Abstract

Metals are highly reflective and therefore commonly overlooked as efficient absorbers. However, a subwavelength Fabry-Pérot-like resonance in ultra-thin metal films has been used to achieve absorption above 70%, approaching perfect absorption using traditional substrates. Here we take a different approach and show that near-perfect absorption is achievable provided that the ultra-thin metals are deposited on an index near zero (INZ) substrate. The optical contrast at the metal-INZ interface enhances the non-trivial reflections leading to destructive interference after multiple reflections. In this manuscript, we present design considerations for ultra-thin metal films on INZ substrates to obtain near-perfect absorption throughout the visible spectrum and into the near-infrared (NIR). We find that metals commonly used for plasmonics and hot carrier devices, such as Au and Ag, can obtain near-perfect absorption for near-ultraviolet and visible wavelengths, while metals such as Pd and Pt are efficient absorbers throughout the near-ultraviolet to near-infrared spectrum.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, and Ping Xu
Opt. Express 26(5) 5686-5693 (2018)

Experimental investigation of multiple near-perfect absorptions in sandwich structures containing thin metallic films

Bin Liu, Guang Lu, Liyong Cui, Jin Li, Feng Sun, Fen Liu, Yanhui Li, Tianlin Yang, and Guiqiang Du
Opt. Express 25(12) 13271-13277 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K.-H. Kim and Q.-H. Park, “Perfect anti-reflection from first principles,” Sci. Rep. 3(1), 1062 (2013).
    [Crossref] [PubMed]
  2. H. Macleod, Thin-Film Optical Filters, Third Edition (Taylor & Francis Group, 2001).
  3. Y.-J. Jen, C.-C. Lee, K.-H. Lu, C.-Y. Jheng, and Y.-J. Chen, “Fabry-Perot based metal-dielectric multilayered filters and metamaterials,” Opt. Express 23(26), 33008–33017 (2015).
    [Crossref] [PubMed]
  4. C. Pinheiro, J. G. Rocha, L. M. Goncalves, S. Lanceros-Mendez, and G. Minas, “A Tunable Fabry-Perot Optical Filter for Application in Biochemical Analysis of Human’s Fluids,” in 2006 IEEE International Symposium on Industrial Electronics (2006), 4, pp. 2778–2783.
    [Crossref]
  5. L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
    [Crossref]
  6. S. W. Corzine, R. S. Geels, J. W. Scott, R.-H. Yan, and L. A. Coldren, “R.- Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
    [Crossref]
  7. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
    [Crossref] [PubMed]
  8. Y. Yamamoto, “Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers,” IEEE J. Quantum Electron. 16(10), 1047–1052 (1980).
    [Crossref]
  9. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  10. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
    [Crossref] [PubMed]
  11. S. S. Mirshafieyan and J. Guo, “Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability,” Opt. Express 22(25), 31545–31554 (2014).
    [Crossref] [PubMed]
  12. L. J. Krayer, E. M. Tennyson, M. S. Leite, and J. N. Munday, “Near-IR Imaging Based on Hot Carrier Generation in Nanometer-Scale Optical Coatings,” ACS Photonics 5(2), 306–311 (2018).
    [Crossref]
  13. C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
    [Crossref] [PubMed]
  14. E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett. 94(17), 171109 (2009).
    [Crossref]
  15. E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009).
    [Crossref]
  16. J. Park, S. J. Kim, and M. L. Brongersma, “Condition for unity absorption in an ultrathin and highly lossy film in a Gires-Tournois interferometer configuration,” Opt. Lett. 40(9), 1960–1963 (2015).
    [Crossref] [PubMed]
  17. H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
    [Crossref] [PubMed]
  18. J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
    [Crossref]
  19. S. S. Mirshafieyan, H. Guo, and J. Guo, “Zeroth Order Fabry–Perot Resonance Enabled Strong Light Absorption in Ultrathin Silicon Films on Different Metals and Its Application for Color Filters,” IEEE Photonics J. 8(5), 1–12 (2016).
    [Crossref]
  20. M. R. S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography‐Free, Omnidirectional, CMOS‐Compatible AlCu Alloys for Thin‐Film Superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
    [Crossref]
  21. C. Hilsum, “Infrared Absorption of Thin Metal Films,” J. Opt. Soc. Am. 44(3), 188–191 (1954).
    [Crossref]
  22. E. D. Palik, Handbook of Optical Constants of Solids, I–III (Elsevier Inc, 1998).
  23. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B. 6(12), 4370–4379 (1972).
    [Crossref]
  24. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995).
    [Crossref] [PubMed]
  25. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]
  26. A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
    [Crossref]
  27. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
    [Crossref] [PubMed]
  28. C. Chen, Z. Wang, K. Wu, and H. Ye, “Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films,” Sci. Technol. Adv. Mater. 19(1), 174–184 (2018).
    [Crossref] [PubMed]
  29. J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
    [Crossref]
  30. J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
    [Crossref]
  31. J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
    [Crossref]
  32. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
    [Crossref] [PubMed]
  33. Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727 (2017).
    [Crossref]
  34. J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
    [Crossref] [PubMed]
  35. W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
    [Crossref]
  36. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
    [Crossref] [PubMed]
  37. C. Gong and M. S. Leite, “Noble Metal Alloys for Plasmonics,” ACS Photonics 3(4), 507–513 (2016).
    [Crossref]
  38. K. J. Palm, J. B. Murray, T. C. Narayan, and J. N. Munday, “Dynamic Optical Properties of Metal Hydrides,” ACS Photonics 5(11), 4677–4686 (2018).
    [Crossref]
  39. T. Gong and J. N. Munday, “Materials for hot carrier plasmonics,” Opt. Mater. Express 5(11), 2501 (2015).
    [Crossref]
  40. T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
    [Crossref] [PubMed]

