Abstract

We report a planar metamaterial consisting of double-layer Archimedean spirals for circular dichroism (CD) study in the infrared band. A maximum CD value of about 0.5 is designed by optimizing the zoom coefficient, thickness and size combination of the upper and bottom spirals. Different from almost all previous works, the mechanism of CD of our proposed double-layer Archimedean planar metamaterial is due to the anisotropic absorption of the in-plane gap plasmon excited in the metal-dielectric-metal structure. Our model shows good CD performance and may find useful applications in biomedicine, optoelectronics, and optical communication based on the in-plane gap plasmon.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation

Do-Hoon Kwon, Pingjuan L. Werner, and Douglas H. Werner
Opt. Express 16(16) 11802-11807 (2008)

Enhanced circular dichroism of double L-shaped nanorods induced by gap plasmon coupling

Zhimin Jing, Yu Bai, Tiankun Wang, Hamad Ullah, Ying Li, and Zhongyue Zhang
J. Opt. Soc. Am. B 36(10) 2721-2726 (2019)

Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials

Tun Cao, Chenwei Wei, and Lei Zhang
Opt. Mater. Express 4(8) 1526-1534 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. J. Greenfield, “Using circular dichroism spectra to estimate protein secondary structure,” Nat. Protoc. 1(6), 2876–2890 (2007).
    [Crossref] [PubMed]
  2. L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
    [Crossref] [PubMed]
  3. W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
    [Crossref] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  5. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  6. P. Moitra, Y. M. Yang, Z. Anderson, D. P. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
    [Crossref]
  7. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  8. C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
    [Crossref] [PubMed]
  9. T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
    [Crossref]
  10. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
    [Crossref] [PubMed]
  11. E. Philip, M. Z. Gungordu, S. Pal, P. Kung, and S. M. Kim, “Review on polarization selective terahertz metamaterials: from chiral metamaterials to stereometamaterials,” J. Infrared Millim. Terahertz Waves 38(9), 1047–1066 (2017).
    [Crossref]
  12. J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
    [Crossref] [PubMed]
  13. Z. Huang, K. Yao, G. Su, W. Ma, L. Li, Y. Liu, P. Zhan, and Z. Wang, “Graphene-metal hybrid metamaterials for strong and tunable circular dichroism generation,” Opt. Lett. 43(11), 2636–2639 (2018).
    [Crossref] [PubMed]
  14. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
    [Crossref] [PubMed]
  15. T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21(23), 27841–27851 (2013).
    [Crossref] [PubMed]
  16. S. Kaya, “Circular dichroism from windmill-shaped planar structures operating in mid-infrared regime,” Opt. Mater. Express 4(11), 2332–2339 (2014).
    [Crossref]
  17. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
    [Crossref] [PubMed]
  18. M. X. He, J. G. Han, Z. Tian, J. Q. Gu, and Q. R. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik (Stuttg.) 122(18), 1676–1679 (2011).
    [Crossref]
  19. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
    [Crossref] [PubMed]
  20. X. L. Ma, C. Huang, M. B. Pu, W. B. Pan, Y. Q. Wang, and X. G. Luo, “Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial,” Appl. Phys. Express 6(2), 022001 (2013).
    [Crossref]
  21. J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong, A. A. Bettiol, and H. O. Moser, “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Appl. Phys. Lett. 103(14), 141106 (2013).
    [Crossref]
  22. Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
    [Crossref]
  23. P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A 30(9), 1714–1718 (2013).
    [Crossref] [PubMed]
  24. J. Shao, J. Li, Y. H. Wang, J. Q. Li, Z. G. Dong, and L. Zhou, “Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime,” Chin. Phys. B 25(5), 058103 (2016).
    [Crossref]
  25. Y. Liu and X. Yu, “Circular dichroism effect in a double-layer dolmen array nanostructure,” Appl. Opt. 56(22), 6263–6266 (2017).
    [Crossref] [PubMed]
  26. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
    [Crossref] [PubMed]
  27. J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
    [Crossref]
  28. D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6(2), 1380–1386 (2012).
    [Crossref] [PubMed]
  29. H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
    [Crossref] [PubMed]
  30. A. Shaltout, J. J. Liu, A. Kildishev, and V. Shalaev, “Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy,” Optica 2(10), 860–863 (2015).
    [Crossref]
  31. H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
    [Crossref]
  32. X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
    [Crossref] [PubMed]
  33. C. D. Green, “All that glitters: a review of psychological research on the aesthetics of the golden section,” Perception 24(8), 937–968 (1995).
    [Crossref] [PubMed]
  34. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  35. L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
    [Crossref] [PubMed]
  36. G. Rui, R. L. Nelson, and Q. Zhan, “Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna,” Opt. Lett. 36(23), 4533–4535 (2011).
    [Crossref] [PubMed]
  37. D. X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express 18(3), 1937–1945 (2010).
    [Crossref] [PubMed]
  38. W. Chen, G. Rui, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Hybrid spiral plasmonic lens: towards an efficient miniature circular polarization analyzer,” Opt. Express 20(24), 26299–26307 (2012).
    [Crossref] [PubMed]
  39. W. C. Liao, S. W. Liao, K. J. Chen, Y. H. Hsiao, S. W. Chang, H. C. Kuo, and M. H. Shih, “Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature,” Sci. Rep. 6(1), 26578 (2016).
    [Crossref] [PubMed]
  40. G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

