Abstract

This paper presents a novel design for the top contact of thin film photovoltaic (PV) solar cells. The new top contact is formed by fabricating a 20nm thin honeycomb shaped silver mesh on top of an ultra-thin 13nm of indium tin oxide. The new top contact offers the potential to reduce the series resistance of the cell while increasing the light current via plasmonic resonance. Using the nano-bead lithography technique the honeycomb top contact was fabricated and electrically characterized. The experimental results verified the new contact reduces the sheet resistance by about 40%. Numerical simulations were then used to analyze the potential performance enhancement in the cell. The results suggest the proposed top contact integrated with a typical thin film hydrogenated amorphous silicon PV device would lead to more than an 8% improvement in the overall efficiency of the cell.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spin-coated Ag nanoparticles for enhancing light absorption of thin film a-Si:H solar cells

Chan Il Yeo, Jang Hun Choi, Joon Beom Kim, Jeong Chul Lee, and Yong Tak Lee
Opt. Mater. Express 4(2) 346-351 (2014)

Bifacial CdS/CdTe thin-film solar cells using a transparent silver nanowire/indium tin oxide back contact

Yongbeom Kwon, Jaeyoung Seo, Yoonmook Kang, Donghwan Kim, and Jihyun Kim
Opt. Express 26(2) A30-A38 (2018)

References

  • View by:
  • |
  • |
  • |

  1. U.S. Energy Information Administration (EIA), “The Annual Energy Outlook 2015 (AEO2015).” Available at: http://www.eia.gov/forecasts/aeo/pdf/0383%282015%29.pdf , (Accessed on 12th June 2016).
  2. J. M. Pearce, “Photovoltaics—a path to sustainable futures,” Futures 34(7), 663–674 (2002).
    [Crossref]
  3. C. Candelise, M. Winskel, and R. J. K. Gross, “The dynamics of solar PV costs and prices as a challenge for technology forecasting,” Renew. Sustain. Energy Rev. 26, 96–107 (2013).
    [Crossref]
  4. U. Pillai, “Drivers of Cost Reduction in Solar photovoltaic,” Energy Econ. 50, 286–293 (2015).
    [Crossref]
  5. K. Branker, M. J. M. Pathak, and J. M. Pearce, “A Review of Solar Photovoltaic Levelized Cost of Electricity,” Renew. Sustain. Energy Rev. 15(9), 4470–4482 (2011).
    [Crossref]
  6. M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 50).” Progress in Photovoltaics 26, no. NREL (2017).
    [Crossref]
  7. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [Crossref]
  8. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
    [Crossref]
  9. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref] [PubMed]
  10. I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
    [Crossref]
  11. C. Zhang, J. Gwamuri, S. Cvetanovic, M. Sadatgol, D. O. Guney, and J. M. Pearce, “Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography,” J. Opt. 19(7), 075901 (2017).
    [Crossref]
  12. V. L. Dalal, “Design considerations for a-Si solar cells,” IEEE Trans. Electron Dev. 27(4), 662–670 (1980).
    [Crossref]
  13. E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent Conducting Oxides for Photovoltaics,” MRS Bull. 32(03), 242–247 (2007).
    [Crossref]
  14. A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. Güney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
    [Crossref]
  15. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  16. C. Algora and V. Diaz, “Influence of series resistance on guidelines for manufacture of concentrator p‐on‐n GaAs solar cells,” Prog. Photovolt. Res. Appl. 8(2), 211–225 (2000).
    [Crossref]
  17. L. D. Nielsen, “Distributed series resistance effects in solar cells,” IEEE Trans. Electron Dev. 29(5), 821–827 (1982).
    [Crossref]
  18. J. T. Lin, C. C. Lai, C. T. Lee, Y. Y. Hu, K. Y. Ho, and S. W. Haga, “A High-Efficiency HIT Solar Cell With Pillar Texturing,” IEEE Journal of Photovoltaics 8(3), 669–675 (2018).
    [Crossref]
  19. M. Berginski, J. Hüpkes, W. Reetz, B. Rech, and M. Wuttig, “Recent development on surface-textured ZnO: Al films prepared by sputtering for thin-film solar cell application,” Thin Solid Films 516(17), 5836–5841 (2008).
    [Crossref]
  20. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
    [Crossref]
  21. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
    [Crossref]
  22. J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5(8), 6210–6217 (2011).
    [Crossref] [PubMed]
  23. M. T. Boyd, S. A. Klein, D. T. Reindl, and B. P. Dougherty, “Evaluation and validation of equivalent circuit photovoltaic solar cell performance models,” J. Sol. Energy Eng. 133(2), 021005 (2011).
    [Crossref]
  24. System Advisor Model Version, 2017.9.5 (SAM 2017.9.5) Website. Simple Efficiency Module. National Renewable Energy Laboratory. Golden, CO. Accessed October 31, 2016. https://sam.nrel.gov/content/simple-efficiency-module .
  25. N. Balasubramanian and A. Subrahmanyam, “Studies on evaporated indium tin oxide (ITO)/silicon junctions and an estimation of ITO work function,” J. Electrochem. Soc. 138(1), 322–324 (1991).
    [Crossref]
  26. S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(101Suppl 1), A60–A76 (2013).
    [Crossref] [PubMed]
  27. F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg, and P. Leiderer, “Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces,” Appl. Surf. Sci. 144, 461–466 (1999).
    [Crossref]
  28. C. Zhang, S. Cvetanovic, and J. M. Pearce, “Fabricating ordered 2-D nano-structured arrays using nanosphere lithography,” MethodsX 4, 229–242 (2017).
    [Crossref] [PubMed]
  29. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
    [Crossref]
  30. M. R. Goncalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D Appl. Phys. 47(21), 213001 (2014).
    [Crossref]
  31. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” Journal of Physical Chemistry B 105, 5599–5611 (2001).
  32. J. Linnet, A. R. Walther, C. Wolff, O. Albrektsen, N. A. Mortensen, and J. Kjelstrup-Hansen, “Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films,” Opt. Mater. Express 8(7), 1733–1746 (2018).
    [Crossref]
  33. M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
    [Crossref] [PubMed]
  34. J. Ziegler, L. Xia, R. Zejnelovic, and D. Borchert, “Changes in contact resistance of different metals to magnetron sputtered ITO while annealing,” Proceeding of 25th EUPVSEC Valencia (2010).
  35. A. Klöppel, W. Kriegseis, B. K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube, “Dependence of the electrical and optical behaviour of ITO–silver–ITO multilayers on the silver properties,” Thin Solid Films 365(1), 139–146 (2000).
    [Crossref]
  36. H. Tian, F. Mancilla-David, K. Ellis, E. Muljadi, and P. Jenkins, “A cell-to-module-to-array detailed model for photovoltaic panels,” Sol. Energy 86(9), 2695–2706 (2012).
    [Crossref]
  37. J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, “Electrically conductive CNT‐dispersed silicon nitride ceramics,” J. Am. Ceram. Soc. 88(10), 2889–2893 (2005).
    [Crossref]
  38. F. Nehm, S. Schubert, L. Müller-Meskamp, and K. Leo, “Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films,” Thin Solid Films 556, 381–384 (2014).
    [Crossref]
  39. J. Gwamuri, A. Vora, J. Mayandi, D. O. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Sol. Cells 149, 250–257 (2016).
    [Crossref]
  40. M. T. García, I. Gracia, G. Duque, Ad. Lucas, and J. F. Rodríguez, “Study of the solubility and stability of polystyrene wastes in a dissolution recycling process,” Waste Manag. 29(6), 1814–1818 (2009).
    [Crossref] [PubMed]
  41. H. Chandra, S. W. Allen, S. W. Oberloier, N. Bihari, J. Gwamuri, and J. M. Pearce, “Open-source automated mapping four-point probe,” Materials (Basel) 10(2), 110 (2017).
    [Crossref] [PubMed]
  42. N. G. Patel, P. D. Patel, and V. S. Vaishnav, “Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature,” Sens. Actuators B Chem. 96(1–2), 180–189 (2003).
    [Crossref]
  43. Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. R. Lee, “Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode,” Thin Solid Films 411(1), 12–16 (2002).
    [Crossref]

