Abstract

An infrared liquid-crystal microlens array (IR-LCMLA) is fabricated using an isothiocyanato nematic liquid crystal (NCSNLC) material sandwiched between graphene and aluminum electrodes without alignment layers; its focus is electrically tunable in a wide infrared region. The infrared microbeam diffraction crosstalk introduced by alignment layers in previous IR-LCMLAs with the same NCSNLC is eliminated. The graded-index lens effect is achieved using a spatially nonuniform electric field generated by a microhole array electrode and a high-birefringence NCSNLC thin film at wavelengths of ~0.9 to ~11 μm. The IR-LCMLA is tuned by applying an external voltage signal; it acts as a phase retarder when the RMS voltage is below a threshold, and the tunable microlenses when the RMS voltage further increases. The proposed IR-LCMLA is an attractive candidate for infrared sensors utilizing arrayed microflux shaped and adjusted by the IR-LCMLA coupled or even integrated with them, infrared microbeam interconnection and switching, adaptive imaging based on wavefront measurement and correction, or other advanced adaptive optics applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Liquid crystal spherical microlens array with high fill factor and optical power

José Francisco Algorri, Virginia Urruchi, Noureddine Bennis, Przemek Morawiak, José Manuel Sánchez-Pena, and José Manuel Otón
Opt. Express 25(2) 605-614 (2017)

Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation

Zhaowei Xin, Dong Wei, Xingwang Xie, Mingce Chen, Xinyu Zhang, Jing Liao, Haiwei Wang, and Changsheng Xie
Opt. Express 26(4) 4035-4049 (2018)

Liquid-crystal microlens arrays using patterned polymer networks

Hongwen Ren, Yun-Hsing Fan, and Shin-Tson Wu
Opt. Lett. 29(14) 1608-1610 (2004)

