Abstract

Fused silica irradiated with 6.8 ns 355 nm laser pulses is studied by micro-Raman scattering spectroscopy. Results show that, for laser fluences above the laser-induced breakdown threshold (Fth ~3.9 J/cm2), irradiation results in the formation of four laser-induced defect-related Raman bands centered at 1363, 1557, 1605.9 and 2330 cm−1. Bands centered on 1363, 1557 and 2330 cm−1 are attributed to Si = O, interstitial O2 and Si-H bond. However, defects giving rise to a broad band at 1605.9 cm−1 are unknown. Based on these results, we discuss physical processes occurring during the laser-induced fused silica breakdown, leading to the formation of Si-H bond and interstitial O2 and the fracture of fused silica.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High resolution characterization of modifications in fused silica after exposure to low fluence 355 nm laser at different repetition frequencies

C. H. Li, X. Ju, X. D. Jiang, J. Huang, X. D. Zhou, Z. Zheng, W. D. Wu, W. G. Zheng, Z. X. Li, B. Y. Wang, and X. H. Yu
Opt. Express 19(7) 6439-6449 (2011)

Influence of bulk defects on bulk damage performance of fused silica optics at 355 nm nanosecond pulse laser

Jin Huang, Hongjie Liu, Fengrui Wang, Xin Ye, Laixi Sun, Xiaoyan Zhou, Zhiqing Wu, Xiaodong Jiang, Wanguo Zheng, and Dunlu Sun
Opt. Express 25(26) 33416-33428 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
    [Crossref] [PubMed]
  2. M. L. André, “The French Megajoule Laser Project (LMJ),” Fusion Eng. Des. 44(1–4), 43–49 (1999).
    [Crossref]
  3. H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
    [Crossref]
  4. M. Dračínský, L. Benda, and P. Bouř, “Ab initio modeling of fused silica, crystal quartz, and water Raman spectra,” Chem. Phys. Lett. 512(1–3), 54–59 (2011).
    [Crossref]
  5. S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2936–2940 (2008).
    [Crossref]
  6. D. R. Tallant, T. A. Michalske, and W. L. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Crys. Solids 106(1–3), 380–383 (1988).
  7. J. L. Rousset, E. Duval, A. Boukenter, B. Champagnon, A. Monteil, J. Serughetti, and J. Dumas, “Gel-to-glass transformation of silica a study by low-frequency Raman scattering,” J. Non-Cryst. Solids 107(1), 27–34 (1988).
    [Crossref]
  8. K. Kusabiraki, “Infrared and raman spectra of vitreous silica and sodium silicates containing titanium,” J. Non-Crys. Solids 95–96(1), 411–417 (1987).
  9. G. Origlio, A. Boukenter, S. Girard, N. Richard, M. Cannas, R. Boscaino, and Y. Ouerdane, “Irradiation induced defects in fluorine doped silica,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2918–2922 (2008).
    [Crossref]
  10. S. Xu, X. Yuan, X. Zu, H. Lv, X. Jiang, L. Zhang, and W. Zheng, “Laser-induced defects in fused silica by UV laser irradiation,” J. Non-Crys. Solids 353(44–46), 4212–4217 (2007).
  11. G. Mariotto, M. Montagna, G. Viliani, R. Campostrini, and G. Carturan, “Low-frequency Raman spectra of thermally treated silica gels,” J. Non-Crys Solids 106(1–3), 384–387 (1988).
  12. C. Li, W. Zheng, Q. Zhu, J. Chen, B. Y. Wang, and X. Ju, “Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 384, 23–29 (2016).
    [Crossref]
  13. C. A. M. Mulder and A. A. J. M. Damen, “The origin of the defect 490 cm−1 Raman peak in silica gel,” J. Non-Crys. Solids 93(2), 387–394 (1987).
  14. M. Hass, “Raman spectra of vitreous silica, germania and sodium silicate glasses,” J. Phys. Chem. Solids 31(3), 415–422 (1970).
    [Crossref]
  15. A. G. Revesz and G. E. Walrafen, “Structural interpretations for some Raman lines from vitreous silica,” J. Non-Crys. Solids 54(3), 323–333 (1983).
  16. D. D. Goller, R. T. Phillips, and I. G. Sayce, “Structural relaxation of SiO2 at elevated temperatures monitored by in situ Raman scattering,” J. Non-Crys. Solids 355(34), 1747–1754 (2009).
  17. C. Mühlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods. Phys. Res. Sec. B 166–167(1), 698–703 (2000).
    [Crossref]
  18. B. C. Schmidt, F. M. Holtz, and J.-M. Beny, “Incorporation of H2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy,” J. Non-Crys. Solids 240(1–3), 91–103 (1998).
  19. R. Böhme, D. Spemann, and K. Zimmer, “Surface characterization of backside-etched transparent dielectrics,” Thin Solid Films 453–454(1), 127–132 (2004).
    [Crossref]
  20. J. Fournier, J. Néauport, P. Grua, V. Jubera, E. Fargin, D. Talaga, and S. Jouannigot, “Luminescence study of defects in silica glasses under near-UV excitation,” Phys. Procedia 8(1), 39–43 (2010).
    [Crossref]
  21. S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
    [Crossref]

