sci. 63(5), 675–682 (2007).
[Crossref]

Shinoda, T.

J. Ueda, T. Shinoda, and S. Tanabe, “Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+,” Opt. Mater. 41, 84–89 (2015).
[Crossref]

Shukla, A.

A. Shukla, Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides, Thesis, University of Montreal, July 2012.

Silver, J.

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Photoluminescence and Cathodoluminescence Spectra of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

Stefani, R.

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Stys, A.

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Crystallogr., Sect. B: Struct. Sci. 63(5), 675–682 (2007).
[Crossref]

Swart, H. C.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500(C),” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

Tanabe, S.

J. Ueda, T. Shinoda, and S. Tanabe, “Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+,” Opt. Mater. 41, 84–89 (2015).
[Crossref]

Tanaka, E.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Tomkus, M. R.

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

Tsukasaki, H.

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

Ueda, J.

J. Ueda, T. Shinoda, and S. Tanabe, “Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+,” Opt. Mater. 41, 84–89 (2015).
[Crossref]

Valerio, M. E. G.

M. V. dos S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
[Crossref]

Van Tendeloo, G.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Volhard, M.

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

Von Der Mühll, R.

S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

Xu, X.

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Lumin. 30(2), 235–239 (2015).
[Crossref]

Yu, L.

L. Yu, D. den Engelsen, J. Gorobez, G. R. Fern, T. G. Ireland, C. Frampton, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+,” Opt. Mater. Express 9(5), 2175–2195 (2019).
[Crossref]

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

Yu, X.

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Lumin. 30(2), 235–239 (2015).
[Crossref]

Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. (1)

P. Mondal and J. W. Jeffery, “The Crystal Structure of Tricalcium Aluminate, Ca3Al2O6,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 31(3), 689–697 (1975).
[Crossref]

Acta Crystallogr., Sect. B: Struct. Sci. (1)

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Crystallogr., Sect. B: Struct. Sci. 63(5), 675–682 (2007).
[Crossref]

Chem. Mater. (2)

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

B. Dawson, M. Ferguson, G. Marking, and A. L. Diaz, “Mechanisms of VUV Damage in BaMgAl10O17:Eu2+,” Chem. Mater. 16(25), 5311–5317 (2004).
[Crossref]

ECS J. Solid State Sci. Technol. (2)

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Photoluminescence and Cathodoluminescence Spectra of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

Ferroelectrics (1)

S. Y. Huang, R. Von Der Mühll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

J. Appl. Phys. (1)

M. V. dos S. Rezende, A. B. Andrade, M. E. G. Valerio, and P. J. R. Montes, “The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds,” J. Appl. Phys. 115(10), 103510 (2014).
[Crossref]

J. Electrochem. Soc. (1)

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

J. Inorg. Nucl. Chem. (1)

W. Hörkner and H. Müller-Buschbaum, “Zur Kristallstruktur von CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983–984 (1976).
[Crossref]

J. Lumin. (3)

M. Peng and G. Hong, “Reduction of Eu3+ to Eu2+ in BaAl2O4 phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
[Crossref]

G. Bizarri and B. Moine, “On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin. 113(3-4), 199–213 (2005).
[Crossref]

B. P. Kore, N. S. Doble, and S. J. Doble, “Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate,” J. Lumin. 150, 59–67 (2014).
[Crossref]

J. Soc. Inf. Disp. (1)

T. Onimaru, S. Fukuta, T. Misawa, K. Sakita, and K. Betsui, “Study of the effect of water on thermal and operating degradation of BaMgAl10O17:Eu2+ (BAM) blue phosphor,” J. Soc. Inf. Disp. 13(1), 45–50 (2005).
[Crossref]

J. Solid State Chem. (1)

S. Y. Huang, R. Von Der Mühll, J. Ravez, J. P. Chaminade, P. Hagenmuller, and M. Couzi, “A propos de la ferroélectricité dans BaAl2O4,” J. Solid State Chem. 109(1), 97–105 (1994).
[Crossref]

Lumin. (1)

Q. He, G. Qiu, X. Xu, J. Qiu, and X. Yu, “Photostimulated luminescence properties of Eu2+-doped barium aluminate phosphor,” Lumin. 30(2), 235–239 (2015).
[Crossref]

Mater. Res. Bull. (1)

S. H. Ju, U. S. Oh, J. C. Choi, H. L. Park, T. W. Kim, and C. D. Kim, “Tunable color emission and solid solubility limit in Ba1-xCaxAl2O4:Eu0.0012+ phosphors through the mixed states of CaAl2O4 and BaAl2O4,” Mater. Res. Bull. 35(11), 1831–1835 (2000).
[Crossref]

Mineral. Mag. (1)

U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, “Structural phase transitions and mixing behaviour of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution,” Mineral. Mag. 67(5), 989–1013 (2003).
[Crossref]

Opt. Mater. (2)

J. Ueda, T. Shinoda, and S. Tanabe, “Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+,” Opt. Mater. 41, 84–89 (2015).
[Crossref]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater. 31(12), 1815–1818 (2009).
[Crossref]

Opt. Mater. Express (1)

Phase Transitions (1)

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Philips Res. Rep. (1)

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

Phys. B (1)

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500(C),” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

Phys. Rev. B (2)

S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, “Giant thermal vibrations in the framework compounds Ba1−xSrxAl2O4,” Phys. Rev. B 94(5), 054117 (2016).
[Crossref]

P. Boolchand, K. C. Mishra, M. Raukas, A. Ellens, and P. C. Schmidt, “Occupancy and site distribution of europium in barium magnesium aluminate by 151Eu Mössbauer spectroscopy,” Phys. Rev. B 66(13), 134429 (2002).
[Crossref]

Z. Anorg. Allg. Chem. (1)

W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

Other (5)

M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, “Crystal structure, photoluminescence and cathodoluminescence of Sr1-xBaxAl2O4 doped with Eu2+,” Opt. Mater. Express, in press.

