Abstract

Aluminum is now regarded as one of the best metals for pushing plasmonics towards ultraviolet. When exposed to air, a 3-5 nm alumina shell is formed rapidly around aluminum, preventing further oxygen penetration. This natural oxidation layer is known to chemically stabilize Al. Nevertheless, due to the large surface to volume ratio of Al nanoparticles, their long-term stability is an issue, especially when they are polycrystalline. This critical point has to be developed as the optical properties of conventionally evaporated Al nanostructures may evolve over time. In this article, the evolution of the plasmonic properties sustained by Al nanodisks with a varying oxidation layer is studied by numerical calculations. Their stability over time is also experimentally monitored over 250 days. When exposed to ambient air, their optical properties are preserved for 90 days whatever their diameter, due to a very slight oxidation. Beyond this period, the nanodisks lose their optical properties more or less rapidly depending, this time, on their diameter. A competition between oxidation and self-annealing is proposed in order to explain these results. Nanodisks with a particular diameter of 100 nm are surprisingly stable, exhibiting plasmonic resonances lasting over 250 days. Additionally, when Al nanodisks are exposed to a water environment, a strong corrosion effect shortens their lifetime to 5 days. The obtained results are of importance for further use of conventionally evaporated Al nanostructures for optical applications, as they should remain stable over a long period of time.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermal stability and optical properties of an Al semishell nanostructure

Kishin Matsumori and Ryushi Fujimura
Opt. Mater. Express 8(5) 1265-1273 (2018)

Enhancement of the intrinsic fluorescence of adenine using aluminum nanoparticle arrays

Shankar K. Jha, Nassir Mojarad, Mario Agio, Jörg F. Löffler, and Yasin Ekinci
Opt. Express 23(19) 24719-24729 (2015)

How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures

Yael Gutierrez, Dolores Ortiz, Juan M. Sanz, Jose M. Saiz, Francisco Gonzalez, Henry O. Everitt, and Fernando Moreno
Opt. Express 24(18) 20621-20631 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance- enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
    [Crossref]
  2. J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructure aluminum films,” Opt. Mater. Express 3(7), 954–959 (2013).
    [Crossref]
  3. D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D Appl. Phys. 48(18), 184001 (2015).
    [Crossref]
  4. J. Martin and J. Plain, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D Appl. Phys. 48(18), 184002 (2015).
    [Crossref]
  5. S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
    [Crossref] [PubMed]
  6. X.-M. Li, M.-H. Bi, L. Cui, Y.-Z. Zhou, X.-W. Du, S.-Z. Qiao, and J. Yang, “3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
    [Crossref]
  7. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
    [Crossref] [PubMed]
  8. Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
    [Crossref] [PubMed]
  9. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
    [Crossref]
  10. D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96(7), 3626–3634 (2004).
    [Crossref]
  11. Y. Chen, X. Xin, N. Zhang, and Y.-J. Xu, “Aluminum-based plasmonic photocatalysis,” Part. Part. Syst. Charact. 34(8), 1600357 (2017).
    [Crossref]
  12. B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
    [Crossref] [PubMed]
  13. L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
    [Crossref] [PubMed]
  14. D. A. Firmansyah, K. Sullivan, K.-S. Lee, Y. H. Kim, R. Zahaf, M. R. Zachariah, and D. Lee, “Microstructural behavior of the alumina shell and aluminum core before and after melting of aluminum nanoparticles,” J. Phys. Chem. C 116(1), 404–411 (2011).
    [Crossref]
  15. R. Nakamura, D. Tokozakura, H. Nakajima, J.-G. Lee, and H. Mori, “Hollow oxide formation by oxidation of Al and Cu nanoparticles,” J. Appl. Phys. 101(7), 074303 (2007).
    [Crossref]
  16. C. Aumann, G. Skofronick, and J. Martin, “Oxidation behavior of aluminum nanopowders,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 13(3), 1178–1183 (1995).
    [Crossref]
  17. T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of oxide formation on aluminum nanoparticles by transition metal coating,” Chem. Mater. 17(16), 4086–4091 (2005).
    [Crossref]
  18. M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and properties of stabilized aluminum nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
    [Crossref] [PubMed]
  19. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
    [Crossref] [PubMed]
  20. A. Shahravan, T. Desai, and T. Matsoukas, “Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials,” ACS Appl. Mater. Interfaces 6(10), 7942–7947 (2014).
    [Crossref] [PubMed]
  21. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref] [PubMed]
  22. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
    [Crossref] [PubMed]
  23. D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, N. Bonod, A. V. Zayats, W. Dickson, and D. Gérard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34(3), 691–700 (2017).
    [Crossref]
  24. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
    [Crossref]
  25. J. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. Saiz, F. González, A. Brown, M. Losurdo, H. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
    [Crossref]
  26. A. B. Dahlin, T. Sannomiya, R. Zahn, G. A. Sotiriou, and J. Vörös, “Electrochemical crystallization of plasmonic nanostructures,” Nano Lett. 11(3), 1337–1343 (2011).
    [Crossref] [PubMed]
  27. M. Stangl and M. Militzer, “Modeling self-annealing kinetics in electroplated Cu thin films,” J. Appl. Phys. 103(11), 113521 (2008).
    [Crossref]
  28. E.-M. Pavelescu, T. Jouhti, M. Dumitrescu, P. Klar, S. Karirinne, Y. Fedorenko, and M. Pessa, “Growth-temperature- dependent (self-) annealing-induced blueshift of photoluminescence from 1.3 µm gainnas/gaas quantum wells,” Appl. Phys. Lett. 83(8), 1497–1499 (2003).
    [Crossref]
  29. J. Gubicza, N. Q. Chinh, J. L. Lábár, Z. Hegedűs, and T. G. Langdon, “Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy,” Mater. Sci. Eng. A 527(3), 752–760 (2010).
    [Crossref]
  30. L. Shao, Y. Tao, Q. Ruan, J. Wang, and H.-Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17(16), 10861–10870 (2015).
    [Crossref] [PubMed]
  31. F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
    [Crossref]
  32. M. Twardowski and R. G. Nuzzo, “Chemically mediated grain growth in nanotextured Au, Au/Cu thin films: Novel substrates for the formation of self-assembled monolayers,” Langmuir 18(14), 5529–5538 (2002).
    [Crossref]
  33. A. Rai, K. Park, L. Zhou, and M. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theory Model. 10(5), 843–859 (2006).
    [Crossref]
  34. G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
    [Crossref]
  35. G. Maidecchi, C. V. Duc, R. Buzio, A. Gerbi, G. Gemme, M. Canepa, and F. Bisio, “Electronic structure of core–shell metal/oxide aluminum nanoparticles,” J. Phys. Chem. C 119(47), 26719–26725 (2015).
    [Crossref]
  36. M. Schoenitz, C.-M. Chen, and E. L. Dreizin, “Oxidation of aluminum particles in the presence of water,” J. Phys. Chem. B 113(15), 5136–5140 (2009).
    [Crossref] [PubMed]
  37. P. M. Schwab, C. Moosmann, K. Dopf, and H.-J. Eisler, “Oxide mediated spectral shifting in aluminum resonant optical antennas,” Opt. Express 23(20), 26533–26543 (2015).
    [Crossref] [PubMed]
  38. F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
    [Crossref] [PubMed]
  39. M. Schwind, C. Langhammer, B. Kasemo, and I. Zorić, “Nanoplasmonic sensing and QCM-D as ultrasensitive complementary techniques for kinetic corrosion studies of aluminum nanoparticles,” Appl. Surf. Sci. 257(13), 5679–5687 (2011).
    [Crossref]