2016 (1)

C. Li, W. Zheng, Q. Zhu, J. Chen, B. Y. Wang, and X. Ju, “Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 384, 23–29 (2016).
[Crossref]

2011 (1)

M. Dračínský, L. Benda, and P. Bouř, “Ab initio modeling of fused silica, crystal quartz, and water Raman spectra,” Chem. Phys. Lett. 512(1–3), 54–59 (2011).
[Crossref]

2010 (1)

J. Fournier, J. Néauport, P. Grua, V. Jubera, E. Fargin, D. Talaga, and S. Jouannigot, “Luminescence study of defects in silica glasses under near-UV excitation,” Phys. Procedia 8(1), 39–43 (2010).
[Crossref]

2009 (1)

D. D. Goller, R. T. Phillips, and I. G. Sayce, “Structural relaxation of SiO2 at elevated temperatures monitored by in situ Raman scattering,” J. Non-Crys. Solids 355(34), 1747–1754 (2009).

2008 (2)

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2936–2940 (2008).
[Crossref]

G. Origlio, A. Boukenter, S. Girard, N. Richard, M. Cannas, R. Boscaino, and Y. Ouerdane, “Irradiation induced defects in fluorine doped silica,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2918–2922 (2008).
[Crossref]

2007 (2)

2004 (1)

R. Böhme, D. Spemann, and K. Zimmer, “Surface characterization of backside-etched transparent dielectrics,” Thin Solid Films 453–454(1), 127–132 (2004).
[Crossref]

2003 (1)

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[Crossref]

2001 (1)

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
[Crossref]

2000 (1)

C. Mühlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods. Phys. Res. Sec. B 166–167(1), 698–703 (2000).
[Crossref]

1999 (1)

M. L. André, “The French Megajoule Laser Project (LMJ),” Fusion Eng. Des. 44(1–4), 43–49 (1999).
[Crossref]

1998 (1)

B. C. Schmidt, F. M. Holtz, and J.-M. Beny, “Incorporation of H2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy,” J. Non-Crys. Solids 240(1–3), 91–103 (1998).

1988 (3)

G. Mariotto, M. Montagna, G. Viliani, R. Campostrini, and G. Carturan, “Low-frequency Raman spectra of thermally treated silica gels,” J. Non-Crys Solids 106(1–3), 384–387 (1988).

D. R. Tallant, T. A. Michalske, and W. L. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Crys. Solids 106(1–3), 380–383 (1988).

