Abstract

A coupled silicon nanocuboid dimer is employed to improve the magnetic dipole (MD) emission. Finite difference time domain (FDTD) simulations reveal that the nanocuboid dimer supports coupled magnetic resonance and confines a large magnetic field within the gap. The coupling and magnetic-field-enhancing capability are stronger than that of the nanosphere dimer due to the nonspherical symmetry of the nanocuboid. The MD resonance and the magnetic quadrupole (MQ) of the nanocuboid dimer are used to improve the emission of the MD emitter positioned within the gap. It is revealed that the MD resonance can lead to a large enhancement factor of 262 for the radiative decay rate at the wavelength of 653 nm. The enhancement factor is about 3.8 times that caused by the nanosphere dimer. The peak of the radiative decay rate can be tuned in a broad wavelength range by tailoring the structure parameters of the nanocuboid and an enhancement factor of over 230 is achieved at the long wavelength range. For a nanocuboid dimer with a larger size, the MQ resonance can lead to a higher enhancement factor of about 368 at the wavelength of 819 nm, which is nearly 1.5 times that caused by the nanosphere dimer.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly-symmetrical plasmonic nanoantenna for fluorescence enhancement and polarization preservation of arbitrarily oriented fluorophore

Li Ma, Song Sun, Taiping Zhang, Ru Li, Qingguo Du, Jian Zhang, and Mo Li
Opt. Mater. Express 8(12) 3770-3786 (2018)

Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence

Vincenzo Giannini, José A. Sánchez-Gil, Otto L. Muskens, and Jaime Gómez Rivas
J. Opt. Soc. Am. B 26(8) 1569-1577 (2009)

Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide

Mahsa Darvishzadeh-Varcheie, Caner Guclu, Regina Ragan, Ozdal Boyraz, and Filippo Capolino
Opt. Express 24(25) 28337-28352 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. D. Landau and E. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1982).
  2. H. Giessen and R. Vogelgesang, “Glimpsing the weak magnetic field of light,” Science 326(5952), 529–530 (2009).
    [Crossref] [PubMed]
  3. T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
    [Crossref] [PubMed]
  4. C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B Condens. Matter Mater. Phys. 86(12), 125102 (2012).
    [Crossref]
  5. M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
    [Crossref] [PubMed]
  6. S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
    [Crossref] [PubMed]
  7. D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alu, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
    [Crossref]
  8. N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express 17(13), 10767–10772 (2009).
    [Crossref] [PubMed]
  9. R. Hussain, S. S. Kruk, C. E. Bonner, M. A. Noginov, I. Staude, Y. S. Kivshar, N. Noginova, and D. N. Neshev, “Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures,” Opt. Lett. 40(8), 1659–1662 (2015).
    [Crossref] [PubMed]
  10. B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective plasmonic enhancement of electric- and magnetic-dipole radiations of Er ions,” Nano Lett. 16(8), 5191–5196 (2016).
    [Crossref] [PubMed]
  11. D. N. Chigrin, D. Kumar, D. Cuma, and G. V. Plessen, “Emission quenching of magnetic dipole transitions near a metal nanoparticle,” ACS Photonics 3(1), 27–34 (2016).
    [Crossref]
  12. T. Feng, Y. Zhou, D. Liu, and J. Li, “Controlling magnetic dipole transition with magnetic plasmonic structures,” Opt. Lett. 36(12), 2369–2371 (2011).
    [Crossref] [PubMed]
  13. S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
    [Crossref] [PubMed]
  14. M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
    [Crossref]
  15. J. Li, N. Verellen, D. Vercruysse, T. Bearda, L. Lagae, and P. Van Dorpe, “All-dielectric antenna wavelength router with bidirectional scattering of visible light,” Nano Lett. 16(7), 4396–4403 (2016).
    [Crossref] [PubMed]
  16. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
    [Crossref] [PubMed]
  17. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
    [Crossref] [PubMed]
  18. M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas--a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20(13), 13636–13650 (2012).
    [Crossref] [PubMed]
  19. J. Li, N. Verellen, and P. V. Dorpe, “Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk,” ACS Photonics 4(8), 1893–1898 (2017).
    [Crossref]
  20. T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
    [Crossref] [PubMed]
  21. T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5(3), 678–683 (2018).
    [Crossref]
  22. P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
    [Crossref]
  23. B. Guillaume, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett. 104(2), 021117 (2014).
    [Crossref]
  24. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  26. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
    [Crossref] [PubMed]
  27. K. E. Parsopoulo and M. N. Vrahatis, Particle Swarm Optimization and Intelligence: Advances and Applications (Information Science Reference, 2010).