2017 (5)

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

X.-M. Li, M.-H. Bi, L. Cui, Y.-Z. Zhou, X.-W. Du, S.-Z. Qiao, and J. Yang, “3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Y. Chen, X. Xin, N. Zhang, and Y.-J. Xu, “Aluminum-based plasmonic photocatalysis,” Part. Part. Syst. Charact. 34(8), 1600357 (2017).
[Crossref]

F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
[Crossref]

D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, N. Bonod, A. V. Zayats, W. Dickson, and D. Gérard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34(3), 691–700 (2017).
[Crossref]

2016 (4)

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref] [PubMed]

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

2015 (6)

D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D Appl. Phys. 48(18), 184001 (2015).
[Crossref]

J. Martin and J. Plain, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D Appl. Phys. 48(18), 184002 (2015).
[Crossref]

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H.-Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17(16), 10861–10870 (2015).
[Crossref] [PubMed]

G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
[Crossref]

G. Maidecchi, C. V. Duc, R. Buzio, A. Gerbi, G. Gemme, M. Canepa, and F. Bisio, “Electronic structure of core–shell metal/oxide aluminum nanoparticles,” J. Phys. Chem. C 119(47), 26719–26725 (2015).
[Crossref]

P. M. Schwab, C. Moosmann, K. Dopf, and H.-J. Eisler, “Oxide mediated spectral shifting in aluminum resonant optical antennas,” Opt. Express 23(20), 26533–26543 (2015).
[Crossref] [PubMed]

2014 (4)

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

A. Shahravan, T. Desai, and T. Matsoukas, “Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials,” ACS Appl. Mater. Interfaces 6(10), 7942–7947 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

2013 (2)

J. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. Saiz, F. González, A. Brown, M. Losurdo, H. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructure aluminum films,” Opt. Mater. Express 3(7), 954–959 (2013).
[Crossref]

2011 (4)

M. Schwind, C. Langhammer, B. Kasemo, and I. Zorić, “Nanoplasmonic sensing and QCM-D as ultrasensitive complementary techniques for kinetic corrosion studies of aluminum nanoparticles,” Appl. Surf. Sci. 257(13), 5679–5687 (2011).
[Crossref]

A. B. Dahlin, T. Sannomiya, R. Zahn, G. A. Sotiriou, and J. Vörös, “Electrochemical crystallization of plasmonic nanostructures,” Nano Lett. 11(3), 1337–1343 (2011).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

D. A. Firmansyah, K. Sullivan, K.-S. Lee, Y. H. Kim, R. Zahaf, M. R. Zachariah, and D. Lee, “Microstructural behavior of the alumina shell and aluminum core before and after melting of aluminum nanoparticles,” J. Phys. Chem. C 116(1), 404–411 (2011).
[Crossref]

2010 (1)

J. Gubicza, N. Q. Chinh, J. L. Lábár, Z. Hegedűs, and T. G. Langdon, “Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy,” Mater. Sci. Eng. A 527(3), 752–760 (2010).
[Crossref]

2009 (2)

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and properties of stabilized aluminum nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[Crossref] [PubMed]

M. Schoenitz, C.-M. Chen, and E. L. Dreizin, “Oxidation of aluminum particles in the presence of water,” J. Phys. Chem. B 113(15), 5136–5140 (2009).
[Crossref] [PubMed]