J. L. Rousset, E. Duval, A. Boukenter, B. Champagnon, A. Monteil, J. Serughetti, and J. Dumas, “Gel-to-glass transformation of silica a study by low-frequency Raman scattering,” J. Non-Cryst. Solids 107(1), 27–34 (1988).
[Crossref]

1987 (2)

K. Kusabiraki, “Infrared and raman spectra of vitreous silica and sodium silicates containing titanium,” J. Non-Crys. Solids 95–96(1), 411–417 (1987).

C. A. M. Mulder and A. A. J. M. Damen, “The origin of the defect 490 cm−1 Raman peak in silica gel,” J. Non-Crys. Solids 93(2), 387–394 (1987).

1983 (1)

A. G. Revesz and G. E. Walrafen, “Structural interpretations for some Raman lines from vitreous silica,” J. Non-Crys. Solids 54(3), 323–333 (1983).

1970 (1)

M. Hass, “Raman spectra of vitreous silica, germania and sodium silicate glasses,” J. Phys. Chem. Solids 31(3), 415–422 (1970).
[Crossref]

André, M. L.

M. L. André, “The French Megajoule Laser Project (LMJ),” Fusion Eng. Des. 44(1–4), 43–49 (1999).
[Crossref]

Auerbach, J. M.

Bark-Zollmann, S.

C. Mühlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods. Phys. Res. Sec. B 166–167(1), 698–703 (2000).
[Crossref]

Benda, L.

M. Dračínský, L. Benda, and P. Bouř, “Ab initio modeling of fused silica, crystal quartz, and water Raman spectra,” Chem. Phys. Lett. 512(1–3), 54–59 (2011).
[Crossref]

Beny, J.-M.

B. C. Schmidt, F. M. Holtz, and J.-M. Beny, “Incorporation of H2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy,” J. Non-Crys. Solids 240(1–3), 91–103 (1998).

Böhme, R.

R. Böhme, D. Spemann, and K. Zimmer, “Surface characterization of backside-etched transparent dielectrics,” Thin Solid Films 453–454(1), 127–132 (2004).
[Crossref]

Boscaino, R.

G. Origlio, A. Boukenter, S. Girard, N. Richard, M. Cannas, R. Boscaino, and Y. Ouerdane, “Irradiation induced defects in fluorine doped silica,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2918–2922 (2008).
[Crossref]

Boukenter, A.

G. Origlio, A. Boukenter, S. Girard, N. Richard, M. Cannas, R. Boscaino, and Y. Ouerdane, “Irradiation induced defects in fluorine doped silica,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2918–2922 (2008).
[Crossref]

J. L. Rousset, E. Duval, A. Boukenter, B. Champagnon, A. Monteil, J. Serughetti, and J. Dumas, “Gel-to-glass transformation of silica a study by low-frequency Raman scattering,” J. Non-Cryst. Solids 107(1), 27–34 (1988).
[Crossref]

Bour, P.

M. Dračínský, L. Benda, and P. Bouř, “Ab initio modeling of fused silica, crystal quartz, and water Raman spectra,” Chem. Phys. Lett. 512(1–3), 54–59 (2011).
[Crossref]

Bowers, M. W.

Campostrini, R.

G. Mariotto, M. Montagna, G. Viliani, R. Campostrini, and G. Carturan, “Low-frequency Raman spectra of thermally treated silica gels,” J. Non-Crys Solids 106(1–3), 384–387 (1988).

Cannas, M.

G. Origlio, A. Boukenter, S. Girard, N. Richard, M. Cannas, R. Boscaino, and Y. Ouerdane, “Irradiation induced defects in fluorine doped silica,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2918–2922 (2008).
[Crossref]

Carturan, G.

G. Mariotto, M. Montagna, G. Viliani, R. Campostrini, and G. Carturan, “Low-frequency Raman spectra of thermally treated silica gels,” J. Non-Crys Solids 106(1–3), 384–387 (1988).

Champagnon, B.