Y. Liu and X. Yu, “Circular dichroism effect in a double-layer dolmen array nanostructure,” Appl. Opt. 56(22), 6263–6266 (2017).
[Crossref] [PubMed]

E. Philip, M. Z. Gungordu, S. Pal, P. Kung, and S. M. Kim, “Review on polarization selective terahertz metamaterials: from chiral metamaterials to stereometamaterials,” J. Infrared Millim. Terahertz Waves 38(9), 1047–1066 (2017).
[Crossref]

2016 (4)

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

J. Shao, J. Li, Y. H. Wang, J. Q. Li, Z. G. Dong, and L. Zhou, “Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime,” Chin. Phys. B 25(5), 058103 (2016).
[Crossref]

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

W. C. Liao, S. W. Liao, K. J. Chen, Y. H. Hsiao, S. W. Chang, H. C. Kuo, and M. H. Shih, “Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature,” Sci. Rep. 6(1), 26578 (2016).
[Crossref] [PubMed]

2015 (5)

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

A. Shaltout, J. J. Liu, A. Kildishev, and V. Shalaev, “Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy,” Optica 2(10), 860–863 (2015).
[Crossref]

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (9)

P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A 30(9), 1714–1718 (2013).
[Crossref] [PubMed]

T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21(23), 27841–27851 (2013).
[Crossref] [PubMed]

X. L. Ma, C. Huang, M. B. Pu, W. B. Pan, Y. Q. Wang, and X. G. Luo, “Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial,” Appl. Phys. Express 6(2), 022001 (2013).
[Crossref]

J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong, A. A. Bettiol, and H. O. Moser, “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Appl. Phys. Lett. 103(14), 141106 (2013).
[Crossref]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

P. Moitra, Y. M. Yang, Z. Anderson, D. P. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

2012 (5)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6(2), 1380–1386 (2012).
[Crossref] [PubMed]

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

W. Chen, G. Rui, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Hybrid spiral plasmonic lens: towards an efficient miniature circular polarization analyzer,” Opt. Express 20(24), 26299–26307 (2012).
[Crossref] [PubMed]

2011 (2)

G. Rui, R. L. Nelson, and Q. Zhan, “Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna,” Opt. Lett. 36(23), 4533–4535 (2011).
[Crossref] [PubMed]

M. X. He, J. G. Han, Z. Tian, J. Q. Gu, and Q. R. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik (Stuttg.) 122(18), 1676–1679 (2011).
[Crossref]

2010 (3)

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

N. J. Greenfield, “Using circular dichroism spectra to estimate protein secondary structure,” Nat. Protoc. 1(6), 2876–2890 (2007).
[Crossref] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1995 (1)

C. D. Green, “All that glitters: a review of psychological research on the aesthetics of the golden section,” Perception 24(8), 937–968 (1995).
[Crossref] [PubMed]

Abeysinghe, D. C.

Allioux, D.

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

Ameling, R.

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[Crossref]

Anderson, Z.

P. Moitra, Y. M. Yang, Z. Anderson, D. P. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Appavoo, K.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6(2), 1380–1386 (2012).
[Crossref] [PubMed]

Azad, A. K.

J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Bartal, G.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

Bettiol, A. A.

J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong, A. A. Bettiol, and H. O. Moser, “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Appl. Phys. Lett. 103(14), 141106 (2013).
[Crossref]

Blaber, M. G.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Breese, M. B. H.