2018 (2)

J. T. Lin, C. C. Lai, C. T. Lee, Y. Y. Hu, K. Y. Ho, and S. W. Haga, “A High-Efficiency HIT Solar Cell With Pillar Texturing,” IEEE Journal of Photovoltaics 8(3), 669–675 (2018).
[Crossref]

J. Linnet, A. R. Walther, C. Wolff, O. Albrektsen, N. A. Mortensen, and J. Kjelstrup-Hansen, “Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films,” Opt. Mater. Express 8(7), 1733–1746 (2018).
[Crossref]

2017 (3)

C. Zhang, J. Gwamuri, S. Cvetanovic, M. Sadatgol, D. O. Guney, and J. M. Pearce, “Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography,” J. Opt. 19(7), 075901 (2017).
[Crossref]

H. Chandra, S. W. Allen, S. W. Oberloier, N. Bihari, J. Gwamuri, and J. M. Pearce, “Open-source automated mapping four-point probe,” Materials (Basel) 10(2), 110 (2017).
[Crossref] [PubMed]

C. Zhang, S. Cvetanovic, and J. M. Pearce, “Fabricating ordered 2-D nano-structured arrays using nanosphere lithography,” MethodsX 4, 229–242 (2017).
[Crossref] [PubMed]

2016 (2)

J. Gwamuri, A. Vora, J. Mayandi, D. O. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Sol. Cells 149, 250–257 (2016).
[Crossref]

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref] [PubMed]

2015 (1)

U. Pillai, “Drivers of Cost Reduction in Solar photovoltaic,” Energy Econ. 50, 286–293 (2015).
[Crossref]

2014 (3)

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. Güney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

F. Nehm, S. Schubert, L. Müller-Meskamp, and K. Leo, “Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films,” Thin Solid Films 556, 381–384 (2014).
[Crossref]

M. R. Goncalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D Appl. Phys. 47(21), 213001 (2014).
[Crossref]

2013 (2)

S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(101Suppl 1), A60–A76 (2013).
[Crossref] [PubMed]

C. Candelise, M. Winskel, and R. J. K. Gross, “The dynamics of solar PV costs and prices as a challenge for technology forecasting,” Renew. Sustain. Energy Rev. 26, 96–107 (2013).
[Crossref]

2012 (3)

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

H. Tian, F. Mancilla-David, K. Ellis, E. Muljadi, and P. Jenkins, “A cell-to-module-to-array detailed model for photovoltaic panels,” Sol. Energy 86(9), 2695–2706 (2012).
[Crossref]

2011 (4)

J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5(8), 6210–6217 (2011).
[Crossref] [PubMed]

M. T. Boyd, S. A. Klein, D. T. Reindl, and B. P. Dougherty, “Evaluation and validation of equivalent circuit photovoltaic solar cell performance models,” J. Sol. Energy Eng. 133(2), 021005 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

K. Branker, M. J. M. Pathak, and J. M. Pearce, “A Review of Solar Photovoltaic Levelized Cost of Electricity,” Renew. Sustain. Energy Rev. 15(9), 4470–4482 (2011).
[Crossref]

2010 (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (1)

M. T. García, I. Gracia, G. Duque, Ad. Lucas, and J. F. Rodríguez, “Study of the solubility and stability of polystyrene wastes in a dissolution recycling process,” Waste Manag. 29(6), 1814–1818 (2009).
[Crossref] [PubMed]

2008 (2)

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

M. Berginski, J. Hüpkes, W. Reetz, B. Rech, and M. Wuttig, “Recent development on surface-textured ZnO: Al films prepared by sputtering for thin-film solar cell application,” Thin Solid Films 516(17), 5836–5841 (2008).
[Crossref]

2007 (1)

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent Conducting Oxides for Photovoltaics,” MRS Bull. 32(03), 242–247 (2007).
[Crossref]

2006 (1)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

2005 (1)

J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, “Electrically conductive CNT‐dispersed silicon nitride ceramics,” J. Am. Ceram. Soc. 88(10), 2889–2893 (2005).
[Crossref]

2004 (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

2003 (1)

N. G. Patel, P. D. Patel, and V. S. Vaishnav, “Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature,” Sens. Actuators B Chem. 96(1–2), 180–189 (2003).
[Crossref]

2002 (2)

Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. R. Lee, “Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode,” Thin Solid Films 411(1), 12–16 (2002).
[Crossref]

J. M. Pearce, “Photovoltaics—a path to sustainable futures,” Futures 34(7), 663–674 (2002).
[Crossref]

2001 (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” Journal of Physical Chemistry B 105, 5599–5611 (2001).