J. L. Rousset, E. Duval, A. Boukenter, B. Champagnon, A. Monteil, J. Serughetti, and J. Dumas, “Gel-to-glass transformation of silica a study by low-frequency Raman scattering,” J. Non-Cryst. Solids 107(1), 27–34 (1988).
[Crossref]

Chen, J.

C. Li, W. Zheng, Q. Zhu, J. Chen, B. Y. Wang, and X. Ju, “Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 384, 23–29 (2016).
[Crossref]

Damen, A. A. J. M.

C. A. M. Mulder and A. A. J. M. Damen, “The origin of the defect 490 cm−1 Raman peak in silica gel,” J. Non-Crys. Solids 93(2), 387–394 (1987).

Demos, S. G.

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[Crossref]

Dixit, S. N.

Dracínský, M.

M. Dračínský, L. Benda, and P. Bouř, “Ab initio modeling of fused silica, crystal quartz, and water Raman spectra,” Chem. Phys. Lett. 512(1–3), 54–59 (2011).
[Crossref]

Dumas, J.

J. L. Rousset, E. Duval, A. Boukenter, B. Champagnon, A. Monteil, J. Serughetti, and J. Dumas, “Gel-to-glass transformation of silica a study by low-frequency Raman scattering,” J. Non-Cryst. Solids 107(1), 27–34 (1988).
[Crossref]

Duval, E.

J. L. Rousset, E. Duval, A. Boukenter, B. Champagnon, A. Monteil, J. Serughetti, and J. Dumas, “Gel-to-glass transformation of silica a study by low-frequency Raman scattering,” J. Non-Cryst. Solids 107(1), 27–34 (1988).
[Crossref]

Erbert, G. V.

Fan, D. Y.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
[Crossref]

Fargin, E.

J. Fournier, J. Néauport, P. Grua, V. Jubera, E. Fargin, D. Talaga, and S. Jouannigot, “Luminescence study of defects in silica glasses under near-UV excitation,” Phys. Procedia 8(1), 39–43 (2010).
[Crossref]

Fournier, J.

J. Fournier, J. Néauport, P. Grua, V. Jubera, E. Fargin, D. Talaga, and S. Jouannigot, “Luminescence study of defects in silica glasses under near-UV excitation,” Phys. Procedia 8(1), 39–43 (2010).
[Crossref]

Girard, S.

G. Origlio, A. Boukenter, S. Girard, N. Richard, M. Cannas, R. Boscaino, and Y. Ouerdane, “Irradiation induced defects in fluorine doped silica,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2918–2922 (2008).
[Crossref]

Goller, D. D.

D. D. Goller, R. T. Phillips, and I. G. Sayce, “Structural relaxation of SiO2 at elevated temperatures monitored by in situ Raman scattering,” J. Non-Crys. Solids 355(34), 1747–1754 (2009).

Grebner, D.

C. Mühlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods. Phys. Res. Sec. B 166–167(1), 698–703 (2000).
[Crossref]

Grua, P.

J. Fournier, J. Néauport, P. Grua, V. Jubera, E. Fargin, D. Talaga, and S. Jouannigot, “Luminescence study of defects in silica glasses under near-UV excitation,” Phys. Procedia 8(1), 39–43 (2010).
[Crossref]

Hass, M.

M. Hass, “Raman spectra of vitreous silica, germania and sodium silicate glasses,” J. Phys. Chem. Solids 31(3), 415–422 (1970).
[Crossref]

Haynam, C. A.

Heestand, G. M.

Henesian, M. A.

Hermann, M. R.

Holtz, F. M.

B. C. Schmidt, F. M. Holtz, and J.-M. Beny, “Incorporation of H2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy,” J. Non-Crys. Solids 240(1–3), 91–103 (1998).

Huang, J.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2936–2940 (2008).
[Crossref]

Jancaitis, K. S.