2018 (5)

L. J. Krayer, E. M. Tennyson, M. S. Leite, and J. N. Munday, “Near-IR Imaging Based on Hot Carrier Generation in Nanometer-Scale Optical Coatings,” ACS Photonics 5(2), 306–311 (2018).
[Crossref]

A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
[Crossref]

C. Chen, Z. Wang, K. Wu, and H. Ye, “Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films,” Sci. Technol. Adv. Mater. 19(1), 174–184 (2018).
[Crossref] [PubMed]

M. R. S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography‐Free, Omnidirectional, CMOS‐Compatible AlCu Alloys for Thin‐Film Superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

K. J. Palm, J. B. Murray, T. C. Narayan, and J. N. Munday, “Dynamic Optical Properties of Metal Hydrides,” ACS Photonics 5(11), 4677–4686 (2018).
[Crossref]

2017 (2)

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727 (2017).
[Crossref]

2016 (4)

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
[Crossref]

S. S. Mirshafieyan, H. Guo, and J. Guo, “Zeroth Order Fabry–Perot Resonance Enabled Strong Light Absorption in Ultrathin Silicon Films on Different Metals and Its Application for Color Filters,” IEEE Photonics J. 8(5), 1–12 (2016).
[Crossref]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

C. Gong and M. S. Leite, “Noble Metal Alloys for Plasmonics,” ACS Photonics 3(4), 507–513 (2016).
[Crossref]

2015 (8)

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

J. Park, S. J. Kim, and M. L. Brongersma, “Condition for unity absorption in an ultrathin and highly lossy film in a Gires-Tournois interferometer configuration,” Opt. Lett. 40(9), 1960–1963 (2015).
[Crossref] [PubMed]

T. Gong and J. N. Munday, “Materials for hot carrier plasmonics,” Opt. Mater. Express 5(11), 2501 (2015).
[Crossref]

Y.-J. Jen, C.-C. Lee, K.-H. Lu, C.-Y. Jheng, and Y.-J. Chen, “Fabry-Perot based metal-dielectric multilayered filters and metamaterials,” Opt. Express 23(26), 33008–33017 (2015).
[Crossref] [PubMed]

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref] [PubMed]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

2014 (1)

2013 (6)

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

K.-H. Kim and Q.-H. Park, “Perfect anti-reflection from first principles,” Sci. Rep. 3(1), 1062 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

2012 (1)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

2010 (1)

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

2009 (2)

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett. 94(17), 171109 (2009).
[Crossref]

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009).
[Crossref]

2008 (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

2006 (1)

1995 (1)

1989 (1)

S. W. Corzine, R. S. Geels, J. W. Scott, R.-H. Yan, and L. A. Coldren, “R.- Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

1980 (1)

Y. Yamamoto, “Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers,” IEEE J. Quantum Electron. 16(10), 1047–1052 (1980).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B. 6(12), 4370–4379 (1972).
[Crossref]

1954 (1)

Alam, M. Z.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Andrés, M. V.