2008 (3)

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

M. Stangl and M. Militzer, “Modeling self-annealing kinetics in electroplated Cu thin films,” J. Appl. Phys. 103(11), 113521 (2008).
[Crossref]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

2007 (2)

R. Nakamura, D. Tokozakura, H. Nakajima, J.-G. Lee, and H. Mori, “Hollow oxide formation by oxidation of Al and Cu nanoparticles,” J. Appl. Phys. 101(7), 074303 (2007).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance- enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

2006 (1)

A. Rai, K. Park, L. Zhou, and M. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theory Model. 10(5), 843–859 (2006).
[Crossref]

2005 (1)

T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of oxide formation on aluminum nanoparticles by transition metal coating,” Chem. Mater. 17(16), 4086–4091 (2005).
[Crossref]

2004 (1)

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96(7), 3626–3634 (2004).
[Crossref]

2003 (1)

E.-M. Pavelescu, T. Jouhti, M. Dumitrescu, P. Klar, S. Karirinne, Y. Fedorenko, and M. Pessa, “Growth-temperature- dependent (self-) annealing-induced blueshift of photoluminescence from 1.3 µm gainnas/gaas quantum wells,” Appl. Phys. Lett. 83(8), 1497–1499 (2003).
[Crossref]

2002 (1)

M. Twardowski and R. G. Nuzzo, “Chemically mediated grain growth in nanotextured Au, Au/Cu thin films: Novel substrates for the formation of self-assembled monolayers,” Langmuir 18(14), 5529–5538 (2002).
[Crossref]

1995 (1)

C. Aumann, G. Skofronick, and J. Martin, “Oxidation behavior of aluminum nanopowders,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 13(3), 1178–1183 (1995).
[Crossref]

Alcaraz De La Osa, R.

J. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. Saiz, F. González, A. Brown, M. Losurdo, H. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Aumann, C.

C. Aumann, G. Skofronick, and J. Martin, “Oxidation behavior of aluminum nanopowders,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 13(3), 1178–1183 (1995).
[Crossref]

Bao, K.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Berg, F.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Bi, M.-H.

X.-M. Li, M.-H. Bi, L. Cui, Y.-Z. Zhou, X.-W. Du, S.-Z. Qiao, and J. Yang, “3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Bisio, F.

G. Maidecchi, C. V. Duc, R. Buzio, A. Gerbi, G. Gemme, M. Canepa, and F. Bisio, “Electronic structure of core–shell metal/oxide aluminum nanoparticles,” J. Phys. Chem. C 119(47), 26719–26725 (2015).
[Crossref]

Bonod, N.

Brown, A.

J. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. Saiz, F. González, A. Brown, M. Losurdo, H. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Bunker, C. E.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and properties of stabilized aluminum nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[Crossref] [PubMed]

Buzio, R.

G. Maidecchi, C. V. Duc, R. Buzio, A. Gerbi, G. Gemme, M. Canepa, and F. Bisio, “Electronic structure of core–shell metal/oxide aluminum nanoparticles,” J. Phys. Chem. C 119(47), 26719–26725 (2015).
[Crossref]

Cai, W.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Canepa, M.

G. Maidecchi, C. V. Duc, R. Buzio, A. Gerbi, G. Gemme, M. Canepa, and F. Bisio, “Electronic structure of core–shell metal/oxide aluminum nanoparticles,” J. Phys. Chem. C 119(47), 26719–26725 (2015).
[Crossref]

Carter, E. A.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Chan, G. H.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Chen, C.-M.

M. Schoenitz, C.-M. Chen, and E. L. Dreizin, “Oxidation of aluminum particles in the presence of water,” J. Phys. Chem. B 113(15), 5136–5140 (2009).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, X. Xin, N. Zhang, and Y.-J. Xu, “Aluminum-based plasmonic photocatalysis,” Part. Part. Syst. Charact. 34(8), 1600357 (2017).
[Crossref]

Cheng, F.

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref] [PubMed]

Chinh, N. Q.

J. Gubicza, N. Q. Chinh, J. L. Lábár, Z. Hegedűs, and T. G. Langdon, “Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy,” Mater. Sci. Eng. A 527(3), 752–760 (2010).
[Crossref]

Choi, J.

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref] [PubMed]

Clark, A. W.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Cooper, J. M.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Cui, L.

X.-M. Li, M.-H. Bi, L. Cui, Y.-Z. Zhou, X.-W. Du, S.-Z. Qiao, and J. Yang, “3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Dahlin, A. B.

A. B. Dahlin, T. Sannomiya, R. Zahn, G. A. Sotiriou, and J. Vörös, “Electrochemical crystallization of plasmonic nanostructures,” Nano Lett. 11(3), 1337–1343 (2011).
[Crossref] [PubMed]

Desai, T.

A. Shahravan, T. Desai, and T. Matsoukas, “Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials,” ACS Appl. Mater. Interfaces 6(10), 7942–7947 (2014).
[Crossref] [PubMed]

Dickson, W.

Dopf, K.

Dreizin, E. L.

M. Schoenitz, C.-M. Chen, and E. L. Dreizin, “Oxidation of aluminum particles in the presence of water,” J. Phys. Chem. B 113(15), 5136–5140 (2009).
[Crossref] [PubMed]

Du, X.-W.

X.-M. Li, M.-H. Bi, L. Cui, Y.-Z. Zhou, X.-W. Du, S.-Z. Qiao, and J. Yang, “3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Duc, C. V.