References

  • View by:
  • |
  • |
  • |

  1. L. Zhang, W. Zhou, N. J. Naples, and A. Y. Yi, “Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes,” Appl. Opt. 57(13), 3598–3605 (2018).
    [Crossref] [PubMed]
  2. D. Fan, C. Wang, B. Zhang, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, and C. Xie, “Arrayed optical switches based on integrated liquid-crystal microlens arrays driven and adjusted electrically,” Appl. Opt. 56(6), 1788–1794 (2017).
    [Crossref] [PubMed]
  3. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
    [Crossref] [PubMed]
  4. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  5. M. Kulishov, “Adjustable electro-optic microlens with two concentric ring electrodes,” Opt. Lett. 23(24), 1936–1938 (1998).
    [Crossref] [PubMed]
  6. Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
    [Crossref] [PubMed]
  7. H. Dai, L. Chen, B. Zhang, G. Si, and Y. J. Liu, “Optically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separation,” Opt. Lett. 40(12), 2723–2726 (2015).
    [Crossref] [PubMed]
  8. J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
    [Crossref]
  9. J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
    [Crossref] [PubMed]
  10. J. F. Algorri, N. Bennis, J. Herman, P. Kula, V. Urruchi, and J. M. Sánchez-Pena, “Low aberration and fast switching microlenses based on a novel liquid crystal mixture,” Opt. Express 25(13), 14795–14808 (2017).
    [Crossref] [PubMed]
  11. J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
    [Crossref] [PubMed]
  12. J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
    [Crossref] [PubMed]
  13. Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
    [Crossref] [PubMed]
  14. Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
    [Crossref]
  15. Z. Xin, D. Wei, X. Xie, M. Chen, X. Zhang, J. Liao, H. Wang, and C. Xie, “Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation,” Opt. Express 26(4), 4035–4049 (2018).
    [Crossref] [PubMed]
  16. J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
    [Crossref]
  17. Q. Tong, M. Chen, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Depth of field extension and objective space depth measurement based on wavefront imaging,” Opt. Express 26(14), 18368–18385 (2018).
    [Crossref] [PubMed]
  18. Q. Tong, Y. Lei, Z. Xin, X. Zhang, H. Sang, and C. Xie, “Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects,” Opt. Express 24(3), 1903–1923 (2016).
    [Crossref] [PubMed]
  19. F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265–273 (2015).
    [Crossref]
  20. J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
    [Crossref]
  21. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
    [Crossref] [PubMed]
  22. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  23. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
    [Crossref]
  24. J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
    [Crossref] [PubMed]
  25. V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
    [Crossref] [PubMed]
  26. T. Z. Shen, S. H. Hong, J. H. Lee, S. G. Kang, B. Lee, D. Whang, and J. K. Song, “Selectivity of threefold symmetry in epitaxial alignment of liquid crystal molecules on macroscale single-crystal graphene,” Adv. Mater. 30(40), e1802441 (2018).
    [Crossref] [PubMed]
  27. J. H. Son, S. J. Baeck, M. H. Park, J. B. Lee, C. W. Yang, J. K. Song, W. C. Zin, and J. H. Ahn, “Detection of graphene domains and defects using liquid crystals,” Nat. Commun. 5(1), 3484 (2014).
    [Crossref] [PubMed]
  28. J. S. Yu, X. Jin, J. Park, D. H. Kim, D. H. Ha, D. H. Chae, W. S. Kim, C. Hwang, and J. H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
    [Crossref]
  29. S. Kaur, Y.-J. Kim, H. Milton, D. Mistry, I. M. Syed, J. Bailey, K. S. Novoselov, J. C. Jones, P. B. Morgan, J. Clamp, and H. F. Gleeson, “Graphene electrodes for adaptive liquid crystal contact lenses,” Opt. Express 24(8), 8782–8787 (2016).
    [Crossref] [PubMed]
  30. Y. Kim, K. Kim, K. B. Kim, J. Y. Park, N. Lee, and Y. Seo, “Flexible polymer dispersed liquid crystal film with graphene transparent electrodes,” Curr. Appl. Phys. 16(3), 409–414 (2016).
    [Crossref]
  31. M. Karlsson and F. Nikolajeff, “Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region,” Opt. Express 11(5), 502–507 (2003).
    [Crossref] [PubMed]
  32. J. Bai, W. Hu, N. Guo, W. Lei, Y. Lv, X. Zhang, J. Si, X. Chen, and W. Lu, “Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses,” J. Electron. Mater. 43(8), 2795–2801 (2014).
    [Crossref]
  33. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
    [Crossref] [PubMed]
  34. A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
    [Crossref] [PubMed]
  35. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
    [Crossref] [PubMed]
  36. D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
    [Crossref] [PubMed]
  37. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [Crossref] [PubMed]
  38. D. W. Kim, Y. H. Kim, H. S. Jeong, and H. T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
    [Crossref] [PubMed]
  39. M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
    [Crossref] [PubMed]
  40. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  41. Z. He, Y.-H. Lee, D. Chanda, and S.-T. Wu, “Adaptive liquid crystal microlens array enabled by two-photon polymerization,” Opt. Express 26(16), 21184–21193 (2018).
    [Crossref] [PubMed]
  42. Z. He, Y.-H. Lee, R. Chen, D. Chanda, and S.-T. Wu, “Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment,” Opt. Lett. 43(20), 5062–5065 (2018).
    [Crossref] [PubMed]

2018 (7)

L. Zhang, W. Zhou, N. J. Naples, and A. Y. Yi, “Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes,” Appl. Opt. 57(13), 3598–3605 (2018).
[Crossref] [PubMed]

Z. Xin, D. Wei, X. Xie, M. Chen, X. Zhang, J. Liao, H. Wang, and C. Xie, “Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation,” Opt. Express 26(4), 4035–4049 (2018).
[Crossref] [PubMed]

Q. Tong, M. Chen, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Depth of field extension and objective space depth measurement based on wavefront imaging,” Opt. Express 26(14), 18368–18385 (2018).
[Crossref] [PubMed]

T. Z. Shen, S. H. Hong, J. H. Lee, S. G. Kang, B. Lee, D. Whang, and J. K. Song, “Selectivity of threefold symmetry in epitaxial alignment of liquid crystal molecules on macroscale single-crystal graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Z. He, Y.-H. Lee, D. Chanda, and S.-T. Wu, “Adaptive liquid crystal microlens array enabled by two-photon polymerization,” Opt. Express 26(16), 21184–21193 (2018).
[Crossref] [PubMed]

Z. He, Y.-H. Lee, R. Chen, D. Chanda, and S.-T. Wu, “Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment,” Opt. Lett. 43(20), 5062–5065 (2018).
[Crossref] [PubMed]

2017 (6)

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref] [PubMed]