Ankonina, G.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Apell, S. P.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

Atkinson, J.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Badsha, M. A.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

Barmenkov, Y. O.

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Benson, Z. A.

M. R. S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography‐Free, Omnidirectional, CMOS‐Compatible AlCu Alloys for Thin‐Film Superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

Bezares, F. J.

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Blank, O.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Boltasseva, A.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
[Crossref]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Boriskina, S. V.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

Boyd, R. W.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Braakman, F. R.

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009).
[Crossref]

Brongersma, M. L.

Caglayan, H.

Caldwell, J. D.

Capasso, F.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Capretti, A.

Chen, C.

C. Chen, Z. Wang, K. Wu, and H. Ye, “Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films,” Sci. Technol. Adv. Mater. 19(1), 174–184 (2018).
[Crossref] [PubMed]

Chen, G.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

Chen, Y.-J.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B. 6(12), 4370–4379 (1972).
[Crossref]

Ciesielski, A.

A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
[Crossref]

Coenen, T.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Coldren, L. A.

S. W. Corzine, R. S. Geels, J. W. Scott, R.-H. Yan, and L. A. Coldren, “R.- Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

Cortes, C. L.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Corzine, S. W.

S. W. Corzine, R. S. Geels, J. W. Scott, R.-H. Yan, and L. A. Coldren, “R.- Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

Cruz, J. L.

Dal Negro, L.

de Dood, M. J. A.

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett. 94(17), 171109 (2009).
[Crossref]

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009).
[Crossref]

De Leon, I.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

DeCorby, R. G.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Dias, M. R. S.

M. R. S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography‐Free, Omnidirectional, CMOS‐Compatible AlCu Alloys for Thin‐Film Superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

Dondapati, K.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Dorenbos, S. N.

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009).
[Crossref]

Dotan, H.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Driessen, E. F. C.

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett. 94(17), 171109 (2009).
[Crossref]

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009).
[Crossref]

Dumchin, I.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Dutta, A.

Ellis, C. T.

Emani, N. K.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

Engheta, N.

Gavrilenko, A. V.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Gavrilenko, V. I.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Geels, R. S.

S. W. Corzine, R. S. Geels, J. W. Scott, R.-H. Yan, and L. A. Coldren, “R.- Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Giles, A. J.

Glembocki, O. J.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Goncalves, L. M.

C. Pinheiro, J. G. Rocha, L. M. Goncalves, S. Lanceros-Mendez, and G. Minas, “A Tunable Fabry-Perot Optical Filter for Application in Biochemical Analysis of Human’s Fluids,” in 2006 IEEE International Symposium on Industrial Electronics (2006), 4, pp. 2778–2783.
[Crossref]

Gong, C.

M. R. S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography‐Free, Omnidirectional, CMOS‐Compatible AlCu Alloys for Thin‐Film Superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

C. Gong and M. S. Leite, “Noble Metal Alloys for Plasmonics,” ACS Photonics 3(4), 507–513 (2016).
[Crossref]

Gong, T.

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref] [PubMed]

T. Gong and J. N. Munday, “Materials for hot carrier plasmonics,” Opt. Mater. Express 5(11), 2501 (2015).
[Crossref]

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Gross, M.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Guler, U.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

Guo, H.

S. S. Mirshafieyan, H. Guo, and J. Guo, “Zeroth Order Fabry–Perot Resonance Enabled Strong Light Absorption in Ultrathin Silicon Films on Different Metals and Its Application for Color Filters,” IEEE Photonics J. 8(5), 1–12 (2016).
[Crossref]

Guo, J.

S. S. Mirshafieyan, H. Guo, and J. Guo, “Zeroth Order Fabry–Perot Resonance Enabled Strong Light Absorption in Ultrathin Silicon Films on Different Metals and Its Application for Color Filters,” IEEE Photonics J. 8(5), 1–12 (2016).
[Crossref]

S. S. Mirshafieyan and J. Guo, “Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability,” Opt. Express 22(25), 31545–31554 (2014).
[Crossref] [PubMed]

Hägglund, C.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

Hilsum, C.

Hsu, W.-C.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

Hwangbo, C. K.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

Jacob, Z.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Jen, Y.-J.