G. Maidecchi, C. V. Duc, R. Buzio, A. Gerbi, G. Gemme, M. Canepa, and F. Bisio, “Electronic structure of core–shell metal/oxide aluminum nanoparticles,” J. Phys. Chem. C 119(47), 26719–26725 (2015).
[Crossref]

Dumitrescu, M.

E.-M. Pavelescu, T. Jouhti, M. Dumitrescu, P. Klar, S. Karirinne, Y. Fedorenko, and M. Pessa, “Growth-temperature- dependent (self-) annealing-induced blueshift of photoluminescence from 1.3 µm gainnas/gaas quantum wells,” Appl. Phys. Lett. 83(8), 1497–1499 (2003).
[Crossref]

Eisler, H.-J.

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance- enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance- enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Everitt, H.

J. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. Saiz, F. González, A. Brown, M. Losurdo, H. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Everitt, H. O.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Fedorenko, Y.

E.-M. Pavelescu, T. Jouhti, M. Dumitrescu, P. Klar, S. Karirinne, Y. Fedorenko, and M. Pessa, “Growth-temperature- dependent (self-) annealing-induced blueshift of photoluminescence from 1.3 µm gainnas/gaas quantum wells,” Appl. Phys. Lett. 83(8), 1497–1499 (2003).
[Crossref]

Firmansyah, D. A.

D. A. Firmansyah, K. Sullivan, K.-S. Lee, Y. H. Kim, R. Zahaf, M. R. Zachariah, and D. Lee, “Microstructural behavior of the alumina shell and aluminum core before and after melting of aluminum nanoparticles,” J. Phys. Chem. C 116(1), 404–411 (2011).
[Crossref]

Foley, T. J.

T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of oxide formation on aluminum nanoparticles by transition metal coating,” Chem. Mater. 17(16), 4086–4091 (2005).
[Crossref]

Gemme, G.

G. Maidecchi, C. V. Duc, R. Buzio, A. Gerbi, G. Gemme, M. Canepa, and F. Bisio, “Electronic structure of core–shell metal/oxide aluminum nanoparticles,” J. Phys. Chem. C 119(47), 26719–26725 (2015).
[Crossref]

Gérard, D.

Gerbi, A.

G. Maidecchi, C. V. Duc, R. Buzio, A. Gerbi, G. Gemme, M. Canepa, and F. Bisio, “Electronic structure of core–shell metal/oxide aluminum nanoparticles,” J. Phys. Chem. C 119(47), 26719–26725 (2015).
[Crossref]

González, F.

J. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. Saiz, F. González, A. Brown, M. Losurdo, H. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Gouriet, J.-B.

G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
[Crossref]

Gray, S. K.

D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D Appl. Phys. 48(18), 184001 (2015).
[Crossref]

Gubicza, J.

J. Gubicza, N. Q. Chinh, J. L. Lábár, Z. Hegedűs, and T. G. Langdon, “Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy,” Mater. Sci. Eng. A 527(3), 752–760 (2010).
[Crossref]

Guliants, E. A.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and properties of stabilized aluminum nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[Crossref] [PubMed]

Gwo, S.

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref] [PubMed]

Halas, N. J.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Hegedus, Z.

J. Gubicza, N. Q. Chinh, J. L. Lábár, Z. Hegedűs, and T. G. Langdon, “Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy,” Mater. Sci. Eng. A 527(3), 752–760 (2010).
[Crossref]

Higa, K. T.

T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of oxide formation on aluminum nanoparticles by transition metal coating,” Chem. Mater. 17(16), 4086–4091 (2005).
[Crossref]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance- enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance- enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Johnson, C. E.

T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of oxide formation on aluminum nanoparticles by transition metal coating,” Chem. Mater. 17(16), 4086–4091 (2005).
[Crossref]

Jouhti, T.

E.-M. Pavelescu, T. Jouhti, M. Dumitrescu, P. Klar, S. Karirinne, Y. Fedorenko, and M. Pessa, “Growth-temperature- dependent (self-) annealing-induced blueshift of photoluminescence from 1.3 µm gainnas/gaas quantum wells,” Appl. Phys. Lett. 83(8), 1497–1499 (2003).
[Crossref]

Karirinne, S.

E.-M. Pavelescu, T. Jouhti, M. Dumitrescu, P. Klar, S. Karirinne, Y. Fedorenko, and M. Pessa, “Growth-temperature- dependent (self-) annealing-induced blueshift of photoluminescence from 1.3 µm gainnas/gaas quantum wells,” Appl. Phys. Lett. 83(8), 1497–1499 (2003).
[Crossref]

Kasemo, B.

M. Schwind, C. Langhammer, B. Kasemo, and I. Zorić, “Nanoplasmonic sensing and QCM-D as ultrasensitive complementary techniques for kinetic corrosion studies of aluminum nanoparticles,” Appl. Surf. Sci. 257(13), 5679–5687 (2011).
[Crossref]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Khlopin, D.

Kim, Y. H.

D. A. Firmansyah, K. Sullivan, K.-S. Lee, Y. H. Kim, R. Zahaf, M. R. Zachariah, and D. Lee, “Microstructural behavior of the alumina shell and aluminum core before and after melting of aluminum nanoparticles,” J. Phys. Chem. C 116(1), 404–411 (2011).
[Crossref]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Klar, P.

