Abstract

Compact, low loss flexible optical waveguides are crucial in optofluidic and microfluidic devices for a dense integration of optical functionalities. We demonstrate the fabrication of compact optical waveguides in polydimethylsiloxane through multiphoton laser direct writing using phenylacetylene as the photosensitive monomer. Our fabrication technique employs photo-induced radical chain polymerization initiated by the monomer molecule itself without a photoinitiator. Because of the dense π-electrons in phenylacetylene, we achieved a high refractive index contrast (Δn ≥ 0.06) between the waveguide core and the PDMS cladding. This allowed for efficient waveguiding with a core size of 1.3-µm with a measured loss of 0.03 dB/cm in the spectral band of 650-700 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography

Ho Hoai Duc Nguyen, Uwe Hollenbach, Ute Ostrzinski, Karl Pfeiffer, Stefan Hengsbach, and Juergen Mohr
Appl. Opt. 55(8) 1906-1912 (2016)

Direct fabrication of PDMS waveguides via low-cost DUV irradiation for optical sensing

Sebastian Valouch, Heinrich Sieber, Siegfried Kettlitz, Carsten Eschenbaum, Uwe Hollenbach, and Uli Lemmer
Opt. Express 20(27) 28855-28861 (2012)

Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers

Li Ding, Dharmendra Jani, Jeffrey Linhardt, Jay F. Künzler, Siddhesh Pawar, Glen Labenski, Thomas Smith, and Wayne H. Knox
Opt. Express 16(26) 21914-21921 (2008)

References

  • View by:
  • |
  • |
  • |

  1. F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
    [Crossref]
  2. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
    [Crossref]
  3. A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7(4), 281–293 (2005).
    [Crossref] [PubMed]
  4. K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
    [Crossref] [PubMed]
  5. W. Song, A. E. Vasdekis, and D. Psaltis, “Elastomer based tunable optofluidic devices,” Lab Chip 12(19), 3590–3597 (2012).
    [Crossref] [PubMed]
  6. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
    [Crossref]
  7. K. Y. Kwon, H.-M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
    [Crossref] [PubMed]
  8. F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
    [Crossref] [PubMed]
  9. Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
    [Crossref] [PubMed]
  10. A. N. Zorzos, J. Scholvin, E. S. Boyden, and C. G. Fonstad, “Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits,” Opt. Lett. 37(23), 4841–4843 (2012).
    [Crossref] [PubMed]
  11. Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
    [Crossref] [PubMed]
  12. M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
    [Crossref] [PubMed]
  13. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.-M. Tao, “Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications,” Adv. Mater. 26(31), 5310–5336 (2014).
    [Crossref] [PubMed]
  14. K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
    [Crossref]
  15. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
    [Crossref]
  16. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol. 22(9), 2168–2176 (2004).
    [Crossref]
  17. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  18. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  19. S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
    [Crossref]
  20. R. Martínez Vázquez, S. M. Eaton, R. Ramponi, G. Cerullo, and R. Osellame, “Fabrication of binary Fresnel lenses in PMMA by femtosecond laser micromachining,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), JMG5.
  21. S. M. Eaton, L. Criante, S. L. Turco, S. S. K. Guduru, and R. Ramponi, “Focused femtosecond laser pulses: A versatile tool for three-dimensional writing of micro-nano devices,” in 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014), 1–4.
    [Crossref]
  22. B. Amirsolaimani, O. D. Herrera, R. Himmelhuber, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Electro-optic polymer channel waveguide fabrication using multiphoton direct laser writing,” in 2015 IEEE Optical Interconnects Conference (OI), 2015), 104–105.
  23. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
    [Crossref] [PubMed]
  24. A. Baum, P. J. Scully, W. Perrie, D. Liu, and V. Lucarini, “Mechanisms of femtosecond laser-induced refractive index modification of poly(methyl methacrylate),” J. Opt. Soc. Am. B 27(1), 107–111 (2010).
    [Crossref]
  25. W. M. Pätzold, C. Reinhardt, A. Demircan, and U. Morgner, “Cascaded-focus laser writing of low-loss waveguides in polymers,” Opt. Lett. 41(6), 1269–1272 (2016).
    [Crossref] [PubMed]
  26. W. M. Pätzold, A. Demircan, and U. Morgner, “Low-loss curved waveguides in polymers written with a femtosecond laser,” Opt. Express 25(1), 263–270 (2017).
    [Crossref] [PubMed]
  27. R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, Functional polymers by two-photon 3D lithography (2007), Vol. 254, pp. 836–840.
    [Crossref]
  28. R. Woods, S. Feldbacher, D. Zidar, G. Langer, V. Satzinger, V. Schmidt, N. Pucher, R. Liska, and W. Kern, “3D optical waveguides produced by two photon photopolymerisation of a flexible silanol terminated polysiloxane containing acrylate functional groups,” Opt. Mater. Express 4(3), 486–498 (2014).
    [Crossref]
  29. K. J Schafer, J. Hales, M. Balu, K. Belfield, E. Van Stryland, and D. J Hagan, Two-photon absorption cross-sections of common photoinitiators (2004), Vol. 162, pp. 497–502.
    [Crossref]
  30. N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, Structure−Activity Relationship in D-π-A-π-D-Based Photoinitiators for the Two-Photon-Induced Photopolymerization Process (2009), Vol. 42, pp. 6519–6528.
  31. R. Liska and B. Seidl, “1,5-Diphenyl-1,4-diyn-3-one: A highly efficient photoinitiator,” J. Polym. Sci. A Polym. Chem. 43(1), 101–111 (2005).
    [Crossref]
  32. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
    [Crossref] [PubMed]
  33. J. W. Goodman, ed., Introduction to Fourier Optics, Third ed. (Ben Roberts, 2005).
  34. D. Neher, A. Wolf, C. Bubeck, and G. Wegner, “Third-harmonic generation in polyphenylacetylene: Exact determination of nonlinear optical susceptibilities in ultrathin films,” Chem. Phys. Lett. 163(2-3), 116–122 (1989).
    [Crossref]

