Abstract

Asymmetric transmission (AT), the difference of transmission conversions, is closely related to the design of isolators, circulators, and polarization rotators. Tuning AT signal features, such as intensity and half-peak width at resonance peaks, is needed for polarization and direction sensitive beam splitters. In this paper, semicircular nanoholes are introduced into rectangular nanohole (RN) arrays and the AT effects of rectangular nanohole/semicircular nanohole (RNSN) arrays are investigated using finite-element methods. The semicircular nanohole induces magnetic-dipole oscillation around the rectangular nanohole, and this oscillation splits the AT peak of RN arrays. This feature is affected by the structural parameters of the RNSN. These results offer a novel method to split plasmonic resonant peaks for polarization and direction sensitive beam splitters.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable asymmetric transmission through tilted rectangular nanohole arrays in a square lattice

Tudahong Aba, Yu Qu, Tiankun Wang, Yuyan Chen, Hui Li, Yongkai Wang, Yu Bai, and Zhongyue Zhang
Opt. Express 26(2) 1199-1205 (2018)

Asymmetric transmission of obliquely intersecting nanoslit arrays in a gold film

Yuyan Chen, Yongkai Wang, Tiankun Wang, Yongyuan Zhang, Li Wang, and Zhongyue Zhang
Appl. Opt. 56(20) 5781-5785 (2017)

Chiral response of a metasurface composed of nanoholes and tilted nanorods

Tudahong Aba, Yu Qu, Abuduwaili Abudukelimu, Hamad Ullah, and Zhongyue Zhang
Appl. Opt. 58(22) 5936-5941 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
    [Crossref] [PubMed]
  2. B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13(11), 5277–5283 (2013).
    [Crossref] [PubMed]
  3. M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: The role of plasmon hybridization,” ACS Photonics 2(9), 1253–1259 (2015).
    [Crossref]
  4. V. E. Ferry, M. Hentschel, and A. P. Alivisatos, “Circular dichroism in off-resonantly coupled plasmonic nanosystems,” Nano Lett. 15(12), 8336–8341 (2015).
    [Crossref] [PubMed]
  5. X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
    [Crossref] [PubMed]
  6. T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, “Soft 3D acoustic metamaterial with negative index,” Nat. Mater. 14(4), 384–388 (2015).
    [Crossref] [PubMed]
  7. N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
    [Crossref] [PubMed]
  8. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  9. T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).
  10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  11. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref] [PubMed]
  12. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  13. G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
    [Crossref]
  14. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
    [Crossref]
  15. C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
    [Crossref]
  16. D. Y. Liu, L. F. Yao, X. M. Zhai, M. H. Li, and J. F. Dong, “Diode-like asymmetric transmission of circularly polarized waves,” Appl. Phys., A Mater. Sci. Process. 116(1), 9–13 (2014).
    [Crossref]
  17. V. Kuzmiak and A. A. Maradudin, “Asymmetric transmission of surface plasmon polaritons on planar gratings,” Phys. Rev. A 92(5), 053813 (2015).
    [Crossref]
  18. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A 11(7), 074009 (2009).
    [Crossref]
  19. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
    [Crossref] [PubMed]
  20. J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
    [Crossref]
  21. Y. Bai, Y. Chen, Y. Zhang, Y. Wang, T. Aba, H. Li, L. Wang, and Z. Zhang, “Asymmetric transmission of a planar metamaterial induced by symmetry breaking,” J. Phys. Condens. Matter 30(11), 114001 (2018).
    [Crossref] [PubMed]
  22. T. Aba, Y. Qu, T. Wang, Y. Chen, H. Li, Y. Wang, Y. Bai, and Z. Zhang, “Tunable asymmetric transmission through tilted rectangular nanohole arrays in a square lattice,” Opt. Express 26(2), 1199–1205 (2018).
    [Crossref] [PubMed]
  23. J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “‘Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
    [Crossref]
  24. A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B 86(7), 075138 (2012).
    [Crossref]
  25. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
    [Crossref]
  26. R. Singh, E. Plum, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 13(15), 153104 (2009).
    [Crossref]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  28. Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mater. 1(7), 482–488 (2013).
    [Crossref]
  29. O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
    [Crossref] [PubMed]
  30. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
    [Crossref] [PubMed]
  31. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref] [PubMed]

2018 (3)