E.-M. Pavelescu, T. Jouhti, M. Dumitrescu, P. Klar, S. Karirinne, Y. Fedorenko, and M. Pessa, “Growth-temperature- dependent (self-) annealing-induced blueshift of photoluminescence from 1.3 µm gainnas/gaas quantum wells,” Appl. Phys. Lett. 83(8), 1497–1499 (2003).
[Crossref]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Krause, D.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96(7), 3626–3634 (2004).
[Crossref]

Krauter, C. M.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Lábár, J. L.

J. Gubicza, N. Q. Chinh, J. L. Lábár, Z. Hegedűs, and T. G. Langdon, “Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy,” Mater. Sci. Eng. A 527(3), 752–760 (2010).
[Crossref]

Langdon, T. G.

J. Gubicza, N. Q. Chinh, J. L. Lábár, Z. Hegedűs, and T. G. Langdon, “Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy,” Mater. Sci. Eng. A 527(3), 752–760 (2010).
[Crossref]

Langhammer, C.

M. Schwind, C. Langhammer, B. Kasemo, and I. Zorić, “Nanoplasmonic sensing and QCM-D as ultrasensitive complementary techniques for kinetic corrosion studies of aluminum nanoparticles,” Appl. Surf. Sci. 257(13), 5679–5687 (2011).
[Crossref]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Laux, F.

Lee, D.

D. A. Firmansyah, K. Sullivan, K.-S. Lee, Y. H. Kim, R. Zahaf, M. R. Zachariah, and D. Lee, “Microstructural behavior of the alumina shell and aluminum core before and after melting of aluminum nanoparticles,” J. Phys. Chem. C 116(1), 404–411 (2011).
[Crossref]

Lee, J.-G.

R. Nakamura, D. Tokozakura, H. Nakajima, J.-G. Lee, and H. Mori, “Hollow oxide formation by oxidation of Al and Cu nanoparticles,” J. Appl. Phys. 101(7), 074303 (2007).
[Crossref]

Lee, K.-S.

D. A. Firmansyah, K. Sullivan, K.-S. Lee, Y. H. Kim, R. Zahaf, M. R. Zachariah, and D. Lee, “Microstructural behavior of the alumina shell and aluminum core before and after melting of aluminum nanoparticles,” J. Phys. Chem. C 116(1), 404–411 (2011).
[Crossref]

Li, G.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Li, H.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and properties of stabilized aluminum nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[Crossref] [PubMed]

Li, X.

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref] [PubMed]

Li, X.-M.

X.-M. Li, M.-H. Bi, L. Cui, Y.-Z. Zhou, X.-W. Du, S.-Z. Qiao, and J. Yang, “3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Li, Y.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Li, Z.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Lieber, C. M.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Lin, H.-Q.

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H.-Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17(16), 10861–10870 (2015).
[Crossref] [PubMed]

Litrico, G.

G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
[Crossref]

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Liu, X.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Losurdo, M.

J. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. Saiz, F. González, A. Brown, M. Losurdo, H. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Lu, F.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and properties of stabilized aluminum nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[Crossref] [PubMed]

Maidecchi, G.

G. Maidecchi, C. V. Duc, R. Buzio, A. Gerbi, G. Gemme, M. Canepa, and F. Bisio, “Electronic structure of core–shell metal/oxide aluminum nanoparticles,” J. Phys. Chem. C 119(47), 26719–26725 (2015).
[Crossref]

Manjavacas, A.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Martin, J.

F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
[Crossref]

D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, N. Bonod, A. V. Zayats, W. Dickson, and D. Gérard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34(3), 691–700 (2017).
[Crossref]

J. Martin and J. Plain, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D Appl. Phys. 48(18), 184002 (2015).
[Crossref]

J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructure aluminum films,” Opt. Mater. Express 3(7), 954–959 (2013).
[Crossref]

C. Aumann, G. Skofronick, and J. Martin, “Oxidation behavior of aluminum nanopowders,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 13(3), 1178–1183 (1995).
[Crossref]

Matsoukas, T.

A. Shahravan, T. Desai, and T. Matsoukas, “Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials,” ACS Appl. Mater. Interfaces 6(10), 7942–7947 (2014).
[Crossref] [PubMed]

McClain, M. J.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Meziani, M. J.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and properties of stabilized aluminum nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[Crossref] [PubMed]

Militzer, M.

M. Stangl and M. Militzer, “Modeling self-annealing kinetics in electroplated Cu thin films,” J. Appl. Phys. 103(11), 113521 (2008).
[Crossref]

Moosmann, C.

Moreno, F.

J. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. Saiz, F. González, A. Brown, M. Losurdo, H. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Mori, H.

R. Nakamura, D. Tokozakura, H. Nakajima, J.-G. Lee, and H. Mori, “Hollow oxide formation by oxidation of Al and Cu nanoparticles,” J. Appl. Phys. 101(7), 074303 (2007).
[Crossref]

Nakajima, H.

R. Nakamura, D. Tokozakura, H. Nakajima, J.-G. Lee, and H. Mori, “Hollow oxide formation by oxidation of Al and Cu nanoparticles,” J. Appl. Phys. 101(7), 074303 (2007).
[Crossref]

Nakamura, R.

R. Nakamura, D. Tokozakura, H. Nakajima, J.-G. Lee, and H. Mori, “Hollow oxide formation by oxidation of Al and Cu nanoparticles,” J. Appl. Phys. 101(7), 074303 (2007).
[Crossref]

Neumann, O.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

Nordlander, P.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Nuzzo, R. G.