Jiang, X.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2936–2940 (2008).
[Crossref]

S. Xu, X. Yuan, X. Zu, H. Lv, X. Jiang, L. Zhang, and W. Zheng, “Laser-induced defects in fused silica by UV laser irradiation,” J. Non-Crys. Solids 353(44–46), 4212–4217 (2007).

Jing, F.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
[Crossref]

Jouannigot, S.

J. Fournier, J. Néauport, P. Grua, V. Jubera, E. Fargin, D. Talaga, and S. Jouannigot, “Luminescence study of defects in silica glasses under near-UV excitation,” Phys. Procedia 8(1), 39–43 (2010).
[Crossref]

Ju, X.

C. Li, W. Zheng, Q. Zhu, J. Chen, B. Y. Wang, and X. Ju, “Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 384, 23–29 (2016).
[Crossref]

Jubera, V.

J. Fournier, J. Néauport, P. Grua, V. Jubera, E. Fargin, D. Talaga, and S. Jouannigot, “Luminescence study of defects in silica glasses under near-UV excitation,” Phys. Procedia 8(1), 39–43 (2010).
[Crossref]

Kucheyev, S. O.

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[Crossref]

Kusabiraki, K.

K. Kusabiraki, “Infrared and raman spectra of vitreous silica and sodium silicates containing titanium,” J. Non-Crys. Solids 95–96(1), 411–417 (1987).

Li, C.

C. Li, W. Zheng, Q. Zhu, J. Chen, B. Y. Wang, and X. Ju, “Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 384, 23–29 (2016).
[Crossref]

Ling, Z. Q.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
[Crossref]

Lv, H.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2936–2940 (2008).
[Crossref]

S. Xu, X. Yuan, X. Zu, H. Lv, X. Jiang, L. Zhang, and W. Zheng, “Laser-induced defects in fused silica by UV laser irradiation,” J. Non-Crys. Solids 353(44–46), 4212–4217 (2007).

Manes, K. R.

Mariotto, G.

G. Mariotto, M. Montagna, G. Viliani, R. Campostrini, and G. Carturan, “Low-frequency Raman spectra of thermally treated silica gels,” J. Non-Crys Solids 106(1–3), 384–387 (1988).

Marshall, C. D.

Mehta, N. C.

Menapace, J.

Michalske, T. A.

D. R. Tallant, T. A. Michalske, and W. L. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Crys. Solids 106(1–3), 380–383 (1988).

Montagna, M.

G. Mariotto, M. Montagna, G. Viliani, R. Campostrini, and G. Carturan, “Low-frequency Raman spectra of thermally treated silica gels,” J. Non-Crys Solids 106(1–3), 384–387 (1988).

Monteil, A.

J. L. Rousset, E. Duval, A. Boukenter, B. Champagnon, A. Monteil, J. Serughetti, and J. Dumas, “Gel-to-glass transformation of silica a study by low-frequency Raman scattering,” J. Non-Cryst. Solids 107(1), 27–34 (1988).
[Crossref]

Moses, E.

Mühlig, C.

C. Mühlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods. Phys. Res. Sec. B 166–167(1), 698–703 (2000).
[Crossref]

Mulder, C. A. M.

C. A. M. Mulder and A. A. J. M. Damen, “The origin of the defect 490 cm−1 Raman peak in silica gel,” J. Non-Crys. Solids 93(2), 387–394 (1987).

Murray, J. R.

Néauport, J.

J. Fournier, J. Néauport, P. Grua, V. Jubera, E. Fargin, D. Talaga, and S. Jouannigot, “Luminescence study of defects in silica glasses under near-UV excitation,” Phys. Procedia 8(1), 39–43 (2010).
[Crossref]

Nostrand, M. C.

Origlio, G.

G. Origlio, A. Boukenter, S. Girard, N. Richard, M. Cannas, R. Boscaino, and Y. Ouerdane, “Irradiation induced defects in fluorine doped silica,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2918–2922 (2008).
[Crossref]

Orth, C. D.

Ouerdane, Y.