2000 (2)

C. Algora and V. Diaz, “Influence of series resistance on guidelines for manufacture of concentrator p‐on‐n GaAs solar cells,” Prog. Photovolt. Res. Appl. 8(2), 211–225 (2000).
[Crossref]

A. Klöppel, W. Kriegseis, B. K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube, “Dependence of the electrical and optical behaviour of ITO–silver–ITO multilayers on the silver properties,” Thin Solid Films 365(1), 139–146 (2000).
[Crossref]

1999 (2)

F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg, and P. Leiderer, “Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces,” Appl. Surf. Sci. 144, 461–466 (1999).
[Crossref]

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

1991 (1)

N. Balasubramanian and A. Subrahmanyam, “Studies on evaporated indium tin oxide (ITO)/silicon junctions and an estimation of ITO work function,” J. Electrochem. Soc. 138(1), 322–324 (1991).
[Crossref]

1982 (1)

L. D. Nielsen, “Distributed series resistance effects in solar cells,” IEEE Trans. Electron Dev. 29(5), 821–827 (1982).
[Crossref]

1980 (1)

V. L. Dalal, “Design considerations for a-Si solar cells,” IEEE Trans. Electron Dev. 27(4), 662–670 (1980).
[Crossref]

Albrektsen, O.

Algora, C.

C. Algora and V. Diaz, “Influence of series resistance on guidelines for manufacture of concentrator p‐on‐n GaAs solar cells,” Prog. Photovolt. Res. Appl. 8(2), 211–225 (2000).
[Crossref]

Allen, S. W.

H. Chandra, S. W. Allen, S. W. Oberloier, N. Bihari, J. Gwamuri, and J. M. Pearce, “Open-source automated mapping four-point probe,” Materials (Basel) 10(2), 110 (2017).
[Crossref] [PubMed]

Atwater, H. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Badowsky, W.

F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg, and P. Leiderer, “Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces,” Appl. Surf. Sci. 144, 461–466 (1999).
[Crossref]

Balasubramanian, N.

N. Balasubramanian and A. Subrahmanyam, “Studies on evaporated indium tin oxide (ITO)/silicon junctions and an estimation of ITO work function,” J. Electrochem. Soc. 138(1), 322–324 (1991).
[Crossref]

Bartl, J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref] [PubMed]

Berginski, M.

M. Berginski, J. Hüpkes, W. Reetz, B. Rech, and M. Wuttig, “Recent development on surface-textured ZnO: Al films prepared by sputtering for thin-film solar cell application,” Thin Solid Films 516(17), 5836–5841 (2008).
[Crossref]

Bergstrom, P. L.

J. Gwamuri, A. Vora, J. Mayandi, D. O. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Sol. Cells 149, 250–257 (2016).
[Crossref]

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. Güney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

Bihari, N.

H. Chandra, S. W. Allen, S. W. Oberloier, N. Bihari, J. Gwamuri, and J. M. Pearce, “Open-source automated mapping four-point probe,” Materials (Basel) 10(2), 110 (2017).
[Crossref] [PubMed]

Boneberg, J.

F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg, and P. Leiderer, “Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces,” Appl. Surf. Sci. 144, 461–466 (1999).
[Crossref]

Borchert, D.

J. Ziegler, L. Xia, R. Zejnelovic, and D. Borchert, “Changes in contact resistance of different metals to magnetron sputtered ITO while annealing,” Proceeding of 25th EUPVSEC Valencia (2010).

Boyd, M. T.

M. T. Boyd, S. A. Klein, D. T. Reindl, and B. P. Dougherty, “Evaluation and validation of equivalent circuit photovoltaic solar cell performance models,” J. Sol. Energy Eng. 133(2), 021005 (2011).
[Crossref]

Branker, K.

K. Branker, M. J. M. Pathak, and J. M. Pearce, “A Review of Solar Photovoltaic Levelized Cost of Electricity,” Renew. Sustain. Energy Rev. 15(9), 4470–4482 (2011).
[Crossref]

Braun, T.

F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg, and P. Leiderer, “Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces,” Appl. Surf. Sci. 144, 461–466 (1999).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Burmeister, F.

F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg, and P. Leiderer, “Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces,” Appl. Surf. Sci. 144, 461–466 (1999).
[Crossref]

Candelise, C.

C. Candelise, M. Winskel, and R. J. K. Gross, “The dynamics of solar PV costs and prices as a challenge for technology forecasting,” Renew. Sustain. Energy Rev. 26, 96–107 (2013).
[Crossref]

Chandra, H.

H. Chandra, S. W. Allen, S. W. Oberloier, N. Bihari, J. Gwamuri, and J. M. Pearce, “Open-source automated mapping four-point probe,” Materials (Basel) 10(2), 110 (2017).
[Crossref] [PubMed]

Chen, C. C.

J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5(8), 6210–6217 (2011).
[Crossref] [PubMed]

Chou, S. Y.

Colin, C.

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Collin, S.

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Cvetanovic, S.

C. Zhang, S. Cvetanovic, and J. M. Pearce, “Fabricating ordered 2-D nano-structured arrays using nanosphere lithography,” MethodsX 4, 229–242 (2017).
[Crossref] [PubMed]

C. Zhang, J. Gwamuri, S. Cvetanovic, M. Sadatgol, D. O. Guney, and J. M. Pearce, “Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography,” J. Opt. 19(7), 075901 (2017).
[Crossref]

Dalal, V. L.