J. F. Algorri, N. Bennis, J. Herman, P. Kula, V. Urruchi, and J. M. Sánchez-Pena, “Low aberration and fast switching microlenses based on a novel liquid crystal mixture,” Opt. Express 25(13), 14795–14808 (2017).
[Crossref] [PubMed]

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

D. Fan, C. Wang, B. Zhang, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, and C. Xie, “Arrayed optical switches based on integrated liquid-crystal microlens arrays driven and adjusted electrically,” Appl. Opt. 56(6), 1788–1794 (2017).
[Crossref] [PubMed]

2016 (4)

Q. Tong, Y. Lei, Z. Xin, X. Zhang, H. Sang, and C. Xie, “Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects,” Opt. Express 24(3), 1903–1923 (2016).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

S. Kaur, Y.-J. Kim, H. Milton, D. Mistry, I. M. Syed, J. Bailey, K. S. Novoselov, J. C. Jones, P. B. Morgan, J. Clamp, and H. F. Gleeson, “Graphene electrodes for adaptive liquid crystal contact lenses,” Opt. Express 24(8), 8782–8787 (2016).
[Crossref] [PubMed]

Y. Kim, K. Kim, K. B. Kim, J. Y. Park, N. Lee, and Y. Seo, “Flexible polymer dispersed liquid crystal film with graphene transparent electrodes,” Curr. Appl. Phys. 16(3), 409–414 (2016).
[Crossref]

2015 (11)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
[Crossref] [PubMed]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265–273 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

H. Dai, L. Chen, B. Zhang, G. Si, and Y. J. Liu, “Optically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separation,” Opt. Lett. 40(12), 2723–2726 (2015).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

2014 (4)

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

J. H. Son, S. J. Baeck, M. H. Park, J. B. Lee, C. W. Yang, J. K. Song, W. C. Zin, and J. H. Ahn, “Detection of graphene domains and defects using liquid crystals,” Nat. Commun. 5(1), 3484 (2014).
[Crossref] [PubMed]

J. S. Yu, X. Jin, J. Park, D. H. Kim, D. H. Ha, D. H. Chae, W. S. Kim, C. Hwang, and J. H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

J. Bai, W. Hu, N. Guo, W. Lei, Y. Lv, X. Zhang, J. Si, X. Chen, and W. Lu, “Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses,” J. Electron. Mater. 43(8), 2795–2801 (2014).
[Crossref]

2011 (1)

D. W. Kim, Y. H. Kim, H. S. Jeong, and H. T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

2008 (1)

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

2007 (1)

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2003 (1)

1998 (1)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Ahn, J. H.

J. H. Son, S. J. Baeck, M. H. Park, J. B. Lee, C. W. Yang, J. K. Song, W. C. Zin, and J. H. Ahn, “Detection of graphene domains and defects using liquid crystals,” Nat. Commun. 5(1), 3484 (2014).
[Crossref] [PubMed]

Ahn, J. R.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Ahn, S. J.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Aieta, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Algorri, J. F.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref] [PubMed]

J. F. Algorri, N. Bennis, J. Herman, P. Kula, V. Urruchi, and J. M. Sánchez-Pena, “Low aberration and fast switching microlenses based on a novel liquid crystal mixture,” Opt. Express 25(13), 14795–14808 (2017).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

An, Z.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
[Crossref] [PubMed]

Arslan Shehzad, M.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Baeck, S. J.

J. H. Son, S. J. Baeck, M. H. Park, J. B. Lee, C. W. Yang, J. K. Song, W. C. Zin, and J. H. Ahn, “Detection of graphene domains and defects using liquid crystals,” Nat. Commun. 5(1), 3484 (2014).
[Crossref] [PubMed]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
[Crossref] [PubMed]

Bai, J.

J. Bai, W. Hu, N. Guo, W. Lei, Y. Lv, X. Zhang, J. Si, X. Chen, and W. Lu, “Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses,” J. Electron. Mater. 43(8), 2795–2801 (2014).
[Crossref]

Bailey, J.

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Bennis, N.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref] [PubMed]

J. F. Algorri, N. Bennis, J. Herman, P. Kula, V. Urruchi, and J. M. Sánchez-Pena, “Low aberration and fast switching microlenses based on a novel liquid crystal mixture,” Opt. Express 25(13), 14795–14808 (2017).
[Crossref] [PubMed]

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

Blake, P.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Booth, T. J.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Boroumand, J.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Borysiak, M.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Briggs, R. M.