2017 (1)

2016 (1)

2015 (2)

K. Y. Kwon, H.-M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

2014 (5)

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.-M. Tao, “Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications,” Adv. Mater. 26(31), 5310–5336 (2014).
[Crossref] [PubMed]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

R. Woods, S. Feldbacher, D. Zidar, G. Langer, V. Satzinger, V. Schmidt, N. Pucher, R. Liska, and W. Kern, “3D optical waveguides produced by two photon photopolymerisation of a flexible silanol terminated polysiloxane containing acrylate functional groups,” Opt. Mater. Express 4(3), 486–498 (2014).
[Crossref]

2013 (1)

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

2012 (3)

2010 (1)

2009 (2)

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[Crossref] [PubMed]

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

2008 (3)

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[Crossref]

2005 (2)

R. Liska and B. Seidl, “1,5-Diphenyl-1,4-diyn-3-one: A highly efficient photoinitiator,” J. Polym. Sci. A Polym. Chem. 43(1), 101–111 (2005).
[Crossref]

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7(4), 281–293 (2005).
[Crossref] [PubMed]

2004 (2)

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol. 22(9), 2168–2176 (2004).
[Crossref]

2003 (3)

K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
[Crossref] [PubMed]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

1989 (1)

D. Neher, A. Wolf, C. Bubeck, and G. Wegner, “Third-harmonic generation in polyphenylacetylene: Exact determination of nonlinear optical susceptibilities in ultrathin films,” Chem. Phys. Lett. 163(2-3), 116–122 (1989).
[Crossref]

Abad, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Assad, J. A.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Balthasar, G.

Baum, A.

Berger, C.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Beyeler, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Boyden, E. S.

Bubeck, C.

D. Neher, A. Wolf, C. Bubeck, and G. Wegner, “Third-harmonic generation in polyphenylacetylene: Exact determination of nonlinear optical susceptibilities in ultrathin films,” Chem. Phys. Lett. 163(2-3), 116–122 (1989).
[Crossref]

Calle, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Chen, F.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Chen, R. T.

Chen, S.

W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.-M. Tao, “Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications,” Adv. Mater. 26(31), 5310–5336 (2014).
[Crossref] [PubMed]

Cho, I.-J.

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

Choi, C.

Choi, J.

Choi, N.

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

Dangel, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

De Vittorio, M.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Dellmann, L.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Demircan, A.