2018 (1)

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5(3), 678–683 (2018).
[Crossref]

2017 (2)

J. Li, N. Verellen, and P. V. Dorpe, “Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk,” ACS Photonics 4(8), 1893–1898 (2017).
[Crossref]

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alu, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

2016 (4)

J. Li, N. Verellen, D. Vercruysse, T. Bearda, L. Lagae, and P. Van Dorpe, “All-dielectric antenna wavelength router with bidirectional scattering of visible light,” Nano Lett. 16(7), 4396–4403 (2016).
[Crossref] [PubMed]

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective plasmonic enhancement of electric- and magnetic-dipole radiations of Er ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref] [PubMed]

D. N. Chigrin, D. Kumar, D. Cuma, and G. V. Plessen, “Emission quenching of magnetic dipole transitions near a metal nanoparticle,” ACS Photonics 3(1), 27–34 (2016).
[Crossref]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

2015 (4)

R. Hussain, S. S. Kruk, C. E. Bonner, M. A. Noginov, I. Staude, Y. S. Kivshar, N. Noginova, and D. N. Neshev, “Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures,” Opt. Lett. 40(8), 1659–1662 (2015).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

2014 (1)

B. Guillaume, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett. 104(2), 021117 (2014).
[Crossref]

2013 (3)

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[Crossref] [PubMed]

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
[Crossref] [PubMed]

2012 (5)

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
[Crossref] [PubMed]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B Condens. Matter Mater. Phys. 86(12), 125102 (2012).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas--a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20(13), 13636–13650 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (2)

Abdeddaim, R.

B. Guillaume, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett. 104(2), 021117 (2014).
[Crossref]

Aizpurua, J.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas--a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20(13), 13636–13650 (2012).
[Crossref] [PubMed]

Albella, P.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Alu, A.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alu, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Ananias, D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Bakker, R. M.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Baranov, D. G.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alu, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Barnakov, Y.

Bearda, T.

J. Li, N. Verellen, D. Vercruysse, T. Bearda, L. Lagae, and P. Van Dorpe, “All-dielectric antenna wavelength router with bidirectional scattering of visible light,” Nano Lett. 16(7), 4396–4403 (2016).
[Crossref] [PubMed]

Bonner, C. E.

Bonod, N.

B. Guillaume, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett. 104(2), 021117 (2014).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Burr, G. W.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

Carlos, L. D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Chigrin, D. N.

D. N. Chigrin, D. Kumar, D. Cuma, and G. V. Plessen, “Emission quenching of magnetic dipole transitions near a metal nanoparticle,” ACS Photonics 3(1), 27–34 (2016).
[Crossref]

Choi, B.

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective plasmonic enhancement of electric- and magnetic-dipole radiations of Er ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref] [PubMed]

Cuma, D.

D. N. Chigrin, D. Kumar, D. Cuma, and G. V. Plessen, “Emission quenching of magnetic dipole transitions near a metal nanoparticle,” ACS Photonics 3(1), 27–34 (2016).
[Crossref]

Dodson, C. M.

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B Condens. Matter Mater. Phys. 86(12), 125102 (2012).
[Crossref]

Dorpe, P. V.

J. Li, N. Verellen, and P. V. Dorpe, “Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk,” ACS Photonics 4(8), 1893–1898 (2017).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Esteban, R.

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Feng, T.

Fischer, U. C.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Garcia Parajo, M. F.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

Giessen, H.

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
[Crossref] [PubMed]

H. Giessen and R. Vogelgesang, “Glimpsing the weak magnetic field of light,” Science 326(5952), 529–530 (2009).
[Crossref] [PubMed]

Gonzaga, L.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Grosjean, T.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

Guillaume, B.

B. Guillaume, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett. 104(2), 021117 (2014).
[Crossref]

Hein, S. M.

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
[Crossref] [PubMed]

Hussain, R.

Iwanaga, M.

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective plasmonic enhancement of electric- and magnetic-dipole radiations of Er ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref] [PubMed]

Karaveli, S.

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[Crossref] [PubMed]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
[Crossref] [PubMed]

Kasperczyk, M.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Kivshar, Y.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Kivshar, Y. S.

Krasnok, A. E.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alu, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Kruk, S. S.