J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong, A. A. Bettiol, and H. O. Moser, “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Appl. Phys. Lett. 103(14), 141106 (2013).
[Crossref]

Briggs, D. P.

P. Moitra, Y. M. Yang, Z. Anderson, D. P. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Cai, W.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

Cao, J. X.

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[Crossref]

Cao, T.

Chang, S. W.

W. C. Liao, S. W. Liao, K. J. Chen, Y. H. Hsiao, S. W. Chang, H. C. Kuo, and M. H. Shih, “Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature,” Sci. Rep. 6(1), 26578 (2016).
[Crossref] [PubMed]

Cheben, P.

Chen, H. T.

J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Chen, K. J.

W. C. Liao, S. W. Liao, K. J. Chen, Y. H. Hsiao, S. W. Chang, H. C. Kuo, and M. H. Shih, “Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature,” Sci. Rep. 6(1), 26578 (2016).
[Crossref] [PubMed]

Chen, W.

Chen, W. T.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Cheng, Y. Z.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Chowdhury, D. R.

J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Cryan, M. J.

Cui, T. J.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Cui, Y.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

David, A.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

Decker, M.

Delâge, A.

Densmore, A.

Ding, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref] [PubMed]

Dong, Z.

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

Dong, Z. G.

J. Shao, J. Li, Y. H. Wang, J. Q. Li, Z. G. Dong, and L. Zhou, “Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime,” Chin. Phys. B 25(5), 058103 (2016).
[Crossref]

Duan, H.

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

Duan, J.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Fedotov, V. A.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Fernández-Domínguez, A. I.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6(2), 1380–1386 (2012).
[Crossref] [PubMed]

Fry, H. C.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giessen, H.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[Crossref]

Gjonaj, B.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

Goh, X. M.

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

Gong, R. Z.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Green, C. D.

C. D. Green, “All that glitters: a review of psychological research on the aesthetics of the golden section,” Perception 24(8), 937–968 (1995).
[Crossref] [PubMed]

Greenfield, N. J.

N. J. Greenfield, “Using circular dichroism spectra to estimate protein secondary structure,” Nat. Protoc. 1(6), 2876–2890 (2007).
[Crossref] [PubMed]

Gu, J. Q.

M. X. He, J. G. Han, Z. Tian, J. Q. Gu, and Q. R. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik (Stuttg.) 122(18), 1676–1679 (2011).
[Crossref]

Guan, C. Y.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Gungordu, M. Z.

E. Philip, M. Z. Gungordu, S. Pal, P. Kung, and S. M. Kim, “Review on polarization selective terahertz metamaterials: from chiral metamaterials to stereometamaterials,” J. Infrared Millim. Terahertz Waves 38(9), 1047–1066 (2017).
[Crossref]

Haglund, R. F.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6(2), 1380–1386 (2012).
[Crossref] [PubMed]

Han, J. G.

M. X. He, J. G. Han, Z. Tian, J. Q. Gu, and Q. R. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik (Stuttg.) 122(18), 1676–1679 (2011).
[Crossref]

He, M. X.

M. X. He, J. G. Han, Z. Tian, J. Q. Gu, and Q. R. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik (Stuttg.) 122(18), 1676–1679 (2011).
[Crossref]

Hong, M. H.

J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong, A. A. Bettiol, and H. O. Moser, “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Appl. Phys. Lett. 103(14), 141106 (2013).
[Crossref]

Hsiao, Y. H.

W. C. Liao, S. W. Liao, K. J. Chen, Y. H. Hsiao, S. W. Chang, H. C. Kuo, and M. H. Shih, “Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature,” Sci. Rep. 6(1), 26578 (2016).
[Crossref] [PubMed]

Hu, H.

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

Huang, C.

X. L. Ma, C. Huang, M. B. Pu, W. B. Pan, Y. Q. Wang, and X. G. Luo, “Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial,” Appl. Phys. Express 6(2), 022001 (2013).
[Crossref]

Huang, Z.

Janz, S.

Jiang, L.

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

Kang, L.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

Kaya, S.

Kildishev, A.

Kim, S. M.

E. Philip, M. Z. Gungordu, S. Pal, P. Kung, and S. M. Kim, “Review on polarization selective terahertz metamaterials: from chiral metamaterials to stereometamaterials,” J. Infrared Millim. Terahertz Waves 38(9), 1047–1066 (2017).
[Crossref]

Klein, M. W.