G. Origlio, A. Boukenter, S. Girard, N. Richard, M. Cannas, R. Boscaino, and Y. Ouerdane, “Irradiation induced defects in fluorine doped silica,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2918–2922 (2008).
[Crossref]

Patterson, R.

Peng, H. S.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
[Crossref]

Phillips, R. T.

D. D. Goller, R. T. Phillips, and I. G. Sayce, “Structural relaxation of SiO2 at elevated temperatures monitored by in situ Raman scattering,” J. Non-Crys. Solids 355(34), 1747–1754 (2009).

Revesz, A. G.

A. G. Revesz and G. E. Walrafen, “Structural interpretations for some Raman lines from vitreous silica,” J. Non-Crys. Solids 54(3), 323–333 (1983).

Richard, N.

G. Origlio, A. Boukenter, S. Girard, N. Richard, M. Cannas, R. Boscaino, and Y. Ouerdane, “Irradiation induced defects in fluorine doped silica,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2918–2922 (2008).
[Crossref]

Rousset, J. L.

J. L. Rousset, E. Duval, A. Boukenter, B. Champagnon, A. Monteil, J. Serughetti, and J. Dumas, “Gel-to-glass transformation of silica a study by low-frequency Raman scattering,” J. Non-Cryst. Solids 107(1), 27–34 (1988).
[Crossref]

Sacks, R. A.

Sayce, I. G.

D. D. Goller, R. T. Phillips, and I. G. Sayce, “Structural relaxation of SiO2 at elevated temperatures monitored by in situ Raman scattering,” J. Non-Crys. Solids 355(34), 1747–1754 (2009).

Schmidt, B. C.

B. C. Schmidt, F. M. Holtz, and J.-M. Beny, “Incorporation of H2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy,” J. Non-Crys. Solids 240(1–3), 91–103 (1998).

Serughetti, J.

J. L. Rousset, E. Duval, A. Boukenter, B. Champagnon, A. Monteil, J. Serughetti, and J. Dumas, “Gel-to-glass transformation of silica a study by low-frequency Raman scattering,” J. Non-Cryst. Solids 107(1), 27–34 (1988).
[Crossref]

Shaw, M. J.

Smith, W. L.

D. R. Tallant, T. A. Michalske, and W. L. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Crys. Solids 106(1–3), 380–383 (1988).

Spaeth, M.

Spemann, D.

R. Böhme, D. Spemann, and K. Zimmer, “Surface characterization of backside-etched transparent dielectrics,” Thin Solid Films 453–454(1), 127–132 (2004).
[Crossref]

Sui, Z.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
[Crossref]

Sutton, S. B.

Talaga, D.

J. Fournier, J. Néauport, P. Grua, V. Jubera, E. Fargin, D. Talaga, and S. Jouannigot, “Luminescence study of defects in silica glasses under near-UV excitation,” Phys. Procedia 8(1), 39–43 (2010).
[Crossref]

Tallant, D. R.

D. R. Tallant, T. A. Michalske, and W. L. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Crys. Solids 106(1–3), 380–383 (1988).

Triebel, W.

C. Mühlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods. Phys. Res. Sec. B 166–167(1), 698–703 (2000).
[Crossref]

Van Wonterghem, B. M.

Viliani, G.

G. Mariotto, M. Montagna, G. Viliani, R. Campostrini, and G. Carturan, “Low-frequency Raman spectra of thermally treated silica gels,” J. Non-Crys Solids 106(1–3), 384–387 (1988).

Walrafen, G. E.

A. G. Revesz and G. E. Walrafen, “Structural interpretations for some Raman lines from vitreous silica,” J. Non-Crys. Solids 54(3), 323–333 (1983).

Wang, B. Y.

C. Li, W. Zheng, Q. Zhu, J. Chen, B. Y. Wang, and X. Ju, “Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 384, 23–29 (2016).
[Crossref]

Wang, H.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2936–2940 (2008).
[Crossref]

Wegner, P. J.