Brimicombe, P. D.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Cai, W.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Castro Neto, A. H.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Chae, D. H.

J. S. Yu, X. Jin, J. Park, D. H. Kim, D. H. Ha, D. H. Chae, W. S. Kim, C. Hwang, and J. H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Chae, S. H.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Chanda, D.

Chao, P. C. P.

Che, Z.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Chen, D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Chen, H.

Chen, L.

Chen, M.

Chen, R.

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Chen, X.

J. Bai, W. Hu, N. Guo, W. Lei, Y. Lv, X. Zhang, J. Si, X. Chen, and W. Lu, “Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses,” J. Electron. Mater. 43(8), 2795–2801 (2014).
[Crossref]

Chen, Y.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Choi, B. L.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Choi, S. H.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Clamp, J.

Colombo, L.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Dai, H.

Ding, F.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Duong, D. L.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Eom, J.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Fan, D.

Faraon, A.

A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Franklin, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Geim, A. K.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Gleeson, H. F.

S. Kaur, Y.-J. Kim, H. Milton, D. Mistry, I. M. Syed, J. Bailey, K. S. Novoselov, J. C. Jones, P. B. Morgan, J. Clamp, and H. F. Gleeson, “Graphene electrodes for adaptive liquid crystal contact lenses,” Opt. Express 24(8), 8782–8787 (2016).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, N.

J. Bai, W. Hu, N. Guo, W. Lei, Y. Lv, X. Zhang, J. Si, X. Chen, and W. Lu, “Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses,” J. Electron. Mater. 43(8), 2795–2801 (2014).
[Crossref]

Ha, D. H.

J. S. Yu, X. Jin, J. Park, D. H. Kim, D. H. Ha, D. H. Chae, W. S. Kim, C. Hwang, and J. H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Han, B.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

He, Z.

Herman, J.

Hill, E. W.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Hoang Tien, D.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Hong, S. H.

T. Z. Shen, S. H. Hong, J. H. Lee, S. G. Kang, B. Lee, D. Whang, and J. K. Song, “Selectivity of threefold symmetry in epitaxial alignment of liquid crystal molecules on macroscale single-crystal graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Horie, Y.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
[Crossref] [PubMed]

Hsueh, C. W.

Hu, M.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Hu, W.

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

J. Bai, W. Hu, N. Guo, W. Lei, Y. Lv, X. Zhang, J. Si, X. Chen, and W. Lu, “Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses,” J. Electron. Mater. 43(8), 2795–2801 (2014).
[Crossref]

Hwang, C.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

J. S. Yu, X. Jin, J. Park, D. H. Kim, D. H. Ha, D. H. Chae, W. S. Kim, C. Hwang, and J. H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Hwang, S. W.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Jang, Y.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Jaroszewicz, L. R.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Jeong, H. S.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H. T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Jeong, H. Y.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Ji, A.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Jiang, D.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jin, X.

J. S. Yu, X. Jin, J. Park, D. H. Kim, D. H. Ha, D. H. Chae, W. S. Kim, C. Hwang, and J. H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Jones, J. C.

Joo, W. J.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Jung, H. T.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H. T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Kang, S. G.

T. Z. Shen, S. H. Hong, J. H. Lee, S. G. Kang, B. Lee, D. Whang, and J. K. Song, “Selectivity of threefold symmetry in epitaxial alignment of liquid crystal molecules on macroscale single-crystal graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Kao, Y. Y.

Karlsson, M.

Kats, M. A.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Kaur, S.

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Kim, B. S.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Kim, D. H.

J. S. Yu, X. Jin, J. Park, D. H. Kim, D. H. Ha, D. H. Chae, W. S. Kim, C. Hwang, and J. H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Kim, D. W.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H. T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Kim, J. H.

J. S. Yu, X. Jin, J. Park, D. H. Kim, D. H. Ha, D. H. Chae, W. S. Kim, C. Hwang, and J. H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Kim, K.

Y. Kim, K. Kim, K. B. Kim, J. Y. Park, N. Lee, and Y. Seo, “Flexible polymer dispersed liquid crystal film with graphene transparent electrodes,” Curr. Appl. Phys. 16(3), 409–414 (2016).
[Crossref]

Kim, K. B.