Kotov, N. A.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref] [PubMed]

Kravchenko, D. P.

P. Moitra, Y. M. Yang, Z. Anderson, D. P. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Kuang, H.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref] [PubMed]

Kung, P.

E. Philip, M. Z. Gungordu, S. Pal, P. Kung, and S. M. Kim, “Review on polarization selective terahertz metamaterials: from chiral metamaterials to stereometamaterials,” J. Infrared Millim. Terahertz Waves 38(9), 1047–1066 (2017).
[Crossref]

Kuo, H. C.

W. C. Liao, S. W. Liao, K. J. Chen, Y. H. Hsiao, S. W. Chang, H. C. Kuo, and M. H. Shih, “Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature,” Sci. Rep. 6(1), 26578 (2016).
[Crossref] [PubMed]

Kuprov, I.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Kwon, D. H.

Lan, S.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

Lapointe, J.

Lei, D. Y.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6(2), 1380–1386 (2012).
[Crossref] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, J.

J. Shao, J. Li, Y. H. Wang, J. Q. Li, Z. G. Dong, and L. Zhou, “Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime,” Chin. Phys. B 25(5), 058103 (2016).
[Crossref]

Li, J. Q.

J. Shao, J. Li, Y. H. Wang, J. Q. Li, Z. G. Dong, and L. Zhou, “Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime,” Chin. Phys. B 25(5), 058103 (2016).
[Crossref]

Li, L.

Li, X.

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

Li, Y. X.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Liao, M.

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

Liao, S. W.

W. C. Liao, S. W. Liao, K. J. Chen, Y. H. Hsiao, S. W. Chang, H. C. Kuo, and M. H. Shih, “Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature,” Sci. Rep. 6(1), 26578 (2016).
[Crossref] [PubMed]

Liao, W. C.

W. C. Liao, S. W. Liao, K. J. Chen, Y. H. Hsiao, S. W. Chang, H. C. Kuo, and M. H. Shih, “Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature,” Sci. Rep. 6(1), 26578 (2016).
[Crossref] [PubMed]

Linden, S.

Liu, H.

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[Crossref]

Liu, J. J.

Liu, N.

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[Crossref]

Liu, Y.

Lu, Z.

Luo, X. G.

X. L. Ma, C. Huang, M. B. Pu, W. B. Pan, Y. Q. Wang, and X. G. Luo, “Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial,” Appl. Phys. Express 6(2), 022001 (2013).
[Crossref]

Ma, R.

Ma, W.

Z. Huang, K. Yao, G. Su, W. Ma, L. Li, Y. Liu, P. Zhan, and Z. Wang, “Graphene-metal hybrid metamaterials for strong and tunable circular dichroism generation,” Opt. Lett. 43(11), 2636–2639 (2018).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref] [PubMed]

Ma, X. L.

X. L. Ma, C. Huang, M. B. Pu, W. B. Pan, Y. Q. Wang, and X. G. Luo, “Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial,” Appl. Phys. Express 6(2), 022001 (2013).
[Crossref]

Maier, S. A.

J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong, A. A. Bettiol, and H. O. Moser, “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Appl. Phys. Lett. 103(14), 141106 (2013).
[Crossref]

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6(2), 1380–1386 (2012).
[Crossref] [PubMed]

Mao, X. S.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

McKinnon, R.

Metzger, B.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

Moitra, P.

P. Moitra, Y. M. Yang, Z. Anderson, D. P. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Moser, H. O.

J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong, A. A. Bettiol, and H. O. Moser, “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Appl. Phys. Lett. 103(14), 141106 (2013).
[Crossref]

Nelson, R. L.

Ng, B. H.

J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong, A. A. Bettiol, and H. O. Moser, “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Appl. Phys. Lett. 103(14), 141106 (2013).
[Crossref]

Nie, G. Y.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

O’Hara, J. F.

J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Orenstein, M.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

Pal, S.

E. Philip, M. Z. Gungordu, S. Pal, P. Kung, and S. M. Kim, “Review on polarization selective terahertz metamaterials: from chiral metamaterials to stereometamaterials,” J. Infrared Millim. Terahertz Waves 38(9), 1047–1066 (2017).
[Crossref]

Pan, W. B.

X. L. Ma, C. Huang, M. B. Pu, W. B. Pan, Y. Q. Wang, and X. G. Luo, “Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial,” Appl. Phys. Express 6(2), 022001 (2013).
[Crossref]

Papasimakis, N.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Pendry, J. B.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6(2), 1380–1386 (2012).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Philip, E.