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Y. Bai, Y. Chen, Y. Zhang, Y. Wang, T. Aba, H. Li, L. Wang, and Z. Zhang, “Asymmetric transmission of a planar metamaterial induced by symmetry breaking,” J. Phys. Condens. Matter 30(11), 114001 (2018).
[Crossref] [PubMed]

T. Aba, Y. Qu, T. Wang, Y. Chen, H. Li, Y. Wang, Y. Bai, and Z. Zhang, “Tunable asymmetric transmission through tilted rectangular nanohole arrays in a square lattice,” Opt. Express 26(2), 1199–1205 (2018).
[Crossref] [PubMed]

2016 (1)

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “‘Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

2015 (6)

T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, “Soft 3D acoustic metamaterial with negative index,” Nat. Mater. 14(4), 384–388 (2015).
[Crossref] [PubMed]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref] [PubMed]

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: The role of plasmon hybridization,” ACS Photonics 2(9), 1253–1259 (2015).
[Crossref]

V. E. Ferry, M. Hentschel, and A. P. Alivisatos, “Circular dichroism in off-resonantly coupled plasmonic nanosystems,” Nano Lett. 15(12), 8336–8341 (2015).
[Crossref] [PubMed]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

V. Kuzmiak and A. A. Maradudin, “Asymmetric transmission of surface plasmon polaritons on planar gratings,” Phys. Rev. A 92(5), 053813 (2015).
[Crossref]

2014 (1)

D. Y. Liu, L. F. Yao, X. M. Zhai, M. H. Li, and J. F. Dong, “Diode-like asymmetric transmission of circularly polarized waves,” Appl. Phys., A Mater. Sci. Process. 116(1), 9–13 (2014).
[Crossref]

2013 (4)

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
[Crossref] [PubMed]

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13(11), 5277–5283 (2013).
[Crossref] [PubMed]

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mater. 1(7), 482–488 (2013).
[Crossref]

2012 (3)

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B 86(7), 075138 (2012).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

2011 (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

2010 (3)

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

2009 (4)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A 11(7), 074009 (2009).
[Crossref]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 13(15), 153104 (2009).
[Crossref]

2007 (2)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

2006 (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aba, T.

Y. Bai, Y. Chen, Y. Zhang, Y. Wang, T. Aba, H. Li, L. Wang, and Z. Zhang, “Asymmetric transmission of a planar metamaterial induced by symmetry breaking,” J. Phys. Condens. Matter 30(11), 114001 (2018).
[Crossref] [PubMed]

T. Aba, Y. Qu, T. Wang, Y. Chen, H. Li, Y. Wang, Y. Bai, and Z. Zhang, “Tunable asymmetric transmission through tilted rectangular nanohole arrays in a square lattice,” Opt. Express 26(2), 1199–1205 (2018).
[Crossref] [PubMed]

Alivisatos, A. P.

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: The role of plasmon hybridization,” ACS Photonics 2(9), 1253–1259 (2015).
[Crossref]

V. E. Ferry, M. Hentschel, and A. P. Alivisatos, “Circular dichroism in off-resonantly coupled plasmonic nanosystems,” Nano Lett. 15(12), 8336–8341 (2015).
[Crossref] [PubMed]

Aristégui, C.

T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, “Soft 3D acoustic metamaterial with negative index,” Nat. Mater. 14(4), 384–388 (2015).
[Crossref] [PubMed]

Azad, A. K.

R. Singh, E. Plum, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 13(15), 153104 (2009).
[Crossref]

Bai, Y.

Y. Bai, Y. Chen, Y. Zhang, Y. Wang, T. Aba, H. Li, L. Wang, and Z. Zhang, “Asymmetric transmission of a planar metamaterial induced by symmetry breaking,” J. Phys. Condens. Matter 30(11), 114001 (2018).
[Crossref] [PubMed]

T. Aba, Y. Qu, T. Wang, Y. Chen, H. Li, Y. Wang, Y. Bai, and Z. Zhang, “Tunable asymmetric transmission through tilted rectangular nanohole arrays in a square lattice,” Opt. Express 26(2), 1199–1205 (2018).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Beigang, R.

Bitzer, A.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

Brunet, T.

T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, “Soft 3D acoustic metamaterial with negative index,” Nat. Mater. 14(4), 384–388 (2015).
[Crossref] [PubMed]

Burger, S.

Chen, Y.