Y. Kim, K. Kim, K. B. Kim, J. Y. Park, N. Lee, and Y. Seo, “Flexible polymer dispersed liquid crystal film with graphene transparent electrodes,” Curr. Appl. Phys. 16(3), 409–414 (2016).
[Crossref]

Kim, S. T.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Kim, W. S.

J. S. Yu, X. Jin, J. Park, D. H. Kim, D. H. Ha, D. H. Chae, W. S. Kim, C. Hwang, and J. H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Kim, Y.

Y. Kim, K. Kim, K. B. Kim, J. Y. Park, N. Lee, and Y. Seo, “Flexible polymer dispersed liquid crystal film with graphene transparent electrodes,” Curr. Appl. Phys. 16(3), 409–414 (2016).
[Crossref]

Kim, Y. H.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H. T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Kim, Y.-J.

Kula, P.

Kulishov, M.

Lee, B.

T. Z. Shen, S. H. Hong, J. H. Lee, S. G. Kang, B. Lee, D. Whang, and J. K. Song, “Selectivity of threefold symmetry in epitaxial alignment of liquid crystal molecules on macroscale single-crystal graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Lee, E. K.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Lee, J. B.

J. H. Son, S. J. Baeck, M. H. Park, J. B. Lee, C. W. Yang, J. K. Song, W. C. Zin, and J. H. Ahn, “Detection of graphene domains and defects using liquid crystals,” Nat. Commun. 5(1), 3484 (2014).
[Crossref] [PubMed]

Lee, J. H.

T. Z. Shen, S. H. Hong, J. H. Lee, S. G. Kang, B. Lee, D. Whang, and J. K. Song, “Selectivity of threefold symmetry in epitaxial alignment of liquid crystal molecules on macroscale single-crystal graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Lee, N.

Y. Kim, K. Kim, K. B. Kim, J. Y. Park, N. Lee, and Y. Seo, “Flexible polymer dispersed liquid crystal film with graphene transparent electrodes,” Curr. Appl. Phys. 16(3), 409–414 (2016).
[Crossref]

Lee, S. H.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Lee, S. M.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Lee, Y. H.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Lee, Y.-H.

Lei, W.

J. Bai, W. Hu, N. Guo, W. Lei, Y. Lv, X. Zhang, J. Si, X. Chen, and W. Lu, “Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses,” J. Electron. Mater. 43(8), 2795–2801 (2014).
[Crossref]

Lei, Y.

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

D. Fan, C. Wang, B. Zhang, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, and C. Xie, “Arrayed optical switches based on integrated liquid-crystal microlens arrays driven and adjusted electrically,” Appl. Opt. 56(6), 1788–1794 (2017).
[Crossref] [PubMed]

Q. Tong, Y. Lei, Z. Xin, X. Zhang, H. Sang, and C. Xie, “Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects,” Opt. Express 24(3), 1903–1923 (2016).
[Crossref] [PubMed]

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Li, J.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Li, X.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Liao, J.

Lim, J. Y.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Lim, Y. J.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Liu, Y. J.

Lu, W.

J. Bai, W. Hu, N. Guo, W. Lei, Y. Lv, X. Zhang, J. Si, X. Chen, and W. Lu, “Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses,” J. Electron. Mater. 43(8), 2795–2801 (2014).
[Crossref]

Lv, Y.

J. Bai, W. Hu, N. Guo, W. Lei, Y. Lv, X. Zhang, J. Si, X. Chen, and W. Lu, “Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses,” J. Electron. Mater. 43(8), 2795–2801 (2014).
[Crossref]

Milton, H.

Mistry, D.

Mo, L.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Modak, S.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Morawiak, P.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref] [PubMed]

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

Morgan, P. B.

Morozov, S. V.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nair, R. R.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Naples, N. J.

Nguyen, V. L.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Nikolajeff, F.

Novoselov, K. S.

S. Kaur, Y.-J. Kim, H. Milton, D. Mistry, I. M. Syed, J. Bailey, K. S. Novoselov, J. C. Jones, P. B. Morgan, J. Clamp, and H. F. Gleeson, “Graphene electrodes for adaptive liquid crystal contact lenses,” Opt. Express 24(8), 8782–8787 (2016).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Otón, J. M.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

Park, J.