E. Philip, M. Z. Gungordu, S. Pal, P. Kung, and S. M. Kim, “Review on polarization selective terahertz metamaterials: from chiral metamaterials to stereometamaterials,” J. Infrared Millim. Terahertz Waves 38(9), 1047–1066 (2017).
[Crossref]

Pu, M. B.

X. L. Ma, C. Huang, M. B. Pu, W. B. Pan, Y. Q. Wang, and X. G. Luo, “Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial,” Appl. Phys. Express 6(2), 022001 (2013).
[Crossref]

Raybould, T. A.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rodrigues, S. P.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

Rosi, N. L.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Rui, G.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Schäferling, M.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

Schatz, G. C.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Schmid, J. H.

Shalaev, V.

Shaltout, A.

Shao, J.

J. Shao, J. Li, Y. H. Wang, J. Q. Li, Z. G. Dong, and L. Zhou, “Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime,” Chin. Phys. B 25(5), 058103 (2016).
[Crossref]

Shen, Z.

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

Shen, Z. X.

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

Shi, J. H.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Shi, Q. C.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Shih, M. H.

W. C. Liao, S. W. Liao, K. J. Chen, Y. H. Hsiao, S. W. Chang, H. C. Kuo, and M. H. Shih, “Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature,” Sci. Rep. 6(1), 26578 (2016).
[Crossref] [PubMed]

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Simpson, R. E.

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Song, C.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Sonnefraud, Y.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6(2), 1380–1386 (2012).
[Crossref] [PubMed]

Soukoulis, C. M.

J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

Spektor, G.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

Su, G.

Tan, S. J.

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

Taylor, A. J.

J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tian, Z.

M. X. He, J. G. Han, Z. Tian, J. Q. Gu, and Q. R. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik (Stuttg.) 122(18), 1676–1679 (2011).
[Crossref]

Tsai, D. P.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Turaga, S. P.

J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong, A. A. Bettiol, and H. O. Moser, “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Appl. Phys. Lett. 103(14), 141106 (2013).
[Crossref]

Vachon, M.

Valentine, J.

P. Moitra, Y. M. Yang, Z. Anderson, D. P. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Valev, V. K.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Verbiest, T.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref] [PubMed]

Wang, Y. H.

J. Shao, J. Li, Y. H. Wang, J. Q. Li, Z. G. Dong, and L. Zhou, “Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime,” Chin. Phys. B 25(5), 058103 (2016).
[Crossref]

Wang, Y. Q.

X. L. Ma, C. Huang, M. B. Pu, W. B. Pan, Y. Q. Wang, and X. G. Luo, “Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial,” Appl. Phys. Express 6(2), 022001 (2013).
[Crossref]

Wang, Z.

Wegener, M.

Wei, C.

Werner, D. H.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref] [PubMed]

Werner, P. L.

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, J. F.

J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong, A. A. Bettiol, and H. O. Moser, “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Appl. Phys. Lett. 103(14), 141106 (2013).
[Crossref]

Wu, L.

Xie, Z.

Xing, Q. R.

M. X. He, J. G. Han, Z. Tian, J. Q. Gu, and Q. R. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik (Stuttg.) 122(18), 1676–1679 (2011).
[Crossref]

Xu, C.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref] [PubMed]

Xu, D. X.

Xu, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref] [PubMed]

Yang, J. K. W.

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

Yang, Y. L.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Yang, Y. M.

P. Moitra, Y. M. Yang, Z. Anderson, D. P. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Yang, Z.

Yao, K.

Yin, T.

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

Yin, X.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

Youngs, I. J.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Yu, X.

Zhan, P.

Zhan, Q.

Zhang, L.

Zhang, P.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A 30(9), 1714–1718 (2013).
[Crossref] [PubMed]

Zhang, Z.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Zhao, G.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Zhao, M.

Zhao, R.

Zhao, R. K.

J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Zheng, Y.

Zhou, J. F.

J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Zhou, L.

J. Shao, J. Li, Y. H. Wang, J. Q. Li, Z. G. Dong, and L. Zhou, “Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime,” Chin. Phys. B 25(5), 058103 (2016).
[Crossref]

Zhou, Y. J.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Zhu, S. N.