T. Aba, Y. Qu, T. Wang, Y. Chen, H. Li, Y. Wang, Y. Bai, and Z. Zhang, “Tunable asymmetric transmission through tilted rectangular nanohole arrays in a square lattice,” Opt. Express 26(2), 1199–1205 (2018).
[Crossref] [PubMed]

Y. Bai, Y. Chen, Y. Zhang, Y. Wang, T. Aba, H. Li, L. Wang, and Z. Zhang, “Asymmetric transmission of a planar metamaterial induced by symmetry breaking,” J. Phys. Condens. Matter 30(11), 114001 (2018).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Cheville, R. A.

R. Singh, E. Plum, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 13(15), 153104 (2009).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dong, J. F.

D. Y. Liu, L. F. Yao, X. M. Zhai, M. H. Li, and J. F. Dong, “Diode-like asymmetric transmission of circularly polarized waves,” Appl. Phys., A Mater. Sci. Process. 116(1), 9–13 (2014).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Economou, E. N.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Farrell, G.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Farsari, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A 11(7), 074009 (2009).
[Crossref]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Feng, Y.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Ferry, V. E.

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: The role of plasmon hybridization,” ACS Photonics 2(9), 1253–1259 (2015).
[Crossref]

V. E. Ferry, M. Hentschel, and A. P. Alivisatos, “Circular dichroism in off-resonantly coupled plasmonic nanosystems,” Nano Lett. 15(12), 8336–8341 (2015).
[Crossref] [PubMed]

Fink, M.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref] [PubMed]

Frolich, A.

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Galynsky, V. M.

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B 86(7), 075138 (2012).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[Crossref] [PubMed]

Giessen, H.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
[Crossref] [PubMed]

Gokkavas, M.

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mater. 1(7), 482–488 (2013).
[Crossref]

Govorov, A. O.

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13(11), 5277–5283 (2013).
[Crossref] [PubMed]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: The role of plasmon hybridization,” ACS Photonics 2(9), 1253–1259 (2015).
[Crossref]

V. E. Ferry, M. Hentschel, and A. P. Alivisatos, “Circular dichroism in off-resonantly coupled plasmonic nanosystems,” Nano Lett. 15(12), 8336–8341 (2015).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
[Crossref] [PubMed]

Huang, C.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Jiang, T.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kafesaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Kaina, N.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref] [PubMed]

Kang, Z.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Kaschke, J.

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Kenanakis, G.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Khardikov, V. V.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

Kim, K.

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13(11), 5277–5283 (2013).
[Crossref] [PubMed]

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Kotov, N. A.

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13(11), 5277–5283 (2013).
[Crossref] [PubMed]

Kuo, P.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

Kuzmiak, V.

V. Kuzmiak and A. A. Maradudin, “Asymmetric transmission of surface plasmon polaritons on planar gratings,” Phys. Rev. A 92(5), 053813 (2015).
[Crossref]

Latzel, M.

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 13(15), 153104 (2009).
[Crossref]

Lemoult, F.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref] [PubMed]

Leng, J.

T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, “Soft 3D acoustic metamaterial with negative index,” Nat. Mater. 14(4), 384–388 (2015).
[Crossref] [PubMed]

Lerosey, G.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref] [PubMed]

Li, F.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Li, H.

Y. Bai, Y. Chen, Y. Zhang, Y. Wang, T. Aba, H. Li, L. Wang, and Z. Zhang, “Asymmetric transmission of a planar metamaterial induced by symmetry breaking,” J. Phys. Condens. Matter 30(11), 114001 (2018).
[Crossref] [PubMed]

T. Aba, Y. Qu, T. Wang, Y. Chen, H. Li, Y. Wang, Y. Bai, and Z. Zhang, “Tunable asymmetric transmission through tilted rectangular nanohole arrays in a square lattice,” Opt. Express 26(2), 1199–1205 (2018).
[Crossref] [PubMed]

Li, J.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Li, M. H.

D. Y. Liu, L. F. Yao, X. M. Zhai, M. H. Li, and J. F. Dong, “Diode-like asymmetric transmission of circularly polarized waves,” Appl. Phys., A Mater. Sci. Process. 116(1), 9–13 (2014).
[Crossref]

Li, Z.

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mater. 1(7), 482–488 (2013).
[Crossref]

Linden, S.

Liu, D. Y.