A. Shukla, Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides, Thesis, University of Montreal, July 2012.

P. Ptáček, Strontium Aluminate - Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Application (InTech, 2014), Chapter 1.

R. C. Ropp, Encyclopedia of the Alkaline Earth Compounds (Elsevier, 2013), Chapter 6.

C. Kittel, “Introduction to Solid State Physics”, 4th Ed (J. Wiley Inc., 1971), p483.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Composition diagram of BaO-CaO-Al2O3. The cement chemistry notation has been adopted to denote the compounds in this ternary system. The red line indicates the compositions that were studied.
Fig. 2.
Fig. 2. SEM images of Ba0.97Eu0.03Al2O4 (a) and Ba0.4Ca0.57Eu0.03Al2O4 (b) at 7 kV.
Fig. 3.
Fig. 3. XRD patterns of Ba0.97-xCaxEu0.03Al2O4 for 0 ≤ x ≤ 0.97. (a) 5° ≤ 2θ ≤ 85°. (b) Enlarged pattern at 28° ≤ 2θ ≤ 36°. The CaAl2O4 and BaAl2O4 patterns in Fig. 3(a) have been taken from the standard cards ICDD PDF number 01-077-3822 and ICDD PDF number 01-077-4274 respectively.
Fig. 4.
Fig. 4. Composition diagram of the phases in Ba0.97-xCaxEu0.03Al2O4. C3A is a short notation for (Ba0.97-xCaxEu0.03)Al2O6.
Fig. 5.
Fig. 5. (a) Cell volumes of hexagonal and monoclinic phases in Ba0.97-xCaxEu0.03Al2O4. (b) Lattice parameter C of hexagonal tridymite structure for the hexagonal, monoclinic and cubic (C3A) phases in Ba0.97-xCaxEu0.03Al2O4.
Fig. 6.
Fig. 6. Volumes of the hexagonal unit cell in Ba0.97-xCaxEu0.03Al2O4 (BCA), Sr0.97-xBaxEu0.03Al2O4 (BSA) and Sr0.99-xCaxEu0.01Al2O4 (CSA).
Fig. 7.
Fig. 7. PL spectra of Ba0.97-xCaxAl2O4:3%Eu2+ at various values of xCa. (a) Emission spectra; for 0.2 < x < 0.4 the excitation wavelength was 360 nm. (b) Excitation spectra. For clarity reasons only a limited number of spectra are shown. The kink at 400 nm in the excitation spectra is due to a filter change of the spectrometer.
Fig. 8.
Fig. 8. Deconvolutions of PL spectra of BCA doped with Eu2+. (a) Ca0.97Eu0.03Al2O4.; the inset shows a part of the spectrum at an enlarged scale (taken from [1]). (b) Ba0.97Eu0.03Al2O4. (c) Ba0.2Ca0.77Eu0.03Al2O4. (d) Ba0.7Ca0.27Eu0.03Al2O4. The p-profiles refer to the hexagonal (BaAl2O4) phase, whereas the q-profiles refer largely to the monoclinic (CaAl2O4) phase.
Fig. 9.
Fig. 9. CL spectra recorded at 200 keV and room temperature of a BaAl2O4:3%Eu2+ sample that has been stored for three years in air at room temperature. (a) The spectral radiance of the spectra has been normalized at λ=500 nm. First spectrum 1 was recorded (without e-beam exposure before recording), spectrum 2 was recorded after about 5 minutes electron bombardment of the same specimen in the TEM. (b) Deconvolution of spectrum 1 (from (a)) with two Gaussian profiles.
Fig. 10.
Fig. 10. View of the hexagonal unit cell (space group P63) of BaAl2O4 along the c-axis. Ba2+ ions at site 1 are indicated by Ba1 (green), Ba2+ ions at site 2 are indicated by Ba2 (blue). Red balls are O2− ions and the Al3+ ions are indicated inside the tetrahedra.

Tables (6)

Tables Icon

Table 1. Observed phases in Ba0.97-xCaxEu0.03Al2O4 phosphor series.

Tables Icon

Table 2. Ratio between spectral radiances at 430 nm and 500 nm of BaAl2O4:Eu2+

Tables Icon

Table 3. Hexagonal BA in Ba0.97-xCaxEu0.03Al2O4

Tables Icon

Table 4. Monoclinic CA in Ba0.97-xCaxEu0.03Al2O4

Tables Icon

Table 5. Cubic C3A (tri-calcium aluminate) in Ba0.97-xCaxEu0.03Al2O4

Tables Icon

Table 6. Cubic C12A7 (mayenite) in Ba0.97-xCaxEu0.03Al2O4