V. L. Dalal, “Design considerations for a-Si solar cells,” IEEE Trans. Electron Dev. 27(4), 662–670 (1980).
[Crossref]

Daube, C.

A. Klöppel, W. Kriegseis, B. K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube, “Dependence of the electrical and optical behaviour of ITO–silver–ITO multilayers on the silver properties,” Thin Solid Films 365(1), 139–146 (2000).
[Crossref]

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Diaz, V.

C. Algora and V. Diaz, “Influence of series resistance on guidelines for manufacture of concentrator p‐on‐n GaAs solar cells,” Prog. Photovolt. Res. Appl. 8(2), 211–225 (2000).
[Crossref]

Ding, W.

Dougherty, B. P.

M. T. Boyd, S. A. Klein, D. T. Reindl, and B. P. Dougherty, “Evaluation and validation of equivalent circuit photovoltaic solar cell performance models,” J. Sol. Energy Eng. 133(2), 021005 (2011).
[Crossref]

Duque, G.

M. T. García, I. Gracia, G. Duque, Ad. Lucas, and J. F. Rodríguez, “Study of the solubility and stability of polystyrene wastes in a dissolution recycling process,” Waste Manag. 29(6), 1814–1818 (2009).
[Crossref] [PubMed]

Duval, M. L.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

Ellis, K.

H. Tian, F. Mancilla-David, K. Ellis, E. Muljadi, and P. Jenkins, “A cell-to-module-to-array detailed model for photovoltaic panels,” Sol. Energy 86(9), 2695–2706 (2012).
[Crossref]

Ferry, V. E.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Finley, J. J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref] [PubMed]

Flassig, F.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref] [PubMed]

Fortunato, E.

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent Conducting Oxides for Photovoltaics,” MRS Bull. 32(03), 242–247 (2007).
[Crossref]

García, M. T.

M. T. García, I. Gracia, G. Duque, Ad. Lucas, and J. F. Rodríguez, “Study of the solubility and stability of polystyrene wastes in a dissolution recycling process,” Waste Manag. 29(6), 1814–1818 (2009).
[Crossref] [PubMed]

Ginley, D.

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent Conducting Oxides for Photovoltaics,” MRS Bull. 32(03), 242–247 (2007).
[Crossref]

Glashagen, G.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref] [PubMed]

Goncalves, M. R.

M. R. Goncalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D Appl. Phys. 47(21), 213001 (2014).
[Crossref]

Gracia, I.

M. T. García, I. Gracia, G. Duque, Ad. Lucas, and J. F. Rodríguez, “Study of the solubility and stability of polystyrene wastes in a dissolution recycling process,” Waste Manag. 29(6), 1814–1818 (2009).
[Crossref] [PubMed]

Gross, R. J. K.

C. Candelise, M. Winskel, and R. J. K. Gross, “The dynamics of solar PV costs and prices as a challenge for technology forecasting,” Renew. Sustain. Energy Rev. 26, 96–107 (2013).
[Crossref]

Guney, D. O.

C. Zhang, J. Gwamuri, S. Cvetanovic, M. Sadatgol, D. O. Guney, and J. M. Pearce, “Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography,” J. Opt. 19(7), 075901 (2017).
[Crossref]

Güney, D.

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. Güney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

Güney, D. O.

J. Gwamuri, A. Vora, J. Mayandi, D. O. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Sol. Cells 149, 250–257 (2016).
[Crossref]

Gwamuri, J.

H. Chandra, S. W. Allen, S. W. Oberloier, N. Bihari, J. Gwamuri, and J. M. Pearce, “Open-source automated mapping four-point probe,” Materials (Basel) 10(2), 110 (2017).
[Crossref] [PubMed]

C. Zhang, J. Gwamuri, S. Cvetanovic, M. Sadatgol, D. O. Guney, and J. M. Pearce, “Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography,” J. Opt. 19(7), 075901 (2017).
[Crossref]

J. Gwamuri, A. Vora, J. Mayandi, D. O. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Sol. Cells 149, 250–257 (2016).
[Crossref]

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. Güney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

Haga, S. W.

J. T. Lin, C. C. Lai, C. T. Lee, Y. Y. Hu, K. Y. Ho, and S. W. Haga, “A High-Efficiency HIT Solar Cell With Pillar Texturing,” IEEE Journal of Photovoltaics 8(3), 669–675 (2018).
[Crossref]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” Journal of Physical Chemistry B 105, 5599–5611 (2001).

Ho, K. Y.

J. T. Lin, C. C. Lai, C. T. Lee, Y. Y. Hu, K. Y. Ho, and S. W. Haga, “A High-Efficiency HIT Solar Cell With Pillar Texturing,” IEEE Journal of Photovoltaics 8(3), 669–675 (2018).
[Crossref]

Hong, Z.

J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5(8), 6210–6217 (2011).
[Crossref] [PubMed]

Hosono, H.

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent Conducting Oxides for Photovoltaics,” MRS Bull. 32(03), 242–247 (2007).
[Crossref]

Hsu, W. C.

J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5(8), 6210–6217 (2011).
[Crossref] [PubMed]

Hu, Y. Y.

J. T. Lin, C. C. Lai, C. T. Lee, Y. Y. Hu, K. Y. Ho, and S. W. Haga, “A High-Efficiency HIT Solar Cell With Pillar Texturing,” IEEE Journal of Photovoltaics 8(3), 669–675 (2018).
[Crossref]

Hulteen, J. C.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

Hüpkes, J.

M. Berginski, J. Hüpkes, W. Reetz, B. Rech, and M. Wuttig, “Recent development on surface-textured ZnO: Al films prepared by sputtering for thin-film solar cell application,” Thin Solid Films 516(17), 5836–5841 (2008).
[Crossref]

Jenkins, P.

H. Tian, F. Mancilla-David, K. Ellis, E. Muljadi, and P. Jenkins, “A cell-to-module-to-array detailed model for photovoltaic panels,” Sol. Energy 86(9), 2695–2706 (2012).
[Crossref]

Jensen, T. R.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

Kaniber, M.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref] [PubMed]

Katashima, T.