M. Twardowski and R. G. Nuzzo, “Chemically mediated grain growth in nanotextured Au, Au/Cu thin films: Novel substrates for the formation of self-assembled monolayers,” Langmuir 18(14), 5529–5538 (2002).
[Crossref]

Ortiz, D.

J. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. Saiz, F. González, A. Brown, M. Losurdo, H. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Park, K.

A. Rai, K. Park, L. Zhou, and M. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theory Model. 10(5), 843–859 (2006).
[Crossref]

Pavelescu, E.-M.

E.-M. Pavelescu, T. Jouhti, M. Dumitrescu, P. Klar, S. Karirinne, Y. Fedorenko, and M. Pessa, “Growth-temperature- dependent (self-) annealing-induced blueshift of photoluminescence from 1.3 µm gainnas/gaas quantum wells,” Appl. Phys. Lett. 83(8), 1497–1499 (2003).
[Crossref]

Pessa, M.

E.-M. Pavelescu, T. Jouhti, M. Dumitrescu, P. Klar, S. Karirinne, Y. Fedorenko, and M. Pessa, “Growth-temperature- dependent (self-) annealing-induced blueshift of photoluminescence from 1.3 µm gainnas/gaas quantum wells,” Appl. Phys. Lett. 83(8), 1497–1499 (2003).
[Crossref]

Plain, J.

Proulx, P.

G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
[Crossref]

Proust, J.

F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
[Crossref]

J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructure aluminum films,” Opt. Mater. Express 3(7), 954–959 (2013).
[Crossref]

Qian, F.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Qiao, S.-Z.

X.-M. Li, M.-H. Bi, L. Cui, Y.-Z. Zhou, X.-W. Du, S.-Z. Qiao, and J. Yang, “3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Quinn, R. A.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and properties of stabilized aluminum nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[Crossref] [PubMed]

Rai, A.

A. Rai, K. Park, L. Zhou, and M. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theory Model. 10(5), 843–859 (2006).
[Crossref]

Rambaud, P.

G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
[Crossref]

Rogers, C. T.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96(7), 3626–3634 (2004).
[Crossref]

Ruan, Q.

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H.-Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17(16), 10861–10870 (2015).
[Crossref] [PubMed]

Saiz, J.

J. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. Saiz, F. González, A. Brown, M. Losurdo, H. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Sannomiya, T.

A. B. Dahlin, T. Sannomiya, R. Zahn, G. A. Sotiriou, and J. Vörös, “Electrochemical crystallization of plasmonic nanostructures,” Nano Lett. 11(3), 1337–1343 (2011).
[Crossref] [PubMed]

Sanz, J.

J. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. Saiz, F. González, A. Brown, M. Losurdo, H. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Schatz, G. C.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Schoenitz, M.

M. Schoenitz, C.-M. Chen, and E. L. Dreizin, “Oxidation of aluminum particles in the presence of water,” J. Phys. Chem. B 113(15), 5136–5140 (2009).
[Crossref] [PubMed]

Schwab, P. M.

Schwind, M.

M. Schwind, C. Langhammer, B. Kasemo, and I. Zorić, “Nanoplasmonic sensing and QCM-D as ultrasensitive complementary techniques for kinetic corrosion studies of aluminum nanoparticles,” Appl. Surf. Sci. 257(13), 5679–5687 (2011).
[Crossref]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Shahravan, A.

A. Shahravan, T. Desai, and T. Matsoukas, “Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials,” ACS Appl. Mater. Interfaces 6(10), 7942–7947 (2014).
[Crossref] [PubMed]

Shao, L.

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H.-Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17(16), 10861–10870 (2015).
[Crossref] [PubMed]

Shih, C.-K.

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref] [PubMed]

Skofronick, G.

C. Aumann, G. Skofronick, and J. Martin, “Oxidation behavior of aluminum nanopowders,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 13(3), 1178–1183 (1995).
[Crossref]

Sotiriou, G. A.

A. B. Dahlin, T. Sannomiya, R. Zahn, G. A. Sotiriou, and J. Vörös, “Electrochemical crystallization of plasmonic nanostructures,” Nano Lett. 11(3), 1337–1343 (2011).
[Crossref] [PubMed]

Stangl, M.

M. Stangl and M. Militzer, “Modeling self-annealing kinetics in electroplated Cu thin films,” J. Appl. Phys. 103(11), 113521 (2008).
[Crossref]

Su, P.-H.

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref] [PubMed]

Sullivan, K.

D. A. Firmansyah, K. Sullivan, K.-S. Lee, Y. H. Kim, R. Zahaf, M. R. Zachariah, and D. Lee, “Microstructural behavior of the alumina shell and aluminum core before and after melting of aluminum nanoparticles,” J. Phys. Chem. C 116(1), 404–411 (2011).
[Crossref]

Sum, T. C.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Sun, Y.-P.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and properties of stabilized aluminum nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[Crossref] [PubMed]

Tan, Y.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Tao, Y.

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H.-Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17(16), 10861–10870 (2015).
[Crossref] [PubMed]

Teplin, C. W.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96(7), 3626–3634 (2004).
[Crossref]

Tian, S.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Tokozakura, D.

R. Nakamura, D. Tokozakura, H. Nakajima, J.-G. Lee, and H. Mori, “Hollow oxide formation by oxidation of Al and Cu nanoparticles,” J. Appl. Phys. 101(7), 074303 (2007).
[Crossref]

Twardowski, M.