D. Y. Liu, L. F. Yao, X. M. Zhai, M. H. Li, and J. F. Dong, “Diode-like asymmetric transmission of circularly polarized waves,” Appl. Phys., A Mater. Sci. Process. 116(1), 9–13 (2014).
[Crossref]

Liu, H.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Lu, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Ma, T.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Maradudin, A. A.

V. Kuzmiak and A. A. Maradudin, “Asymmetric transmission of surface plasmon polaritons on planar gratings,” Phys. Rev. A 92(5), 053813 (2015).
[Crossref]

Mascaro, B.

T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, “Soft 3D acoustic metamaterial with negative index,” Nat. Mater. 14(4), 384–388 (2015).
[Crossref] [PubMed]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Merlin, A.

T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, “Soft 3D acoustic metamaterial with negative index,” Nat. Mater. 14(4), 384–388 (2015).
[Crossref] [PubMed]

Metzger, B.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
[Crossref] [PubMed]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Mondain-Monval, O.

T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, “Soft 3D acoustic metamaterial with negative index,” Nat. Mater. 14(4), 384–388 (2015).
[Crossref] [PubMed]

Novitsky, A. V.

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B 86(7), 075138 (2012).
[Crossref]

Ozbay, E.

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mater. 1(7), 482–488 (2013).
[Crossref]

Papasimakis, N.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Park, J. I.

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13(11), 5277–5283 (2013).
[Crossref] [PubMed]

Park, Y. S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Paul, O.

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Plum, E.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 13(15), 153104 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A 11(7), 074009 (2009).
[Crossref]

Poncelet, O.

T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, “Soft 3D acoustic metamaterial with negative index,” Nat. Mater. 14(4), 384–388 (2015).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Qin, S.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “‘Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

Qu, Y.

Rahm, M.

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 13(15), 153104 (2009).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Sang, X.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Schäferling, M.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
[Crossref] [PubMed]

Schwanecke, A. S.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

Selimis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Singh, R.

R. Singh, E. Plum, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 13(15), 153104 (2009).
[Crossref]

Soukoulis, C. M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Sun, L.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Thiel, M.

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Tsai, D. P.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Vamvakaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Walther, M.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

Wang, F.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Wang, K.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Wang, L.

Y. Bai, Y. Chen, Y. Zhang, Y. Wang, T. Aba, H. Li, L. Wang, and Z. Zhang, “Asymmetric transmission of a planar metamaterial induced by symmetry breaking,” J. Phys. Condens. Matter 30(11), 114001 (2018).
[Crossref] [PubMed]

Wang, T.

Wang, Y.

T. Aba, Y. Qu, T. Wang, Y. Chen, H. Li, Y. Wang, Y. Bai, and Z. Zhang, “Tunable asymmetric transmission through tilted rectangular nanohole arrays in a square lattice,” Opt. Express 26(2), 1199–1205 (2018).
[Crossref] [PubMed]

Y. Bai, Y. Chen, Y. Zhang, Y. Wang, T. Aba, H. Li, L. Wang, and Z. Zhang, “Asymmetric transmission of a planar metamaterial induced by symmetry breaking,” J. Phys. Condens. Matter 30(11), 114001 (2018).
[Crossref] [PubMed]

Wang, Z.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Wegener, M.

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[Crossref] [PubMed]

Wu, B.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Wu, Q.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Xomalis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Yan, B.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Yao, L. F.

D. Y. Liu, L. F. Yao, X. M. Zhai, M. H. Li, and J. F. Dong, “Diode-like asymmetric transmission of circularly polarized waves,” Appl. Phys., A Mater. Sci. Process. 116(1), 9–13 (2014).
[Crossref]

Yeom, B.

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13(11), 5277–5283 (2013).
[Crossref] [PubMed]

Yin, X.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

Yu, C.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Yuan, J.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

Yuan, X.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “‘Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

Zhai, X. M.

D. Y. Liu, L. F. Yao, X. M. Zhai, M. H. Li, and J. F. Dong, “Diode-like asymmetric transmission of circularly polarized waves,” Appl. Phys., A Mater. Sci. Process. 116(1), 9–13 (2014).
[Crossref]

Zhang, H.

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13(11), 5277–5283 (2013).
[Crossref] [PubMed]

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13(11), 5277–5283 (2013).
[Crossref] [PubMed]

Zhang, J.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “‘Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

Zhang, S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, W.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 13(15), 153104 (2009).
[Crossref]

Zhang, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, Y.