Kumar, D.

D. N. Chigrin, D. Kumar, D. Cuma, and G. V. Plessen, “Emission quenching of magnetic dipole transitions near a metal nanoparticle,” ACS Photonics 3(1), 27–34 (2016).
[Crossref]

Kuznetsov, A. I.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Lagae, L.

J. Li, N. Verellen, D. Vercruysse, T. Bearda, L. Lagae, and P. Van Dorpe, “All-dielectric antenna wavelength router with bidirectional scattering of visible light,” Nano Lett. 16(7), 4396–4403 (2016).
[Crossref] [PubMed]

Li, H.

Li, J.

J. Li, N. Verellen, and P. V. Dorpe, “Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk,” ACS Photonics 4(8), 1893–1898 (2017).
[Crossref]

J. Li, N. Verellen, D. Vercruysse, T. Bearda, L. Lagae, and P. Van Dorpe, “All-dielectric antenna wavelength router with bidirectional scattering of visible light,” Nano Lett. 16(7), 4396–4403 (2016).
[Crossref] [PubMed]

T. Feng, Y. Zhou, D. Liu, and J. Li, “Controlling magnetic dipole transition with magnetic plasmonic structures,” Opt. Lett. 36(12), 2369–2371 (2011).
[Crossref] [PubMed]

Li, S. V.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alu, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Liang, Z.

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5(3), 678–683 (2018).
[Crossref]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

Liu, D.

Luk’yanchuk, B.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Mackowski, S.

Maier, S. A.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Markovich, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Miroshnichenko, A. E.

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5(3), 678–683 (2018).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Mivelle, M.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

Miyazaki, H. T.

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective plasmonic enhancement of electric- and magnetic-dipole radiations of Er ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref] [PubMed]

Moreno, F.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Neshev, D. N.

Noginov, M. A.

Noginova, N.

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Novotny, L.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Permyakov, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Person, S.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Plessen, G. V.

D. N. Chigrin, D. Kumar, D. Cuma, and G. V. Plessen, “Emission quenching of magnetic dipole transitions near a metal nanoparticle,” ACS Photonics 3(1), 27–34 (2016).
[Crossref]

Poyli, M. A.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Sáenz, J. J.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas--a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20(13), 13636–13650 (2012).
[Crossref] [PubMed]

Sakoda, K.

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective plasmonic enhancement of electric- and magnetic-dipole radiations of Er ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref] [PubMed]

Samusev, A.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Savelev, R. S.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alu, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Schmidt, M. K.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas--a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20(13), 13636–13650 (2012).
[Crossref] [PubMed]

Staude, I.

Suárez-Lacalle, I.

Sugimoto, Y.

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective plasmonic enhancement of electric- and magnetic-dipole radiations of Er ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref] [PubMed]

Taminiau, T. H.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
[Crossref] [PubMed]

Van Dorpe, P.

J. Li, N. Verellen, D. Vercruysse, T. Bearda, L. Lagae, and P. Van Dorpe, “All-dielectric antenna wavelength router with bidirectional scattering of visible light,” Nano Lett. 16(7), 4396–4403 (2016).
[Crossref] [PubMed]

van Hulst, N. F.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
[Crossref] [PubMed]

Vercruysse, D.

J. Li, N. Verellen, D. Vercruysse, T. Bearda, L. Lagae, and P. Van Dorpe, “All-dielectric antenna wavelength router with bidirectional scattering of visible light,” Nano Lett. 16(7), 4396–4403 (2016).
[Crossref] [PubMed]

Verellen, N.

J. Li, N. Verellen, and P. V. Dorpe, “Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk,” ACS Photonics 4(8), 1893–1898 (2017).
[Crossref]

J. Li, N. Verellen, D. Vercruysse, T. Bearda, L. Lagae, and P. Van Dorpe, “All-dielectric antenna wavelength router with bidirectional scattering of visible light,” Nano Lett. 16(7), 4396–4403 (2016).
[Crossref] [PubMed]

Vogelgesang, R.

H. Giessen and R. Vogelgesang, “Glimpsing the weak magnetic field of light,” Science 326(5952), 529–530 (2009).
[Crossref] [PubMed]

Weinstein, A. J.

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[Crossref] [PubMed]

Xu, Y.

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5(3), 678–683 (2018).
[Crossref]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

Yu, Y. F.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Zhang, W.