M. Twardowski and R. G. Nuzzo, “Chemically mediated grain growth in nanotextured Au, Au/Cu thin films: Novel substrates for the formation of self-assembled monolayers,” Langmuir 18(14), 5529–5538 (2002).
[Crossref]

Van Duyne, R. P.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Vörös, J.

A. B. Dahlin, T. Sannomiya, R. Zahn, G. A. Sotiriou, and J. Vörös, “Electrochemical crystallization of plasmonic nanostructures,” Nano Lett. 11(3), 1337–1343 (2011).
[Crossref] [PubMed]

Wang, J.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H.-Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17(16), 10861–10870 (2015).
[Crossref] [PubMed]

Wang, W.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and properties of stabilized aluminum nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[Crossref] [PubMed]

Wang, Y.

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

Wardley, W. P.

Wurtz, G. A.

Xin, X.

Y. Chen, X. Xin, N. Zhang, and Y.-J. Xu, “Aluminum-based plasmonic photocatalysis,” Part. Part. Syst. Charact. 34(8), 1600357 (2017).
[Crossref]

Xiong, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Xu, H.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Xu, W.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Xu, Y.-J.

Y. Chen, X. Xin, N. Zhang, and Y.-J. Xu, “Aluminum-based plasmonic photocatalysis,” Part. Part. Syst. Charact. 34(8), 1600357 (2017).
[Crossref]

Yang, J.

X.-M. Li, M.-H. Bi, L. Cui, Y.-Z. Zhou, X.-W. Du, S.-Z. Qiao, and J. Yang, “3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Yang, X.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

Yuan, Y.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Zachariah, M.

A. Rai, K. Park, L. Zhou, and M. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theory Model. 10(5), 843–859 (2006).
[Crossref]

Zachariah, M. R.

D. A. Firmansyah, K. Sullivan, K.-S. Lee, Y. H. Kim, R. Zahaf, M. R. Zachariah, and D. Lee, “Microstructural behavior of the alumina shell and aluminum core before and after melting of aluminum nanoparticles,” J. Phys. Chem. C 116(1), 404–411 (2011).
[Crossref]

Zahaf, R.

D. A. Firmansyah, K. Sullivan, K.-S. Lee, Y. H. Kim, R. Zahaf, M. R. Zachariah, and D. Lee, “Microstructural behavior of the alumina shell and aluminum core before and after melting of aluminum nanoparticles,” J. Phys. Chem. C 116(1), 404–411 (2011).
[Crossref]

Zahn, R.

A. B. Dahlin, T. Sannomiya, R. Zahn, G. A. Sotiriou, and J. Vörös, “Electrochemical crystallization of plasmonic nanostructures,” Nano Lett. 11(3), 1337–1343 (2011).
[Crossref] [PubMed]

Zayats, A. V.

Zhang, C.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
[Crossref]

Zhang, N.

Y. Chen, X. Xin, N. Zhang, and Y.-J. Xu, “Aluminum-based plasmonic photocatalysis,” Part. Part. Syst. Charact. 34(8), 1600357 (2017).
[Crossref]

Zhang, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Zhao, J.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Zheng, B. Y.

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

Zhou, L.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

A. Rai, K. Park, L. Zhou, and M. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theory Model. 10(5), 843–859 (2006).
[Crossref]

Zhou, Y.-Z.

X.-M. Li, M.-H. Bi, L. Cui, Y.-Z. Zhou, X.-W. Du, S.-Z. Qiao, and J. Yang, “3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Zhu, J.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Zhu, S.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Zoric, I.

M. Schwind, C. Langhammer, B. Kasemo, and I. Zorić, “Nanoplasmonic sensing and QCM-D as ultrasensitive complementary techniques for kinetic corrosion studies of aluminum nanoparticles,” Appl. Surf. Sci. 257(13), 5679–5687 (2011).
[Crossref]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and properties of stabilized aluminum nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[Crossref] [PubMed]

A. Shahravan, T. Desai, and T. Matsoukas, “Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials,” ACS Appl. Mater. Interfaces 6(10), 7942–7947 (2014).
[Crossref] [PubMed]

ACS Nano (3)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X.-M. Li, M.-H. Bi, L. Cui, Y.-Z. Zhou, X.-W. Du, S.-Z. Qiao, and J. Yang, “3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Adv. Mater. (1)

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

Adv. Powder Technol. (1)

G. Litrico, P. Proulx, J.-B. Gouriet, and P. Rambaud, “Controlled oxidation of aluminum nanoparticles,” Adv. Powder Technol. 26(1), 1–7 (2015).
[Crossref]

Appl. Phys. Lett. (1)

E.-M. Pavelescu, T. Jouhti, M. Dumitrescu, P. Klar, S. Karirinne, Y. Fedorenko, and M. Pessa, “Growth-temperature- dependent (self-) annealing-induced blueshift of photoluminescence from 1.3 µm gainnas/gaas quantum wells,” Appl. Phys. Lett. 83(8), 1497–1499 (2003).
[Crossref]

Appl. Surf. Sci. (1)

M. Schwind, C. Langhammer, B. Kasemo, and I. Zorić, “Nanoplasmonic sensing and QCM-D as ultrasensitive complementary techniques for kinetic corrosion studies of aluminum nanoparticles,” Appl. Surf. Sci. 257(13), 5679–5687 (2011).
[Crossref]

Chem. Mater. (1)

T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of oxide formation on aluminum nanoparticles by transition metal coating,” Chem. Mater. 17(16), 4086–4091 (2005).
[Crossref]