Wei, X. F.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
[Crossref]

White, R. K.

Widmayer, C. C.

Williams, W. H.

Xu, S.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2936–2940 (2008).
[Crossref]

S. Xu, X. Yuan, X. Zu, H. Lv, X. Jiang, L. Zhang, and W. Zheng, “Laser-induced defects in fused silica by UV laser irradiation,” J. Non-Crys. Solids 353(44–46), 4212–4217 (2007).

Yang, S. T.

Yuan, X.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2936–2940 (2008).
[Crossref]

S. Xu, X. Yuan, X. Zu, H. Lv, X. Jiang, L. Zhang, and W. Zheng, “Laser-induced defects in fused silica by UV laser irradiation,” J. Non-Crys. Solids 353(44–46), 4212–4217 (2007).

Zhang, L.

S. Xu, X. Yuan, X. Zu, H. Lv, X. Jiang, L. Zhang, and W. Zheng, “Laser-induced defects in fused silica by UV laser irradiation,” J. Non-Crys. Solids 353(44–46), 4212–4217 (2007).

Zhang, X. M.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
[Crossref]

Zhao, Q.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
[Crossref]

Zheng, W.

C. Li, W. Zheng, Q. Zhu, J. Chen, B. Y. Wang, and X. Ju, “Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 384, 23–29 (2016).
[Crossref]

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2936–2940 (2008).
[Crossref]

S. Xu, X. Yuan, X. Zu, H. Lv, X. Jiang, L. Zhang, and W. Zheng, “Laser-induced defects in fused silica by UV laser irradiation,” J. Non-Crys. Solids 353(44–46), 4212–4217 (2007).

Zheng, W. G.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
[Crossref]

Zhou, J. Q.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
[Crossref]

Zhu, Q.

C. Li, W. Zheng, Q. Zhu, J. Chen, B. Y. Wang, and X. Ju, “Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 384, 23–29 (2016).
[Crossref]

Zimmer, K.

R. Böhme, D. Spemann, and K. Zimmer, “Surface characterization of backside-etched transparent dielectrics,” Thin Solid Films 453–454(1), 127–132 (2004).
[Crossref]

Zu, X.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2936–2940 (2008).
[Crossref]

S. Xu, X. Yuan, X. Zu, H. Lv, X. Jiang, L. Zhang, and W. Zheng, “Laser-induced defects in fused silica by UV laser irradiation,” J. Non-Crys. Solids 353(44–46), 4212–4217 (2007).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[Crossref]

Chem. Phys. Lett. (1)

M. Dračínský, L. Benda, and P. Bouř, “Ab initio modeling of fused silica, crystal quartz, and water Raman spectra,” Chem. Phys. Lett. 512(1–3), 54–59 (2011).
[Crossref]

Fusion Eng. Des. (1)

M. L. André, “The French Megajoule Laser Project (LMJ),” Fusion Eng. Des. 44(1–4), 43–49 (1999).
[Crossref]

J. Non-Crys Solids (1)

G. Mariotto, M. Montagna, G. Viliani, R. Campostrini, and G. Carturan, “Low-frequency Raman spectra of thermally treated silica gels,” J. Non-Crys Solids 106(1–3), 384–387 (1988).

J. Non-Crys. Solids (7)

C. A. M. Mulder and A. A. J. M. Damen, “The origin of the defect 490 cm−1 Raman peak in silica gel,” J. Non-Crys. Solids 93(2), 387–394 (1987).

A. G. Revesz and G. E. Walrafen, “Structural interpretations for some Raman lines from vitreous silica,” J. Non-Crys. Solids 54(3), 323–333 (1983).

D. D. Goller, R. T. Phillips, and I. G. Sayce, “Structural relaxation of SiO2 at elevated temperatures monitored by in situ Raman scattering,” J. Non-Crys. Solids 355(34), 1747–1754 (2009).