J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, “Electrically conductive CNT‐dispersed silicon nitride ceramics,” J. Am. Ceram. Soc. 88(10), 2889–2893 (2005).
[Crossref]

Kim, K. B.

Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. R. Lee, “Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode,” Thin Solid Films 411(1), 12–16 (2002).
[Crossref]

Kjelstrup-Hansen, J.

Klein, S. A.

M. T. Boyd, S. A. Klein, D. T. Reindl, and B. P. Dougherty, “Evaluation and validation of equivalent circuit photovoltaic solar cell performance models,” J. Sol. Energy Eng. 133(2), 021005 (2011).
[Crossref]

Klöppel, A.

A. Klöppel, W. Kriegseis, B. K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube, “Dependence of the electrical and optical behaviour of ITO–silver–ITO multilayers on the silver properties,” Thin Solid Films 365(1), 139–146 (2000).
[Crossref]

Komeya, K.

J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, “Electrically conductive CNT‐dispersed silicon nitride ceramics,” J. Am. Ceram. Soc. 88(10), 2889–2893 (2005).
[Crossref]

Kriegseis, W.

A. Klöppel, W. Kriegseis, B. K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube, “Dependence of the electrical and optical behaviour of ITO–silver–ITO multilayers on the silver properties,” Thin Solid Films 365(1), 139–146 (2000).
[Crossref]

Lai, C. C.

J. T. Lin, C. C. Lai, C. T. Lee, Y. Y. Hu, K. Y. Ho, and S. W. Haga, “A High-Efficiency HIT Solar Cell With Pillar Texturing,” IEEE Journal of Photovoltaics 8(3), 669–675 (2018).
[Crossref]

Lalanne, P.

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Lee, C. T.

J. T. Lin, C. C. Lai, C. T. Lee, Y. Y. Hu, K. Y. Ho, and S. W. Haga, “A High-Efficiency HIT Solar Cell With Pillar Texturing,” IEEE Journal of Photovoltaics 8(3), 669–675 (2018).
[Crossref]

Lee, J. R.

Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. R. Lee, “Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode,” Thin Solid Films 411(1), 12–16 (2002).
[Crossref]

Lee, K. H.

Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. R. Lee, “Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode,” Thin Solid Films 411(1), 12–16 (2002).
[Crossref]

Leiderer, P.

F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg, and P. Leiderer, “Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces,” Appl. Surf. Sci. 144, 461–466 (1999).
[Crossref]

Leo, K.

F. Nehm, S. Schubert, L. Müller-Meskamp, and K. Leo, “Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films,” Thin Solid Films 556, 381–384 (2014).
[Crossref]

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Lin, J. T.

J. T. Lin, C. C. Lai, C. T. Lee, Y. Y. Hu, K. Y. Ho, and S. W. Haga, “A High-Efficiency HIT Solar Cell With Pillar Texturing,” IEEE Journal of Photovoltaics 8(3), 669–675 (2018).
[Crossref]

Linnet, J.

Lucas, Ad.

M. T. García, I. Gracia, G. Duque, Ad. Lucas, and J. F. Rodríguez, “Study of the solubility and stability of polystyrene wastes in a dissolution recycling process,” Waste Manag. 29(6), 1814–1818 (2009).
[Crossref] [PubMed]

Mancilla-David, F.

H. Tian, F. Mancilla-David, K. Ellis, E. Muljadi, and P. Jenkins, “A cell-to-module-to-array detailed model for photovoltaic panels,” Sol. Energy 86(9), 2695–2706 (2012).
[Crossref]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Massiot, I.

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Mayandi, J.

J. Gwamuri, A. Vora, J. Mayandi, D. O. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Sol. Cells 149, 250–257 (2016).
[Crossref]

Meguro, T.

J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, “Electrically conductive CNT‐dispersed silicon nitride ceramics,” J. Am. Ceram. Soc. 88(10), 2889–2893 (2005).
[Crossref]

Meyer, B. K.

A. Klöppel, W. Kriegseis, B. K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube, “Dependence of the electrical and optical behaviour of ITO–silver–ITO multilayers on the silver properties,” Thin Solid Films 365(1), 139–146 (2000).
[Crossref]

Mortensen, N. A.

Muljadi, E.

H. Tian, F. Mancilla-David, K. Ellis, E. Muljadi, and P. Jenkins, “A cell-to-module-to-array detailed model for photovoltaic panels,” Sol. Energy 86(9), 2695–2706 (2012).
[Crossref]

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Müller-Meskamp, L.

F. Nehm, S. Schubert, L. Müller-Meskamp, and K. Leo, “Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films,” Thin Solid Films 556, 381–384 (2014).
[Crossref]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Nehm, F.

F. Nehm, S. Schubert, L. Müller-Meskamp, and K. Leo, “Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films,” Thin Solid Films 556, 381–384 (2014).
[Crossref]

Nielsen, L. D.

L. D. Nielsen, “Distributed series resistance effects in solar cells,” IEEE Trans. Electron Dev. 29(5), 821–827 (1982).
[Crossref]

Oberloier, S. W.

H. Chandra, S. W. Allen, S. W. Oberloier, N. Bihari, J. Gwamuri, and J. M. Pearce, “Open-source automated mapping four-point probe,” Materials (Basel) 10(2), 110 (2017).
[Crossref] [PubMed]

Paine, D. C.

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent Conducting Oxides for Photovoltaics,” MRS Bull. 32(03), 242–247 (2007).
[Crossref]

Park, H. G.

Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. R. Lee, “Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode,” Thin Solid Films 411(1), 12–16 (2002).
[Crossref]

Patel, N. G.

N. G. Patel, P. D. Patel, and V. S. Vaishnav, “Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature,” Sens. Actuators B Chem. 96(1–2), 180–189 (2003).
[Crossref]

Patel, P. D.

N. G. Patel, P. D. Patel, and V. S. Vaishnav, “Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature,” Sens. Actuators B Chem. 96(1–2), 180–189 (2003).
[Crossref]

Pathak, M. J. M.