Combust. Theory Model. (1)

A. Rai, K. Park, L. Zhou, and M. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theory Model. 10(5), 843–859 (2006).
[Crossref]

J. Appl. Phys. (3)

M. Stangl and M. Militzer, “Modeling self-annealing kinetics in electroplated Cu thin films,” J. Appl. Phys. 103(11), 113521 (2008).
[Crossref]

R. Nakamura, D. Tokozakura, H. Nakajima, J.-G. Lee, and H. Mori, “Hollow oxide formation by oxidation of Al and Cu nanoparticles,” J. Appl. Phys. 101(7), 074303 (2007).
[Crossref]

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96(7), 3626–3634 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

M. Schoenitz, C.-M. Chen, and E. L. Dreizin, “Oxidation of aluminum particles in the presence of water,” J. Phys. Chem. B 113(15), 5136–5140 (2009).
[Crossref] [PubMed]

J. Phys. Chem. C (5)

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

J. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. Saiz, F. González, A. Brown, M. Losurdo, H. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

G. Maidecchi, C. V. Duc, R. Buzio, A. Gerbi, G. Gemme, M. Canepa, and F. Bisio, “Electronic structure of core–shell metal/oxide aluminum nanoparticles,” J. Phys. Chem. C 119(47), 26719–26725 (2015).
[Crossref]

F. Zhang, J. Proust, D. Gérard, J. Plain, and J. Martin, “Reduction of plasmon damping in aluminum nanoparticles with rapid thermal annealing,” J. Phys. Chem. C 121(13), 7429–7434 (2017).
[Crossref]

D. A. Firmansyah, K. Sullivan, K.-S. Lee, Y. H. Kim, R. Zahaf, M. R. Zachariah, and D. Lee, “Microstructural behavior of the alumina shell and aluminum core before and after melting of aluminum nanoparticles,” J. Phys. Chem. C 116(1), 404–411 (2011).
[Crossref]

J. Phys. D Appl. Phys. (2)

D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D Appl. Phys. 48(18), 184001 (2015).
[Crossref]

J. Martin and J. Plain, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D Appl. Phys. 48(18), 184002 (2015).
[Crossref]

J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. (1)

C. Aumann, G. Skofronick, and J. Martin, “Oxidation behavior of aluminum nanopowders,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 13(3), 1178–1183 (1995).
[Crossref]

Langmuir (1)

M. Twardowski and R. G. Nuzzo, “Chemically mediated grain growth in nanotextured Au, Au/Cu thin films: Novel substrates for the formation of self-assembled monolayers,” Langmuir 18(14), 5529–5538 (2002).
[Crossref]

Mater. Sci. Eng. A (1)

J. Gubicza, N. Q. Chinh, J. L. Lábár, Z. Hegedűs, and T. G. Langdon, “Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy,” Mater. Sci. Eng. A 527(3), 752–760 (2010).
[Crossref]

Nano Lett. (5)

A. B. Dahlin, T. Sannomiya, R. Zahn, G. A. Sotiriou, and J. Vörös, “Electrochemical crystallization of plasmonic nanostructures,” Nano Lett. 11(3), 1337–1343 (2011).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Part. Part. Syst. Charact. (1)

Y. Chen, X. Xin, N. Zhang, and Y.-J. Xu, “Aluminum-based plasmonic photocatalysis,” Part. Part. Syst. Charact. 34(8), 1600357 (2017).
[Crossref]

Phys. Chem. Chem. Phys. (1)

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H.-Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17(16), 10861–10870 (2015).
[Crossref] [PubMed]

Plasmonics (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance- enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic representation of the simplified and expanded models. Diameter D, metallic core radius r, oxide layer thickness L for the simplified model. Additional thickness ∆ of oxide layer in the expanded model. (b-d) Calculations obtained for an Al nanodisk (radius 50 nm and height 50 nm) with the expanded model: total radius (b) and height (c) respectively plotted as a function of the Al core radius and height; (d) comparison of oxide layer thickness between the simplified model (no volume expansion) and the expanded model (taking the volume expansion during oxidation into account).
Fig. 2
Fig. 2 (a) Calculated extinction spectra of Al nanodisk arrays (diameter D = 70, 100, 130, 160 nm, height 50 nm, and pitch 2.5D) with increasing oxide layer. The scale bar stands for the extinction intensity. Spectral shift (b) and maximum intensity (c) of the dipolar resonance peak normalized with the spectrum of nanodisk arrays without oxide layer, plotted in function of the oxide layer thickness. The color of each box in (a) corresponds the line color indicating the size of nanodisk in (b) and (c).
Fig. 3
Fig. 3 (a) Experimental extinction spectra of Al nanodisk arrays (diameter D = 70, 100, 130, and 160 nm, height 50 nm, pitch 2.5D) as a function of time. The scale bar stands for the extinction intensity. (b) Peak shift and (c) peak intensity of the resonance normalized with the spectrum measured on the first day. The color of each box in (a) corresponds to the line color in (b) and (c) indicating the size of nanodisk.
Fig. 4
Fig. 4 Experimental extinction spectra measured on Al nanodisk arrays (diameter D = 70, 100, 130, and 160 nm, height 50 nm, pitch 2.5D) before (solid line) and after (dashed line) being stored in water for 16 hours. Corresponding SEM images show the nanodisk arrays before (left side, solid line box) and after 5 days (right side, dashed line box) of immersion in distilled water. Scale bar 500 nm.