J. S. Yu, X. Jin, J. Park, D. H. Kim, D. H. Ha, D. H. Chae, W. S. Kim, C. Hwang, and J. H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Park, J. H.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Park, J. Y.

Y. Kim, K. Kim, K. B. Kim, J. Y. Park, N. Lee, and Y. Seo, “Flexible polymer dispersed liquid crystal film with graphene transparent electrodes,” Curr. Appl. Phys. 16(3), 409–414 (2016).
[Crossref]

Park, M. H.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

J. H. Son, S. J. Baeck, M. H. Park, J. B. Lee, C. W. Yang, J. K. Song, W. C. Zin, and J. H. Ahn, “Detection of graphene domains and defects using liquid crystals,” Nat. Commun. 5(1), 3484 (2014).
[Crossref] [PubMed]

Peng, F.

Perello, D.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Piner, R. D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Ponomarenko, L. A.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Ruoff, R. S.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Sánchez-Pena, J. M.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref] [PubMed]

J. F. Algorri, N. Bennis, J. Herman, P. Kula, V. Urruchi, and J. M. Sánchez-Pena, “Low aberration and fast switching microlenses based on a novel liquid crystal mixture,” Opt. Express 25(13), 14795–14808 (2017).
[Crossref] [PubMed]

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

Sang, H.

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Sato, S.

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Schedin, F.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Seo, Y.

Y. Kim, K. Kim, K. B. Kim, J. Y. Park, N. Lee, and Y. Seo, “Flexible polymer dispersed liquid crystal film with graphene transparent electrodes,” Curr. Appl. Phys. 16(3), 409–414 (2016).
[Crossref]

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Shen, T. Z.

T. Z. Shen, S. H. Hong, J. H. Lee, S. G. Kang, B. Lee, D. Whang, and J. K. Song, “Selectivity of threefold symmetry in epitaxial alignment of liquid crystal molecules on macroscale single-crystal graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Shin, B. G.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Shin, H. S.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Si, G.

Si, J.

J. Bai, W. Hu, N. Guo, W. Lei, Y. Lv, X. Zhang, J. Si, X. Chen, and W. Lu, “Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses,” J. Electron. Mater. 43(8), 2795–2801 (2014).
[Crossref]

Son, J. H.

J. H. Son, S. J. Baeck, M. H. Park, J. B. Lee, C. W. Yang, J. K. Song, W. C. Zin, and J. H. Ahn, “Detection of graphene domains and defects using liquid crystals,” Nat. Commun. 5(1), 3484 (2014).
[Crossref] [PubMed]

Song, J. K.

T. Z. Shen, S. H. Hong, J. H. Lee, S. G. Kang, B. Lee, D. Whang, and J. K. Song, “Selectivity of threefold symmetry in epitaxial alignment of liquid crystal molecules on macroscale single-crystal graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

J. H. Son, S. J. Baeck, M. H. Park, J. B. Lee, C. W. Yang, J. K. Song, W. C. Zin, and J. H. Ahn, “Detection of graphene domains and defects using liquid crystals,” Nat. Commun. 5(1), 3484 (2014).
[Crossref] [PubMed]

Syed, I. M.

Tong, Q.

Tripathi, S.

Twieg, R. J.

Urruchi, V.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref] [PubMed]

J. F. Algorri, N. Bennis, J. Herman, P. Kula, V. Urruchi, and J. M. Sánchez-Pena, “Low aberration and fast switching microlenses based on a novel liquid crystal mixture,” Opt. Express 25(13), 14795–14808 (2017).
[Crossref] [PubMed]

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

Vazquez-Guardado, A.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Vu, Q. A.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Wang, C.

Wang, H.

Waqas Iqbal, M.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Wei, D.

Whang, D.

T. Z. Shen, S. H. Hong, J. H. Lee, S. G. Kang, B. Lee, D. Whang, and J. K. Song, “Selectivity of threefold symmetry in epitaxial alignment of liquid crystal molecules on macroscale single-crystal graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Wu, S.-T.

Wu, Y.

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Xie, C.

Xie, X.

Xin, Z.

Xu, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Yang, C. W.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

J. H. Son, S. J. Baeck, M. H. Park, J. B. Lee, C. W. Yang, J. K. Song, W. C. Zin, and J. H. Ahn, “Detection of graphene domains and defects using liquid crystals,” Nat. Commun. 5(1), 3484 (2014).
[Crossref] [PubMed]

Yang, R.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Yang, X.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Yi, A. Y.