B. C. Schmidt, F. M. Holtz, and J.-M. Beny, “Incorporation of H2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy,” J. Non-Crys. Solids 240(1–3), 91–103 (1998).

D. R. Tallant, T. A. Michalske, and W. L. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Crys. Solids 106(1–3), 380–383 (1988).

K. Kusabiraki, “Infrared and raman spectra of vitreous silica and sodium silicates containing titanium,” J. Non-Crys. Solids 95–96(1), 411–417 (1987).

S. Xu, X. Yuan, X. Zu, H. Lv, X. Jiang, L. Zhang, and W. Zheng, “Laser-induced defects in fused silica by UV laser irradiation,” J. Non-Crys. Solids 353(44–46), 4212–4217 (2007).

J. Non-Cryst. Solids (1)

J. L. Rousset, E. Duval, A. Boukenter, B. Champagnon, A. Monteil, J. Serughetti, and J. Dumas, “Gel-to-glass transformation of silica a study by low-frequency Raman scattering,” J. Non-Cryst. Solids 107(1), 27–34 (1988).
[Crossref]

J. Phys. Chem. Solids (1)

M. Hass, “Raman spectra of vitreous silica, germania and sodium silicate glasses,” J. Phys. Chem. Solids 31(3), 415–422 (1970).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (3)

C. Li, W. Zheng, Q. Zhu, J. Chen, B. Y. Wang, and X. Ju, “Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 384, 23–29 (2016).
[Crossref]

G. Origlio, A. Boukenter, S. Girard, N. Richard, M. Cannas, R. Boscaino, and Y. Ouerdane, “Irradiation induced defects in fluorine doped silica,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2918–2922 (2008).
[Crossref]

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2936–2940 (2008).
[Crossref]

Nucl. Instrum. Methods. Phys. Res. Sec. B (1)

C. Mühlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods. Phys. Res. Sec. B 166–167(1), 698–703 (2000).
[Crossref]

Phys. Procedia (1)

J. Fournier, J. Néauport, P. Grua, V. Jubera, E. Fargin, D. Talaga, and S. Jouannigot, “Luminescence study of defects in silica glasses under near-UV excitation,” Phys. Procedia 8(1), 39–43 (2010).
[Crossref]

Proc. SPIE (1)

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Y. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
[Crossref]

Thin Solid Films (1)

R. Böhme, D. Spemann, and K. Zimmer, “Surface characterization of backside-etched transparent dielectrics,” Thin Solid Films 453–454(1), 127–132 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Scanning electron microscopy of the surface morphology of fused silica after fused silica irradiated by a shot laser with the fluence larger than 10 J/cm2.
Fig. 2
Fig. 2 Optical image of a-SiO2 irradiated by a single high energy laser (10 J/cm2) at the front surface.
Fig. 3
Fig. 3 Typical Stokes Raman spectra of the selective regions is also shown for comparison. (a) virgin region; (b) damage region.
Fig. 4
Fig. 4 Scanning electron microscopy of low energy multiple laser irradiation.
Fig. 5
Fig. 5 Image of a-SiO2 irradiated with 50 pulses 6.8 ns 355 nm laser beam to a fluence above the LIDT at the front surface corresponding to Raman measurements. (a) virgin region; (b) fracture region; (c) melt region.
Fig. 6
Fig. 6 Typical Stokes Raman spectra of a-SiO2 irradiated with 50 pulses 6.8 ns 355 nm laser beam to a fluence above the LIDT at the front surface on the right. A Raman spectrum of the selective regions is also shown for comparison. (a) virgin region; (b) fracture region; (c) melt region.
Fig. 7
Fig. 7 Typical Stokes Raman spectra of a-SiO2 irradiated with 50 pulses 6.8 ns 355 nm laser beam to a fluence above the LIDT at the front surface. A Raman spectrum of the selective regions is also shown for comparison. (a) Optical images of the ablated spot different regions; (b) Raman spectra in fracture and melt region.

Metrics