Domínguez, C.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Draheim, J.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

El-Ali, J.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
[Crossref] [PubMed]

Engelund, M.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Feldbacher, S.

Fellner, T.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[Crossref]

Fleischman, A. J.

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7(4), 281–293 (2005).
[Crossref] [PubMed]

Fonstad, C. G.

Freude, W.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Ghovanloo, M.

K. Y. Kwon, H.-M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Gmur, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Gotsaed, T.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Grigoropoulos, C. P.

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[Crossref] [PubMed]

Gross, S.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Haas, D.

Hamelin, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Hillerkuss, D.

Hiromatsu, K.

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[Crossref] [PubMed]

Horst, F.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Hwang, D. J.

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[Crossref] [PubMed]

Ishigure, T.

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

Jeon, H.

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[Crossref] [PubMed]

Jordan, M.

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

Kern, W.

Kim, J.

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

Kim, M.

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[Crossref] [PubMed]

Kim, T. G.

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

Koos, C.

Kutter, J. P.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
[Crossref] [PubMed]

Kwon, K. Y.

K. Y. Kwon, H.-M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Lamprecht, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Langer, G.

Lechuga, L. M.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Lee, C. J.

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

Lee, H. J.

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

Lee, H.-M.

K. Y. Kwon, H.-M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Lee, J. N.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

Leuthold, J.

Li, Q.

W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.-M. Tao, “Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications,” Adv. Mater. 26(31), 5310–5336 (2014).
[Crossref] [PubMed]

Li, W.

K. Y. Kwon, H.-M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Lin, L.

Lindenmann, N.

Liska, R.

Liu, D.

Liu, Y.

Llobera, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Love, J. D.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Lucarini, V.

Magera, J.

Martiradonna, L.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Mata, A.

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7(4), 281–293 (2005).
[Crossref] [PubMed]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Mogensen, K. B.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
[Crossref] [PubMed]

Montoya, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Morf, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Morgner, U.

Neher, D.

D. Neher, A. Wolf, C. Bubeck, and G. Wegner, “Third-harmonic generation in polyphenylacetylene: Exact determination of nonlinear optical susceptibilities in ultrathin films,” Chem. Phys. Lett. 163(2-3), 116–122 (1989).
[Crossref]

Offrein, B. J.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Oggioni, S.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Oldenburg, I. A.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Park, C.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

Pätzold, W. M.

Perch-Nielsen, I. R.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Perrie, W.

Pisanello, F.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Pisanello, M.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Prieto, F.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Psaltis, D.

W. Song, A. E. Vasdekis, and D. Psaltis, “Elastomer based tunable optofluidic devices,” Lab Chip 12(19), 3590–3597 (2012).
[Crossref] [PubMed]

Pucher, N.

Reinhardt, C.

Riesen, N.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Roy, S.

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7(4), 281–293 (2005).
[Crossref] [PubMed]

Sabatini, B. L.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Satzinger, V.

Schmidt, V.

Schmogrow, R.

Schneider, F.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[Crossref]

Scholvin, J.

Scully, P. J.

Seidl, B.

R. Liska and B. Seidl, “1,5-Diphenyl-1,4-diyn-3-one: A highly efficient photoinitiator,” J. Polym. Sci. A Polym. Chem. 43(1), 101–111 (2005).
[Crossref]

Sepúlveda, B.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Shin, H.

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

Shu, L.

W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.-M. Tao, “Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications,” Adv. Mater. 26(31), 5310–5336 (2014).
[Crossref] [PubMed]

Sileo, L.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Snakenborg, D.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Soma, K.

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

Son, Y.

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

Song, W.

W. Song, A. E. Vasdekis, and D. Psaltis, “Elastomer based tunable optofluidic devices,” Lab Chip 12(19), 3590–3597 (2012).
[Crossref] [PubMed]

Spreafico, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Tao, X.-M.

W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.-M. Tao, “Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications,” Adv. Mater. 26(31), 5310–5336 (2014).
[Crossref] [PubMed]

Vasdekis, A. E.

W. Song, A. E. Vasdekis, and D. Psaltis, “Elastomer based tunable optofluidic devices,” Lab Chip 12(19), 3590–3597 (2012).
[Crossref] [PubMed]

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[Crossref]

Wang, F.