Jheng, C.-Y.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B. 6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

Kasemo, B.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

Kats, M. A.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Kfir, O.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Kildishev, A. V.

Kim, J.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

Kim, K.-H.

K.-H. Kim and Q.-H. Park, “Perfect anti-reflection from first principles,” Sci. Rep. 3(1), 1062 (2013).
[Crossref] [PubMed]

Kim, S. J.

Kim, T. Y.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

Krayer, L. J.

L. J. Krayer, E. M. Tennyson, M. S. Leite, and J. N. Munday, “Near-IR Imaging Based on Hot Carrier Generation in Nanometer-Scale Optical Coatings,” ACS Photonics 5(2), 306–311 (2018).
[Crossref]

Lanceros-Mendez, S.

C. Pinheiro, J. G. Rocha, L. M. Goncalves, S. Lanceros-Mendez, and G. Minas, “A Tunable Fabry-Perot Optical Filter for Application in Biochemical Analysis of Human’s Fluids,” in 2006 IEEE International Symposium on Industrial Electronics (2006), 4, pp. 2778–2783.
[Crossref]

Lee, C.-C.

Leite, M. S.

L. J. Krayer, E. M. Tennyson, M. S. Leite, and J. N. Munday, “Near-IR Imaging Based on Hot Carrier Generation in Nanometer-Scale Optical Coatings,” ACS Photonics 5(2), 306–311 (2018).
[Crossref]

M. R. S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography‐Free, Omnidirectional, CMOS‐Compatible AlCu Alloys for Thin‐Film Superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

C. Gong and M. S. Leite, “Noble Metal Alloys for Plasmonics,” ACS Photonics 3(4), 507–513 (2016).
[Crossref]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Lu, K.-H.

Mahmoud, A. M.

Minas, G.

C. Pinheiro, J. G. Rocha, L. M. Goncalves, S. Lanceros-Mendez, and G. Minas, “A Tunable Fabry-Perot Optical Filter for Application in Biochemical Analysis of Human’s Fluids,” in 2006 IEEE International Symposium on Industrial Electronics (2006), 4, pp. 2778–2783.
[Crossref]

Mirshafieyan, S. S.

S. S. Mirshafieyan, H. Guo, and J. Guo, “Zeroth Order Fabry–Perot Resonance Enabled Strong Light Absorption in Ultrathin Silicon Films on Different Metals and Its Application for Color Filters,” IEEE Photonics J. 8(5), 1–12 (2016).
[Crossref]

S. S. Mirshafieyan and J. Guo, “Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability,” Opt. Express 22(25), 31545–31554 (2014).
[Crossref] [PubMed]

Munday, J. N.

K. J. Palm, J. B. Murray, T. C. Narayan, and J. N. Munday, “Dynamic Optical Properties of Metal Hydrides,” ACS Photonics 5(11), 4677–4686 (2018).
[Crossref]

L. J. Krayer, E. M. Tennyson, M. S. Leite, and J. N. Munday, “Near-IR Imaging Based on Hot Carrier Generation in Nanometer-Scale Optical Coatings,” ACS Photonics 5(2), 306–311 (2018).
[Crossref]

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref] [PubMed]

T. Gong and J. N. Munday, “Materials for hot carrier plasmonics,” Opt. Mater. Express 5(11), 2501 (2015).
[Crossref]

Murray, J. B.

K. J. Palm, J. B. Murray, T. C. Narayan, and J. N. Munday, “Dynamic Optical Properties of Metal Hydrides,” ACS Photonics 5(11), 4677–4686 (2018).
[Crossref]

Naik, G. V.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
[Crossref]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Narayan, T. C.

K. J. Palm, J. B. Murray, T. C. Narayan, and J. N. Munday, “Dynamic Optical Properties of Metal Hydrides,” ACS Photonics 5(11), 4677–4686 (2018).
[Crossref]

Newman, W. D.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Overvig, A. C.

Pacuski, W.

A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
[Crossref]

Palm, K. J.

K. J. Palm, J. B. Murray, T. C. Narayan, and J. N. Munday, “Dynamic Optical Properties of Metal Hydrides,” ACS Photonics 5(11), 4677–4686 (2018).
[Crossref]

Park, J.

Park, Q.-H.

K.-H. Kim and Q.-H. Park, “Perfect anti-reflection from first principles,” Sci. Rep. 3(1), 1062 (2013).
[Crossref] [PubMed]

Pinheiro, C.