Yu, J. S.

J. S. Yu, X. Jin, J. Park, D. H. Kim, D. H. Ha, D. H. Chae, W. S. Kim, C. Hwang, and J. H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Yuan, Q. H.

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

Zhang, B.

Zhang, L.

L. Zhang, W. Zhou, N. J. Naples, and A. Y. Yi, “Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes,” Appl. Opt. 57(13), 3598–3605 (2018).
[Crossref] [PubMed]

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Zhang, X.

Z. Xin, D. Wei, X. Xie, M. Chen, X. Zhang, J. Liao, H. Wang, and C. Xie, “Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation,” Opt. Express 26(4), 4035–4049 (2018).
[Crossref] [PubMed]

Q. Tong, M. Chen, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Depth of field extension and objective space depth measurement based on wavefront imaging,” Opt. Express 26(14), 18368–18385 (2018).
[Crossref] [PubMed]

D. Fan, C. Wang, B. Zhang, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, and C. Xie, “Arrayed optical switches based on integrated liquid-crystal microlens arrays driven and adjusted electrically,” Appl. Opt. 56(6), 1788–1794 (2017).
[Crossref] [PubMed]

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Q. Tong, Y. Lei, Z. Xin, X. Zhang, H. Sang, and C. Xie, “Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects,” Opt. Express 24(3), 1903–1923 (2016).
[Crossref] [PubMed]

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

J. Bai, W. Hu, N. Guo, W. Lei, Y. Lv, X. Zhang, J. Si, X. Chen, and W. Lu, “Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses,” J. Electron. Mater. 43(8), 2795–2801 (2014).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhou, W.

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Zhu, Y.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Zin, W. C.

J. H. Son, S. J. Baeck, M. H. Park, J. B. Lee, C. W. Yang, J. K. Song, W. C. Zin, and J. H. Ahn, “Detection of graphene domains and defects using liquid crystals,” Nat. Commun. 5(1), 3484 (2014).
[Crossref] [PubMed]

Adv. Mater. (2)

V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, “Seamless stitching of graphene domains on polished copper (111) foil,” Adv. Mater. 27(8), 1376–1382 (2015).
[Crossref] [PubMed]

T. Z. Shen, S. H. Hong, J. H. Lee, S. G. Kang, B. Lee, D. Whang, and J. K. Song, “Selectivity of threefold symmetry in epitaxial alignment of liquid crystal molecules on macroscale single-crystal graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Carbon (1)

J. S. Yu, X. Jin, J. Park, D. H. Kim, D. H. Ha, D. H. Chae, W. S. Kim, C. Hwang, and J. H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Curr. Appl. Phys. (1)

Y. Kim, K. Kim, K. B. Kim, J. Y. Park, N. Lee, and Y. Seo, “Flexible polymer dispersed liquid crystal film with graphene transparent electrodes,” Curr. Appl. Phys. 16(3), 409–414 (2016).
[Crossref]

IEEE Electron Device Lett. (1)

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. Electron. Mater. (1)

J. Bai, W. Hu, N. Guo, W. Lei, Y. Lv, X. Zhang, J. Si, X. Chen, and W. Lu, “Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses,” J. Electron. Mater. 43(8), 2795–2801 (2014).
[Crossref]

J. Opt. (1)

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Liq. Cryst. (1)

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Nano Lett. (2)

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Nat. Commun. (3)

J. H. Son, S. J. Baeck, M. H. Park, J. B. Lee, C. W. Yang, J. K. Song, W. C. Zin, and J. H. Ahn, “Detection of graphene domains and defects using liquid crystals,” Nat. Commun. 5(1), 3484 (2014).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

D. W. Kim, Y. H. Kim, H. S. Jeong, and H. T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Opt. Express (11)

Z. He, Y.-H. Lee, D. Chanda, and S.-T. Wu, “Adaptive liquid crystal microlens array enabled by two-photon polymerization,” Opt. Express 26(16), 21184–21193 (2018).
[Crossref] [PubMed]

A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
[Crossref] [PubMed]

M. Karlsson and F. Nikolajeff, “Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region,” Opt. Express 11(5), 502–507 (2003).
[Crossref] [PubMed]