K. Branker, M. J. M. Pathak, and J. M. Pearce, “A Review of Solar Photovoltaic Levelized Cost of Electricity,” Renew. Sustain. Energy Rev. 15(9), 4470–4482 (2011).
[Crossref]

Pearce, J. M.

H. Chandra, S. W. Allen, S. W. Oberloier, N. Bihari, J. Gwamuri, and J. M. Pearce, “Open-source automated mapping four-point probe,” Materials (Basel) 10(2), 110 (2017).
[Crossref] [PubMed]

C. Zhang, S. Cvetanovic, and J. M. Pearce, “Fabricating ordered 2-D nano-structured arrays using nanosphere lithography,” MethodsX 4, 229–242 (2017).
[Crossref] [PubMed]

C. Zhang, J. Gwamuri, S. Cvetanovic, M. Sadatgol, D. O. Guney, and J. M. Pearce, “Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography,” J. Opt. 19(7), 075901 (2017).
[Crossref]

J. Gwamuri, A. Vora, J. Mayandi, D. O. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Sol. Cells 149, 250–257 (2016).
[Crossref]

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. Güney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

K. Branker, M. J. M. Pathak, and J. M. Pearce, “A Review of Solar Photovoltaic Levelized Cost of Electricity,” Renew. Sustain. Energy Rev. 15(9), 4470–4482 (2011).
[Crossref]

J. M. Pearce, “Photovoltaics—a path to sustainable futures,” Futures 34(7), 663–674 (2002).
[Crossref]

Pelouard, J.-L.

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Pere-Laperne, N.

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Pillai, U.

U. Pillai, “Drivers of Cost Reduction in Solar photovoltaic,” Energy Econ. 50, 286–293 (2015).
[Crossref]

Polman, A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Rech, B.

M. Berginski, J. Hüpkes, W. Reetz, B. Rech, and M. Wuttig, “Recent development on surface-textured ZnO: Al films prepared by sputtering for thin-film solar cell application,” Thin Solid Films 516(17), 5836–5841 (2008).
[Crossref]

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Reetz, W.

M. Berginski, J. Hüpkes, W. Reetz, B. Rech, and M. Wuttig, “Recent development on surface-textured ZnO: Al films prepared by sputtering for thin-film solar cell application,” Thin Solid Films 516(17), 5836–5841 (2008).
[Crossref]

Regler, A.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref] [PubMed]

Reindl, D. T.

M. T. Boyd, S. A. Klein, D. T. Reindl, and B. P. Dougherty, “Evaluation and validation of equivalent circuit photovoltaic solar cell performance models,” J. Sol. Energy Eng. 133(2), 021005 (2011).
[Crossref]

Roca i Cabarrocas, P.

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Rodríguez, J. F.

M. T. García, I. Gracia, G. Duque, Ad. Lucas, and J. F. Rodríguez, “Study of the solubility and stability of polystyrene wastes in a dissolution recycling process,” Waste Manag. 29(6), 1814–1818 (2009).
[Crossref] [PubMed]

Sadatgol, M.

C. Zhang, J. Gwamuri, S. Cvetanovic, M. Sadatgol, D. O. Guney, and J. M. Pearce, “Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography,” J. Opt. 19(7), 075901 (2017).
[Crossref]

Sauvan, C.

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Scharmann, A.

A. Klöppel, W. Kriegseis, B. K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube, “Dependence of the electrical and optical behaviour of ITO–silver–ITO multilayers on the silver properties,” Thin Solid Films 365(1), 139–146 (2000).
[Crossref]

Schraml, K.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref] [PubMed]

Schropp, R. E. I.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

Schubert, S.

F. Nehm, S. Schubert, L. Müller-Meskamp, and K. Leo, “Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films,” Thin Solid Films 556, 381–384 (2014).
[Crossref]

Smith, M. T.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

Spinelli, P.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Stollenwerk, J.

A. Klöppel, W. Kriegseis, B. K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube, “Dependence of the electrical and optical behaviour of ITO–silver–ITO multilayers on the silver properties,” Thin Solid Films 365(1), 139–146 (2000).
[Crossref]

Subrahmanyam, A.

N. Balasubramanian and A. Subrahmanyam, “Studies on evaporated indium tin oxide (ITO)/silicon junctions and an estimation of ITO work function,” J. Electrochem. Soc. 138(1), 322–324 (1991).
[Crossref]

Tak, Y. H.

Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. R. Lee, “Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode,” Thin Solid Films 411(1), 12–16 (2002).
[Crossref]

Tan, H. R.

J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5(8), 6210–6217 (2011).
[Crossref] [PubMed]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Tatami, J.

J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, “Electrically conductive CNT‐dispersed silicon nitride ceramics,” J. Am. Ceram. Soc. 88(10), 2889–2893 (2005).
[Crossref]

Tian, H.

H. Tian, F. Mancilla-David, K. Ellis, E. Muljadi, and P. Jenkins, “A cell-to-module-to-array detailed model for photovoltaic panels,” Sol. Energy 86(9), 2695–2706 (2012).
[Crossref]

Treichel, D. A.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

Trube, J.

A. Klöppel, W. Kriegseis, B. K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube, “Dependence of the electrical and optical behaviour of ITO–silver–ITO multilayers on the silver properties,” Thin Solid Films 365(1), 139–146 (2000).
[Crossref]

Vaishnav, V. S.

N. G. Patel, P. D. Patel, and V. S. Vaishnav, “Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature,” Sens. Actuators B Chem. 96(1–2), 180–189 (2003).
[Crossref]

van de Groep, J.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

Van Duyne, R. P.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” Journal of Physical Chemistry B 105, 5599–5611 (2001).

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

van Lare, M.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

Vanecek, M.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Verschuuren, M. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

Vora, A.

J. Gwamuri, A. Vora, J. Mayandi, D. O. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Sol. Cells 149, 250–257 (2016).
[Crossref]

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. Güney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

Wakihara, T.

J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, “Electrically conductive CNT‐dispersed silicon nitride ceramics,” J. Am. Ceram. Soc. 88(10), 2889–2893 (2005).
[Crossref]

Walther, A. R.