C. Pinheiro, J. G. Rocha, L. M. Goncalves, S. Lanceros-Mendez, and G. Minas, “A Tunable Fabry-Perot Optical Filter for Application in Biochemical Analysis of Human’s Fluids,” in 2006 IEEE International Symposium on Industrial Electronics (2006), 4, pp. 2778–2783.
[Crossref]

Polman, A.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Pramanik, S.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Prokes, S. M.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Rakic, A. D.

Ramanathan, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Reiger, E. M.

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009).
[Crossref]

Rensberg, J.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Richter, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Rocha, J. G.

C. Pinheiro, J. G. Rocha, L. M. Goncalves, S. Lanceros-Mendez, and G. Minas, “A Tunable Fabry-Perot Optical Filter for Application in Biochemical Analysis of Human’s Fluids,” in 2006 IEEE International Symposium on Industrial Electronics (2006), 4, pp. 2778–2783.
[Crossref]

Ronning, C.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Rothschild, A.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Schmidt-Grund, R.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Schöppe, P.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Scott, J. W.

S. W. Corzine, R. S. Geels, J. W. Scott, R.-H. Yan, and L. A. Coldren, “R.- Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

Shalaev, V. M.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Sharlin, E.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Shrestha, S.

Skowronski, L.

A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
[Crossref]

Szoplik, T.

A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
[Crossref]

Tennyson, E. M.

L. J. Krayer, E. M. Tennyson, M. S. Leite, and J. N. Munday, “Near-IR Imaging Based on Hot Carrier Generation in Nanometer-Scale Optical Coatings,” ACS Photonics 5(2), 306–311 (2018).
[Crossref]

Tischler, J. G.

Torres-Peiró, S.

Vesseur, E. J. R.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Wan, C.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Wang, R.

Wang, Y.

Wang, Z.

C. Chen, Z. Wang, K. Wu, and H. Ye, “Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films,” Sci. Technol. Adv. Mater. 19(1), 174–184 (2018).
[Crossref] [PubMed]

Weinstein, L. A.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

Wu, K.

C. Chen, Z. Wang, K. Wu, and H. Ye, “Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films,” Sci. Technol. Adv. Mater. 19(1), 174–184 (2018).
[Crossref] [PubMed]

Yamamoto, Y.

Y. Yamamoto, “Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers,” IEEE J. Quantum Electron. 16(10), 1047–1052 (1980).
[Crossref]

Yan, R.-H.

S. W. Corzine, R. S. Geels, J. W. Scott, R.-H. Yan, and L. A. Coldren, “R.- Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Ye, H.

C. Chen, Z. Wang, K. Wu, and H. Ye, “Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films,” Sci. Technol. Adv. Mater. 19(1), 174–184 (2018).
[Crossref] [PubMed]

Yerci, S.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

Yoon, J.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

Yu, N.

Zalvidea, D.

Zhang, R.

Zhang, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Zhou, M.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

Zhou, Y.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Zwiller, V.

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009).
[Crossref]

ACS Photonics (4)

L. J. Krayer, E. M. Tennyson, M. S. Leite, and J. N. Munday, “Near-IR Imaging Based on Hot Carrier Generation in Nanometer-Scale Optical Coatings,” ACS Photonics 5(2), 306–311 (2018).
[Crossref]

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

C. Gong and M. S. Leite, “Noble Metal Alloys for Plasmonics,” ACS Photonics 3(4), 507–513 (2016).
[Crossref]

K. J. Palm, J. B. Murray, T. C. Narayan, and J. N. Munday, “Dynamic Optical Properties of Metal Hydrides,” ACS Photonics 5(11), 4677–4686 (2018).
[Crossref]

Adv. Opt. Mater. (1)

M. R. S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography‐Free, Omnidirectional, CMOS‐Compatible AlCu Alloys for Thin‐Film Superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett. 94(17), 171109 (2009).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009).
[Crossref]

IEEE J. Quantum Electron. (2)

S. W. Corzine, R. S. Geels, J. W. Scott, R.-H. Yan, and L. A. Coldren, “R.- Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

Y. Yamamoto, “Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers,” IEEE J. Quantum Electron. 16(10), 1047–1052 (1980).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

IEEE Photonics J. (1)