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[Crossref]

ACS Nano (3)

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano 6(2), 1380–1386 (2012).
[Crossref] [PubMed]

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

L. Jiang, T. Yin, Z. Dong, M. Liao, S. J. Tan, X. M. Goh, D. Allioux, H. Hu, X. Li, J. K. W. Yang, and Z. Shen, “Accurate modeling of dark-field scattering spectra of plasmonic nano structures,” ACS Nano 9(10), 10039–10046 (2015).
[Crossref] [PubMed]

Adv. Mater. (2)

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Express (1)

X. L. Ma, C. Huang, M. B. Pu, W. B. Pan, Y. Q. Wang, and X. G. Luo, “Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial,” Appl. Phys. Express 6(2), 022001 (2013).
[Crossref]

Appl. Phys. Lett. (1)

J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong, A. A. Bettiol, and H. O. Moser, “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Appl. Phys. Lett. 103(14), 141106 (2013).
[Crossref]

Chin. Phys. B (1)

J. Shao, J. Li, Y. H. Wang, J. Q. Li, Z. G. Dong, and L. Zhou, “Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime,” Chin. Phys. B 25(5), 058103 (2016).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

E. Philip, M. Z. Gungordu, S. Pal, P. Kung, and S. M. Kim, “Review on polarization selective terahertz metamaterials: from chiral metamaterials to stereometamaterials,” J. Infrared Millim. Terahertz Waves 38(9), 1047–1066 (2017).
[Crossref]

J. Mod. Opt. (1)

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (3)

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Moitra, Y. M. Yang, Z. Anderson, D. P. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Nat. Protoc. (1)

N. J. Greenfield, “Using circular dichroism spectra to estimate protein secondary structure,” Nat. Protoc. 1(6), 2876–2890 (2007).
[Crossref] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (1)

Optik (Stuttg.) (1)

M. X. He, J. G. Han, Z. Tian, J. Q. Gu, and Q. R. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik (Stuttg.) 122(18), 1676–1679 (2011).
[Crossref]

Perception (1)

C. D. Green, “All that glitters: a review of psychological research on the aesthetics of the golden section,” Perception 24(8), 937–968 (1995).
[Crossref] [PubMed]

Phys. Rev. B (3)

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[Crossref]

J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Sci. Rep. (2)

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

W. C. Liao, S. W. Liao, K. J. Chen, Y. H. Hsiao, S. W. Chang, H. C. Kuo, and M. H. Shih, “Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature,” Sci. Rep. 6(1), 26578 (2016).
[Crossref] [PubMed]

Science (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the planar metamaterial constructed by double-layer Archimedean spirals with different sizes. (b) Diagram of the Archimedean spiral.
Fig. 2
Fig. 2 (a,b) Transmission spectra of upper and bottom spirals for different circularly polarized beams. The inset shows the magnetic field distribution at response positions. (c,d) Comparison of transmission spectra of double-layer spirals and single upper or bottom spiral for the same circular polarized beam.
Fig. 3
Fig. 3 Chiral characteristics of the Archimedean planar metamaterial: (a) transmission spectra, (b) CD, (c) ellipticity η and (d) polarization rotation angle θ.
Fig. 4
Fig. 4 Magnetic field intensity and vector distributions for LCP and RCP light at (a) 1415 nm and (b) 1966 nm, respectively.
Fig. 5
Fig. 5 (a) CD value as a function of the upper spiral’s width when the width of the bottom spiral is 40 nm and T = 120 nm. (b) CD value as a function of the spirals’ thicknesses when α = 0.625 for the spirals’ size combination of 40-25. (c) CD value as a function of the spirals’ size combinations when α = 0.625 and T = 120 nm. (d-f) RCP and LCP transmission spectra when the mupper-mbottom combination is 1-2, 2-1, and 2-2 respectively for the spirals with size combination of 40-25 and T = 120 nm.
Fig. 6
Fig. 6 (a,b) RCP and LCP transmission spectra when the surrounding material is replaced by air (n = 1) and silicon (n = 3.4) for the spirals with size combination of 56-35 and T = 160 nm.

Tables (1)

Tables Icon

Table 1 A comparison of the CD from different types of quasi-3D planar metamaterials

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R=r+ W 2 + m(L+W) 2π ϕ
r upper = W upper = L upper =α r bottom =α W bottom =α L bottom
CD=| A + A |=| T + T |
η= 1 2 arctan( | T + || T | | T + |+| T | )
θ= 1 2 [arg( t + )arg( t )]

Metrics