S. Kaur, Y.-J. Kim, H. Milton, D. Mistry, I. M. Syed, J. Bailey, K. S. Novoselov, J. C. Jones, P. B. Morgan, J. Clamp, and H. F. Gleeson, “Graphene electrodes for adaptive liquid crystal contact lenses,” Opt. Express 24(8), 8782–8787 (2016).
[Crossref] [PubMed]

Z. Xin, D. Wei, X. Xie, M. Chen, X. Zhang, J. Liao, H. Wang, and C. Xie, “Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation,” Opt. Express 26(4), 4035–4049 (2018).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref] [PubMed]

J. F. Algorri, N. Bennis, J. Herman, P. Kula, V. Urruchi, and J. M. Sánchez-Pena, “Low aberration and fast switching microlenses based on a novel liquid crystal mixture,” Opt. Express 25(13), 14795–14808 (2017).
[Crossref] [PubMed]

Q. Tong, M. Chen, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Depth of field extension and objective space depth measurement based on wavefront imaging,” Opt. Express 26(14), 18368–18385 (2018).
[Crossref] [PubMed]

Q. Tong, Y. Lei, Z. Xin, X. Zhang, H. Sang, and C. Xie, “Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects,” Opt. Express 24(3), 1903–1923 (2016).
[Crossref] [PubMed]

Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. Express (1)

Rev. Sci. Instrum. (1)

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Sci. Rep. (2)

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Science (3)

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science 344(6181), 286–289 (2014).
[Crossref] [PubMed]

Other (1)

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of our IR-LCMLA prototype. IR beams irradiating the IR-LCMLA interact with the LC material, which is controlled by an external voltage signal. Because LC materials are anisotropic, the micro-optical device exhibits a distinct polarization dependence. When an electric field is applied across the LC cell, the orientation of LC molecules distributed from the center to the edge of each microhole changes remarkably, resulting in tunable focusing and thus forming corresponding micron-scale focal spots on the focal plane. Without any voltage signal or the RMS value of the signal voltage being held below a threshold, the IR-LCMLA will act only as a phase retarder. (b) Appearance of the IR-LCMLA.
Fig. 2
Fig. 2 (a) Schematic of LC alignment on substrate with rubbed PI layer. (b) Directional alignment of LC molecule axes with the graphene zigzag lattice direction. (c) Cross-sectional view of the equivalent refractive index profile in a single microlens with or without PI alignment layer. (d) 2D intensity profile of a single microlens of IR-LCMLA with antiparallel rubbed PI alignment layer at 0 Vrms. (e) 2D intensity profile of a single microlens of IR-LCMLA used in this study without alignment layer at 0 Vrms. (d) and (e) are obtained using the experimental setup in Fig. 3 (central wavelength: 980 nm) with the same colorbar (Range: 0-1).
Fig. 3
Fig. 3 Experimental setup for measuring the optical properties of our fabricated IR-LCMLA.
Fig. 4
Fig. 4 Relationship between the focal length and RMS voltage of the IR-LCMLA illuminated by an NIR laser with a central wavelength of 980 nm. The insets show the corresponding focal spots with the 2D and 3D intensity distribution at ~3.0 Vrms.
Fig. 5
Fig. 5 Fabricated microhole structure and transmittance spectra. (a) Microscopic image of a single microlens with an aperture of ~128 μm. (b) Initial 3D beam intensity distribution of the microlens at 6.58 Vrms (d = 0). (c) FTIR transmittance spectra measured along the optical axis (black) and at an edge point of the measured microlens (orange). The scale bars of the wavelength are not equal. (d) Transmittance spectra of each substrate (Al–ZnSe, graphene–ZnSe) at wavelengths of 2.5 to 15 μm.
Fig. 6
Fig. 6 IR microbeam convergence by only one microlens in the IR-LCMLA in two different IR wavelength regions. (a) and (d) 2D intensity profiles of the microlens with an aperture of ~128 μm at a signal voltage of ~6.53 Vrms. (b) and (e) 3D intensity profiles corresponding to the 2D images. (c) and (f) Transmittance spectra measured when the microscope is focused on the focal plane of the microlens. Shaded areas indicate the integrated band for shaping the 2D and 3D intensity profiles of the processed microbeams.

Tables (1)

Tables Icon

Table 1 Physical Properties of HB76800 at T = 20°Ca

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f= r 2 2( n max n eff ) d LC ,

Metrics