S. S. Mirshafieyan, H. Guo, and J. Guo, “Zeroth Order Fabry–Perot Resonance Enabled Strong Light Absorption in Ultrathin Silicon Films on Different Metals and Its Application for Color Filters,” IEEE Photonics J. 8(5), 1–12 (2016).
[Crossref]

J. Opt. (1)

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

Mater. Sci. Semicond. Process. (1)

A. Ciesielski, L. Skowronski, W. Pacuski, and T. Szoplik, “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver,” Mater. Sci. Semicond. Process. 81, 64–67 (2018).
[Crossref]

Nano Lett. (2)

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref] [PubMed]

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

Nat. Mater. (2)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (2)

Optica (1)

Phys. Rev. Appl. (1)

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Phys. Rev. B. (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B. 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Phys. Rev. X (1)

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Sci. Rep. (2)

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

K.-H. Kim and Q.-H. Park, “Perfect anti-reflection from first principles,” Sci. Rep. 3(1), 1062 (2013).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

C. Chen, Z. Wang, K. Wu, and H. Ye, “Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films,” Sci. Technol. Adv. Mater. 19(1), 174–184 (2018).
[Crossref] [PubMed]

Science (1)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Other (3)

H. Macleod, Thin-Film Optical Filters, Third Edition (Taylor & Francis Group, 2001).

E. D. Palik, Handbook of Optical Constants of Solids, I–III (Elsevier Inc, 1998).

C. Pinheiro, J. G. Rocha, L. M. Goncalves, S. Lanceros-Mendez, and G. Minas, “A Tunable Fabry-Perot Optical Filter for Application in Biochemical Analysis of Human’s Fluids,” in 2006 IEEE International Symposium on Industrial Electronics (2006), 4, pp. 2778–2783.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Absorption resonance in a 5 nm metal film varying the refractive index, nf + f, for wavelengths 300, 550, 800 and 1300 nm. The black dots show the optical properties of various materials. The dotted line shows nf = κf. The nf and κf axis extend from 0 to 5 for wavelengths 300 and 550 nm and are increased from 0 to 10 for wavelengths 800 to 1300 nm due to the increased size of the resonance. Some metals do not show up in all plots because their refractive indices lie outside of the values shown.
Fig. 2
Fig. 2 Contour plots of absorption as a function of wavelength and thickness for various materials on a nearly ideal INZ substrate (ñbot = 0.01 + 0.01i). The white dashed lines show the thickness where the absorption is maximized in each material. Al and Si achieve maximum absorption at 1-2 nm film thicknesses. Ge and Pt achieve maximum at 3 nm. All other metals achieve maximum absorption between 5 and 15 nm film thicknesses. Pt and Fe maintain high absorption across all wavelengths.
Fig. 3
Fig. 3 Absorption maxima in thin films are shown as a function of their optical properties (nf + f), the optical properties of the INZ substrate (nINZ + i κINZ), and of the effective optical path length, δ = 2πd/λ. The color of the dots represents the value of the absorption maxima in the thin film as determined by the color bar. The dashed grey line corresponds to nf = κf. The three boxed regions represent calculated values for δ = 0.25, 0.06, and 0.025 varying nINZ and κINZ. The boxed region at δ = 0.025 shows the values for nINZ and κINZ, and this trend is consistent for all δ regions, but not shown for simplicity.
Fig. 4
Fig. 4 Maximized absorption in various thin film metals on a nearly ideal, non-dispersive INZ substrate (orange) with ñbot = 0.01 + 0.01i, a low loss, non-dispersive INZ substrate (green) with ñbot = 0.25 + 0.25i, and a glass substrate (blue). The refractive index, nf (solid) + f (dashed), is plotted below the absorption. The transmission into the substrate is shown by the dashed lines and shaded regions. At each wavelength the film thickness, d, is optimized, and the optimized values are plotted.
Fig. 5
Fig. 5 Absorption in four metals varying the incident angle for TM (solid) and TE (dashed) illumination. The absorption in each metal is compared when using a glass substrate (blue), a nearly ideal INZ substrate with ñbot = 0.01 + 0.01i (orange), and a low loss INZ substrate with ñbot = 0.25 + 0.25i (green). The absorption is calculated numerically using the transfer matrix method with the specified parameters for wavelength, λ, and film thickness, d, denoted within the plots. The film thickness and wavelengths were chosen to maximize the absorption.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A max n top n top + n bot

Metrics