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5(3), 678–683 (2018).
[Crossref]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

Zhou, Y.

Zia, R.

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[Crossref] [PubMed]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
[Crossref] [PubMed]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B Condens. Matter Mater. Phys. 86(12), 125102 (2012).
[Crossref]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

ACS Photonics (4)

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

D. N. Chigrin, D. Kumar, D. Cuma, and G. V. Plessen, “Emission quenching of magnetic dipole transitions near a metal nanoparticle,” ACS Photonics 3(1), 27–34 (2016).
[Crossref]

J. Li, N. Verellen, and P. V. Dorpe, “Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk,” ACS Photonics 4(8), 1893–1898 (2017).
[Crossref]

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5(3), 678–683 (2018).
[Crossref]

Appl. Phys. Lett. (1)

B. Guillaume, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett. 104(2), 021117 (2014).
[Crossref]

J. Phys. Chem. C (1)

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Laser Photonics Rev. (1)

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alu, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Nano Lett. (5)

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[Crossref] [PubMed]

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective plasmonic enhancement of electric- and magnetic-dipole radiations of Er ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref] [PubMed]

J. Li, N. Verellen, D. Vercruysse, T. Bearda, L. Lagae, and P. Van Dorpe, “All-dielectric antenna wavelength router with bidirectional scattering of visible light,” Nano Lett. 16(7), 4396–4403 (2016).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and Electric Hotspots with Silicon Nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B Condens. Matter Mater. Phys. 86(12), 125102 (2012).
[Crossref]

Phys. Rev. Lett. (2)

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Science (1)

H. Giessen and R. Vogelgesang, “Glimpsing the weak magnetic field of light,” Science 326(5952), 529–530 (2009).
[Crossref] [PubMed]

Other (4)

L. D. Landau and E. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1982).

K. E. Parsopoulo and M. N. Vrahatis, Particle Swarm Optimization and Intelligence: Advances and Applications (Information Science Reference, 2010).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic of the coupled silicon nanocuboid dimer; (b) The refractive index and extinction coefficient of silicon.
Fig. 2
Fig. 2 Scattering cross section spectra. (a) nanocuboid monomer and nanocuboid dimer. (b) nanosphere monomer and nanosphere dimer.
Fig. 3
Fig. 3 Normalized magnetic field intensity profile. (a) nanocuboid monomer (at 585 nm). (b) nanocuboid dimer (at 650 nm). (c) nanosphere monomer (at 630 nm). (d) nanocuboid dimer (at 650 nm). H denotes the magnetic field and H0 denotes the magnetic field of the incident light. White arrows show the direction of magnetic field and the length of the arrow denotes the magnetic field intensity.
Fig. 4
Fig. 4 Radiative decay rate enhancement spectra. (a) nanocuboid monomer and dimer. (b) nanosphere monomer and dimer.
Fig. 5
Fig. 5 Effects of gap distance on (a) radiative decay rate enhancement spectra and (b) scattering cross section spectra.
Fig. 6
Fig. 6 (a) Radiative decay rate enhancement spectra as a function of Z position. (b) Normalized magnetic field intensity. H denotes the magnetic field and H0 denotes the magnetic field of the incident light.
Fig. 7
Fig. 7 (a-c):Radiative decay rate enhancement spectra. (d-f): Peak wavelengths of the radiative decay rate enhancement and the scattering cross section spectra (related to the MD resonance). (a), (d): varied l with w and h kept as constants of 60 nm and 150 nm; (b), (e): varied w with l and h kept as constants of 140 nm and 150 nm; (c), (f): varied h with l and w kept as constants of 140 nm and 60 nm.
Fig. 8
Fig. 8 Radiative decay rate enhancement spectra peaking at 400 nm, 500 nm, 600 nm, 700 nm and 800 nm. Black: l = 73 nm, w = 17 nm, h = 73 nm; red: l = 90 nm, w = 50 nm, h = 105 nm; blue: l = 140 nm, w = 56 nm, h = 120 nm; Green: l = 160 nm, w = 75 nm, h = 145 nm; Purple: l = 171 nm, w = 78 nm, h = 196 nm.
Fig. 9
Fig. 9 The radiative decay rate enhancement spectra of the silicon nanocuboid dimer, nanodisk dimer and nanosphere dimer with (a) and without (b) the SiO2 substrate.
Fig. 10
Fig. 10 Fabrication process of the nanocuboid dimer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ scat = P scat (ω) I inc (ω) ,