W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.-M. Tao, “Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications,” Adv. Mater. 26(31), 5310–5336 (2014).
[Crossref] [PubMed]

Wang, L.

Wang, Z.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Weber, A.

K. Y. Kwon, H.-M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Wegner, G.

D. Neher, A. Wolf, C. Bubeck, and G. Wegner, “Third-harmonic generation in polyphenylacetylene: Exact determination of nonlinear optical susceptibilities in ultrathin films,” Chem. Phys. Lett. 163(2-3), 116–122 (1989).
[Crossref]

Whitesides, G. M.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

Wilde, J.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[Crossref]

Wise, K. D.

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

Withford, M. J.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Wolf, A.

D. Neher, A. Wolf, C. Bubeck, and G. Wegner, “Third-harmonic generation in polyphenylacetylene: Exact determination of nonlinear optical susceptibilities in ultrathin films,” Chem. Phys. Lett. 163(2-3), 116–122 (1989).
[Crossref]

Wolff, A.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
[Crossref] [PubMed]

Woods, R.

Yoon, E.

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

Yoon, E.-S.

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

Zeng, W.

W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.-M. Tao, “Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications,” Adv. Mater. 26(31), 5310–5336 (2014).
[Crossref] [PubMed]

Zidar, D.

Zorzos, A. N.

Adv. Mater. (1)

W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.-M. Tao, “Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications,” Adv. Mater. 26(31), 5310–5336 (2014).
[Crossref] [PubMed]

Anal. Chem. (1)

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Microdevices (1)

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7(4), 281–293 (2005).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

D. Neher, A. Wolf, C. Bubeck, and G. Wegner, “Third-harmonic generation in polyphenylacetylene: Exact determination of nonlinear optical susceptibilities in ultrathin films,” Chem. Phys. Lett. 163(2-3), 116–122 (1989).
[Crossref]

Front. Syst. Neurosci. (1)

K. Y. Kwon, H.-M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

IEEE Trans. Adv. Packag. (1)

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Polym. Sci. A Polym. Chem. (1)

R. Liska and B. Seidl, “1,5-Diphenyl-1,4-diyn-3-one: A highly efficient photoinitiator,” J. Polym. Sci. A Polym. Chem. 43(1), 101–111 (2005).
[Crossref]

Lab Chip (3)

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[Crossref] [PubMed]

W. Song, A. E. Vasdekis, and D. Psaltis, “Elastomer based tunable optofluidic devices,” Lab Chip 12(19), 3590–3597 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Nanotechnology (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Neuron (1)

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Sci. Rep. (1)

Y. Son, H. J. Lee, J. Kim, H. Shin, N. Choi, C. J. Lee, E.-S. Yoon, E. Yoon, K. D. Wise, T. G. Kim, and I.-J. Cho, “In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays,” Sci. Rep. 5(1), 15466 (2015).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

Other (7)

R. Martínez Vázquez, S. M. Eaton, R. Ramponi, G. Cerullo, and R. Osellame, “Fabrication of binary Fresnel lenses in PMMA by femtosecond laser micromachining,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), JMG5.

S. M. Eaton, L. Criante, S. L. Turco, S. S. K. Guduru, and R. Ramponi, “Focused femtosecond laser pulses: A versatile tool for three-dimensional writing of micro-nano devices,” in 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014), 1–4.
[Crossref]

B. Amirsolaimani, O. D. Herrera, R. Himmelhuber, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Electro-optic polymer channel waveguide fabrication using multiphoton direct laser writing,” in 2015 IEEE Optical Interconnects Conference (OI), 2015), 104–105.

K. J Schafer, J. Hales, M. Balu, K. Belfield, E. Van Stryland, and D. J Hagan, Two-photon absorption cross-sections of common photoinitiators (2004), Vol. 162, pp. 497–502.
[Crossref]

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, Structure−Activity Relationship in D-π-A-π-D-Based Photoinitiators for the Two-Photon-Induced Photopolymerization Process (2009), Vol. 42, pp. 6519–6528.