Wieprich, S.

F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg, and P. Leiderer, “Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces,” Appl. Surf. Sci. 144, 461–466 (1999).
[Crossref]

Wierzbowski, J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref] [PubMed]

Winskel, M.

C. Candelise, M. Winskel, and R. J. K. Gross, “The dynamics of solar PV costs and prices as a challenge for technology forecasting,” Renew. Sustain. Energy Rev. 26, 96–107 (2013).
[Crossref]

Wolff, C.

Wuttig, M.

M. Berginski, J. Hüpkes, W. Reetz, B. Rech, and M. Wuttig, “Recent development on surface-textured ZnO: Al films prepared by sputtering for thin-film solar cell application,” Thin Solid Films 516(17), 5836–5841 (2008).
[Crossref]

Xia, L.

J. Ziegler, L. Xia, R. Zejnelovic, and D. Borchert, “Changes in contact resistance of different metals to magnetron sputtered ITO while annealing,” Proceeding of 25th EUPVSEC Valencia (2010).

Yang, J.

J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5(8), 6210–6217 (2011).
[Crossref] [PubMed]

Yang, Y.

J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5(8), 6210–6217 (2011).
[Crossref] [PubMed]

You, J.

J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5(8), 6210–6217 (2011).
[Crossref] [PubMed]

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Zejnelovic, R.

J. Ziegler, L. Xia, R. Zejnelovic, and D. Borchert, “Changes in contact resistance of different metals to magnetron sputtered ITO while annealing,” Proceeding of 25th EUPVSEC Valencia (2010).

Zhang, C.

C. Zhang, J. Gwamuri, S. Cvetanovic, M. Sadatgol, D. O. Guney, and J. M. Pearce, “Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography,” J. Opt. 19(7), 075901 (2017).
[Crossref]

C. Zhang, S. Cvetanovic, and J. M. Pearce, “Fabricating ordered 2-D nano-structured arrays using nanosphere lithography,” MethodsX 4, 229–242 (2017).
[Crossref] [PubMed]

Zhang, X. W.

J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5(8), 6210–6217 (2011).
[Crossref] [PubMed]

Ziegler, J.

J. Ziegler, L. Xia, R. Zejnelovic, and D. Borchert, “Changes in contact resistance of different metals to magnetron sputtered ITO while annealing,” Proceeding of 25th EUPVSEC Valencia (2010).

ACS Nano (1)

J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano 5(8), 6210–6217 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Appl. Surf. Sci. (1)

F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg, and P. Leiderer, “Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces,” Appl. Surf. Sci. 144, 461–466 (1999).
[Crossref]

Energy Econ. (1)

U. Pillai, “Drivers of Cost Reduction in Solar photovoltaic,” Energy Econ. 50, 286–293 (2015).
[Crossref]

Futures (1)

J. M. Pearce, “Photovoltaics—a path to sustainable futures,” Futures 34(7), 663–674 (2002).
[Crossref]

IEEE Journal of Photovoltaics (1)

J. T. Lin, C. C. Lai, C. T. Lee, Y. Y. Hu, K. Y. Ho, and S. W. Haga, “A High-Efficiency HIT Solar Cell With Pillar Texturing,” IEEE Journal of Photovoltaics 8(3), 669–675 (2018).
[Crossref]

IEEE Trans. Electron Dev. (2)

L. D. Nielsen, “Distributed series resistance effects in solar cells,” IEEE Trans. Electron Dev. 29(5), 821–827 (1982).
[Crossref]

V. L. Dalal, “Design considerations for a-Si solar cells,” IEEE Trans. Electron Dev. 27(4), 662–670 (1980).
[Crossref]

J. Am. Ceram. Soc. (1)

J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, “Electrically conductive CNT‐dispersed silicon nitride ceramics,” J. Am. Ceram. Soc. 88(10), 2889–2893 (2005).
[Crossref]

J. Appl. Phys. (1)

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. Güney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

J. Electrochem. Soc. (1)

N. Balasubramanian and A. Subrahmanyam, “Studies on evaporated indium tin oxide (ITO)/silicon junctions and an estimation of ITO work function,” J. Electrochem. Soc. 138(1), 322–324 (1991).
[Crossref]

J. Opt. (2)

C. Zhang, J. Gwamuri, S. Cvetanovic, M. Sadatgol, D. O. Guney, and J. M. Pearce, “Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography,” J. Opt. 19(7), 075901 (2017).
[Crossref]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

J. Phys. Chem. B (1)

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. R. Goncalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D Appl. Phys. 47(21), 213001 (2014).
[Crossref]

J. Sol. Energy Eng. (1)

M. T. Boyd, S. A. Klein, D. T. Reindl, and B. P. Dougherty, “Evaluation and validation of equivalent circuit photovoltaic solar cell performance models,” J. Sol. Energy Eng. 133(2), 021005 (2011).
[Crossref]

Journal of Physical Chemistry B (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” Journal of Physical Chemistry B 105, 5599–5611 (2001).

Materials (Basel) (1)

H. Chandra, S. W. Allen, S. W. Oberloier, N. Bihari, J. Gwamuri, and J. M. Pearce, “Open-source automated mapping four-point probe,” Materials (Basel) 10(2), 110 (2017).
[Crossref] [PubMed]

MethodsX (1)

C. Zhang, S. Cvetanovic, and J. M. Pearce, “Fabricating ordered 2-D nano-structured arrays using nanosphere lithography,” MethodsX 4, 229–242 (2017).
[Crossref] [PubMed]

MRS Bull. (1)

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent Conducting Oxides for Photovoltaics,” MRS Bull. 32(03), 242–247 (2007).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Prog. Photovolt. Res. Appl. (1)

C. Algora and V. Diaz, “Influence of series resistance on guidelines for manufacture of concentrator p‐on‐n GaAs solar cells,” Prog. Photovolt. Res. Appl. 8(2), 211–225 (2000).
[Crossref]

Renew. Sustain. Energy Rev. (2)