Y. Bai, Y. Chen, Y. Zhang, Y. Wang, T. Aba, H. Li, L. Wang, and Z. Zhang, “Asymmetric transmission of a planar metamaterial induced by symmetry breaking,” J. Phys. Condens. Matter 30(11), 114001 (2018).
[Crossref] [PubMed]

Zhang, Z.

Y. Bai, Y. Chen, Y. Zhang, Y. Wang, T. Aba, H. Li, L. Wang, and Z. Zhang, “Asymmetric transmission of a planar metamaterial induced by symmetry breaking,” J. Phys. Condens. Matter 30(11), 114001 (2018).
[Crossref] [PubMed]

T. Aba, Y. Qu, T. Wang, Y. Chen, H. Li, Y. Wang, Y. Bai, and Z. Zhang, “Tunable asymmetric transmission through tilted rectangular nanohole arrays in a square lattice,” Opt. Express 26(2), 1199–1205 (2018).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “‘Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Zheludev, N. I.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 13(15), 153104 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A 11(7), 074009 (2009).
[Crossref]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Zhu, Z.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “‘Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

Zhukovsky, S. V.

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B 86(7), 075138 (2012).
[Crossref]

Zimny, K.

T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, “Soft 3D acoustic metamaterial with negative index,” Nat. Mater. 14(4), 384–388 (2015).
[Crossref] [PubMed]

ACS Photonics (2)

M. Hentschel, V. E. Ferry, and A. P. Alivisatos, “Optical rotation reversal in the optical response of chiral plasmonic nanosystems: The role of plasmon hybridization,” ACS Photonics 2(9), 1253–1259 (2015).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Adv. Opt. Mater. (1)

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mater. 1(7), 482–488 (2013).
[Crossref]

Appl. Phys. Lett. (1)

J. K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. Y. Liu, L. F. Yao, X. M. Zhai, M. H. Li, and J. F. Dong, “Diode-like asymmetric transmission of circularly polarized waves,” Appl. Phys., A Mater. Sci. Process. 116(1), 9–13 (2014).
[Crossref]

J. Opt. (2)

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “‘Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

J. Opt. A (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A 11(7), 074009 (2009).
[Crossref]

J. Phys. Condens. Matter (1)

Y. Bai, Y. Chen, Y. Zhang, Y. Wang, T. Aba, H. Li, L. Wang, and Z. Zhang, “Asymmetric transmission of a planar metamaterial induced by symmetry breaking,” J. Phys. Condens. Matter 30(11), 114001 (2018).
[Crossref] [PubMed]

Nano Lett. (5)

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

V. E. Ferry, M. Hentschel, and A. P. Alivisatos, “Circular dichroism in off-resonantly coupled plasmonic nanosystems,” Nano Lett. 15(12), 8336–8341 (2015).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
[Crossref] [PubMed]

B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O. Govorov, and N. A. Kotov, “Chiral plasmonic nanostructures on achiral nanopillars,” Nano Lett. 13(11), 5277–5283 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, “Soft 3D acoustic metamaterial with negative index,” Nat. Mater. 14(4), 384–388 (2015).
[Crossref] [PubMed]

Nature (2)

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. A (1)

V. Kuzmiak and A. A. Maradudin, “Asymmetric transmission of surface plasmon polaritons on planar gratings,” Phys. Rev. A 92(5), 053813 (2015).
[Crossref]

Phys. Rev. B (4)

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

R. Singh, E. Plum, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 13(15), 153104 (2009).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B 86(7), 075138 (2012).
[Crossref]

Phys. Rev. Lett. (6)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability,” Phys. Rev. Lett. 10(2), 4900212 (2018).

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic model of nanostructure arrays and (b) its unit cell with the associated parameters definition.
Fig. 2
Fig. 2 Transmission and asymmetric transmission spectra of (a) RN arrays and (b) RNSN arrays under circular polarized excitation.
Fig. 3
Fig. 3 The surface charge distributions of the RN (a)-(b) and RNSN (c)-(h) at resonance modes.
Fig. 4
Fig. 4 AT spectra of RNSN arrays varied diameter d of the semicircular nanohole.
Fig. 5
Fig. 5 AT spectra of RNSN arrays varied the gap g between the semicircular and rectangular nanohole.
Fig. 6
Fig. 6 Color map of AT values of RNSN arrays varied position of the semicircular.
Fig. 7
Fig. 7 Transmission and AT spectra about nanostructures added the circular and rectangular nanohole, respectively.

Metrics