R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, Functional polymers by two-photon 3D lithography (2007), Vol. 254, pp. 836–840.
[Crossref]

J. W. Goodman, ed., Introduction to Fourier Optics, Third ed. (Ben Roberts, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 An envisioned example of 3D optical waveguides integrated in one flexible PDMS substrate with microfluidic channels. Blue wires illustrate an imaging waveguide bundle. Red wires exemplify optical communication channels. Green wires depict optical systems of flow cytometry or spectroscopy.
Fig. 2
Fig. 2 Principle of waveguides fabrication in PDMS. (a) Preparation of a pristine platinum-cured PDMS substrate. (b) Permeation of the monomer molecules into the PDMS matrix by immersing the PDMS substrate into the monomer liquid formulation for 24 hours. (c) Exposure of the monomer-permeated PDMS substrate to a focused ultrashort laser irradiation for waveguide writing. (d) Removal of the unreacted monomer through an optional ethanol washing and a heating at 100-130 °C for two hours. (e) Absorption spectrum of 0.01 mM phenylacetylene in acetonitrile. Violet arrows indicate energies of two-photon (2PA) and three-photon absorption (3PA). Inset illustrates the reaction of multiphoton polymerization of phenylacetylene, which results in abundant conjugated carbon-carbon double bonds that extend the absorption into the visible blue-green band.
Fig. 3
Fig. 3 Experimental set up for waveguide writing in PDMS through MP-LDW. After beam expansion, the full power of the laser beam is steered by the dichroic mirror to the high NA water immersion objective for waveguide writing in the PDMS sample, the structure of which is illustrated in the blowup on the right. A very small amount of leaked laser light reflected from the top surface of the sample coverslip is allowed to reach the CMOS camera after the focusing lens for the control of the focus depth position. The shape of the waveguide being written is controlled by the path of motion set to the stage carrying the sample.
Fig. 4
Fig. 4 (a) Phase contrast microscope (Nikon IX-71) image of written PDMS optical waveguides; (b) bright field microscope image of an optical waveguide (60 × magnification objective), written at 1.3 mm below the sample top surface, 1.9 × 1012 W/cm2 laser peak intensity and 0.7 mm/s writing speed.
Fig. 5
Fig. 5 (a) Top view image and (b) waveguide width and height for optical waveguides written at 0.7 mm/s, 1.1 mm below the sample coverslip interface, for different laser peak intensities; and (c) cross-sectional image and (d) width and height for waveguides written at 1.9 W/cm2 peak intensity, 1.1 mm below the sample coverslip interface, for different writing speeds.
Fig. 6
Fig. 6 Waveguide cross section for optical waveguides written at laser peak intensity of 1.9 × 1012 W/cm2 and a writing speed of 0.7 mm/s, for (a) 900 μm, (b) 1.1 mm and (c) 1.3 mm focusing depth; (d) Plot of waveguide width and height as a function of writing depth, showing linear decrease of both lateral and vertical waveguides dimensions with increasing writing depth.
Fig. 7
Fig. 7 Measurement of the phase profile and refractive index contrast of the waveguide. (a) Principle of the measurement. A laser beam of plane wave is sent to pass the PDMS sample where the waveguide induces an additional phase change in the wave front, which is measured in the interferometric imaging system. (b) An example interferometric image of the waveguide. Fringes parallel to the waveguide are due to the aberration resulted from the PDMS material. (c) Extracted average phase profile of the waveguide, which is broadened due to the aberration introduced by the PDMS material. The corresponding refractive index contrast, after taking into account the broadening, is Δn0.06.
Fig. 8
Fig. 8 Characterization of the waveguide transmission. (a) Diagram of the optical set-up used for optical transmission loss characterization. (b) Broadband light output from three individual waveguides written at 800 μm under the top surface, using 1.9 × 1012 W/cm2 peak intensity and 0.7 mm/s writing speed. (c) Broadband waveguiding output from one waveguide. (d) Laser (HeNe) waveguiding output from the same waveguide. (e) – (h) Filtered narrowband waveguiding output from the same waveguide: (e) 592/43 nm, (f) 675/50 nm, (g) 609/53 nm, and (h) 800/40 nm. (i) Waveguide transmissivity measured by the intensity ratio between the outputs from waveguides cut at different lengths. Light blue, orange, red, brown and black bars show the measured transmissivity at 1 cm in 600 – 800 nm, 570 – 613 nm, 582 – 635 nm, 650 – 700 nm, and 780 – 820 nm, respectively.

Metrics