C. Candelise, M. Winskel, and R. J. K. Gross, “The dynamics of solar PV costs and prices as a challenge for technology forecasting,” Renew. Sustain. Energy Rev. 26, 96–107 (2013).
[Crossref]

K. Branker, M. J. M. Pathak, and J. M. Pearce, “A Review of Solar Photovoltaic Levelized Cost of Electricity,” Renew. Sustain. Energy Rev. 15(9), 4470–4482 (2011).
[Crossref]

Sci. Rep. (1)

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

N. G. Patel, P. D. Patel, and V. S. Vaishnav, “Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature,” Sens. Actuators B Chem. 96(1–2), 180–189 (2003).
[Crossref]

Sol. Energy (2)

H. Tian, F. Mancilla-David, K. Ellis, E. Muljadi, and P. Jenkins, “A cell-to-module-to-array detailed model for photovoltaic panels,” Sol. Energy 86(9), 2695–2706 (2012).
[Crossref]

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

J. Gwamuri, A. Vora, J. Mayandi, D. O. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Sol. Cells 149, 250–257 (2016).
[Crossref]

Thin Solid Films (4)

F. Nehm, S. Schubert, L. Müller-Meskamp, and K. Leo, “Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films,” Thin Solid Films 556, 381–384 (2014).
[Crossref]

Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. R. Lee, “Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode,” Thin Solid Films 411(1), 12–16 (2002).
[Crossref]

A. Klöppel, W. Kriegseis, B. K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube, “Dependence of the electrical and optical behaviour of ITO–silver–ITO multilayers on the silver properties,” Thin Solid Films 365(1), 139–146 (2000).
[Crossref]

M. Berginski, J. Hüpkes, W. Reetz, B. Rech, and M. Wuttig, “Recent development on surface-textured ZnO: Al films prepared by sputtering for thin-film solar cell application,” Thin Solid Films 516(17), 5836–5841 (2008).
[Crossref]

Waste Manag. (1)

M. T. García, I. Gracia, G. Duque, Ad. Lucas, and J. F. Rodríguez, “Study of the solubility and stability of polystyrene wastes in a dissolution recycling process,” Waste Manag. 29(6), 1814–1818 (2009).
[Crossref] [PubMed]

Other (4)

J. Ziegler, L. Xia, R. Zejnelovic, and D. Borchert, “Changes in contact resistance of different metals to magnetron sputtered ITO while annealing,” Proceeding of 25th EUPVSEC Valencia (2010).

System Advisor Model Version, 2017.9.5 (SAM 2017.9.5) Website. Simple Efficiency Module. National Renewable Energy Laboratory. Golden, CO. Accessed October 31, 2016. https://sam.nrel.gov/content/simple-efficiency-module .

U.S. Energy Information Administration (EIA), “The Annual Energy Outlook 2015 (AEO2015).” Available at: http://www.eia.gov/forecasts/aeo/pdf/0383%282015%29.pdf , (Accessed on 12th June 2016).

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 50).” Progress in Photovoltaics 26, no. NREL (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Cross section of a typical thin film a-Si:H solar cell. From right, white is the glass superstrate, gray is the top TCO layer made of thin film indium thin oxide (ITO), green is p-type amorphous silicon, deep blue is intrinsic a-Si:H, light blue is n-type amorphous silicon, red is the bottom TCO layer made of aluminum zinc oxide (AZO), and pink is the bottom layer made out of silver.
Fig. 2
Fig. 2 (a) Five-parameter model for solar cell. (b) Change in MPP as Ilight increases from 0 to 30% and RS increases from 0 to 100% for the typical thin film a-Si:H solar cell with VOC = 1.3V, ISC = 1.3A, I0 = 0.31nA, η = 1.36, RS = 0.2Ω and RP = 6.3Ω. The point P1 corresponds to 15% increase in Ilight and 43% increase in the RS.
Fig. 3
Fig. 3 Schematic of 6 unit cells of honeycomb thin film solar cell. The silver mesh is shown in grey. The top TCO layer is in green, active layer in blue, and the bottom TCO layer in red. The drawing is not to scale.
Fig. 4
Fig. 4 (a) Black is the diffraction efficiency (Eq. (2), red is the dissipated power in the silver mesh, and blue is the output diffraction efficiency. (b) X component of the electric field (arbitrary unit) on the test plane at resonance λ = 600 n m .
Fig. 5
Fig. 5 Red shows the absorption spectra in the intrinsic a-Si:H layer of the honeycomb solar cell and blue shows absorption spectra for the reference a-Si:H solar cell under normally incident 1.5AM illumination for 300nm < λ <730nm.
Fig. 6
Fig. 6 (a) Absorption in different layers of the honeycomb solar cell. The red, blue, black, green, and yellow lines show the absorptions in the p-type a-Si layer, silver mesh, ITO, AZO, and the silver back reflector, respectively. (b) The blue line shows the reflected power from the honeycomb solar cell, while the red line shows the reflection from the reference cell.
Fig. 7
Fig. 7 The scenario to find the effective sheet resistance of honeycomb emitter layer (only a few unit cells of the honeycomb top contact are shown).
Fig. 8
Fig. 8 Voltage drop across the honeycomb emitter layer in response to flow of uniform current density of 1   A m 2 (only part of the structure in the Y direction is shown).
Fig. 9
Fig. 9 AFM image of 1μm polystyrene beads in close packed configuration on 13nm ITO on glass substrate.
Fig. 10
Fig. 10 (a) SEM image of polystyrene beads on a 13nm ITO on silicon substrate showing bead diameter reduction by 8%. (b) SEM image of the silver mesh on a 13nm ITO after removing the polystyrene beads.
Fig. 11
Fig. 11 Histogram of the measured sheet resistance for the honeycomb silver mesh structure on an ITO/Si substrate.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E i m , n = 1 W L W 2 < x < W 2 L 2 < y < L 2 E i ( x , y ) e j m 2 π W x e j n 2 π L y d x d y
η D = P o u t p u t 1 | Z | ( | E x 0 , 0 | 2 + | E y 0 , 0 | 2 ) P i n c i d e n t .
V ( x ) = 1 2 σ e J x ( 2 L x )

Metrics