Abstract

We report the results of a thorough investigation into the initial stages of the photo-thermo-induced (PTI) crystallization process in photo-thermo-refractive glass. The spectral location of the absorption peak characteristic of the surface plasmon resonance in the silver nanoparticles is known to be highly sensitive to the dielectric parameters of the nanoparticle surrounding. We have studied the evolution of the peak location in the course of the PTI crystallization process and shown that the red shift of the peak in the glass is caused by the occurrence, around the silver nanoparticles, of highly-refractive shell of a mixed nature. The blue shift of the peak that can be observed under the reduced speed of the process was shown to be inflicted by the precipitation of sodium fluoride crystals.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bromide photo-thermo-refractive glass for volume Bragg gratings and waveguide structure recording

Victor Dubrovin, Nikolay Nikonorov, and Alexander Ignatiev
Opt. Mater. Express 7(7) 2280-2292 (2017)

Chloride photo-thermo-refractive glasses

Victor D. Dubrovin, Alexander I. Ignatiev, and Nikolay V. Nikonorov
Opt. Mater. Express 6(5) 1701-1713 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Lumeau and E. D. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,“ Int. Mater. Rev. 62(6), 348–366 (2016)
    [Crossref]
  2. G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,“ Proc. SPIE 5711, 166–176 (2005)
    [Crossref]
  3. S. Ivanov, A. Pogoda, N. Nikonorov, A. Fedin, and A. Sergeev, “Frequency Stabilization of an Adaptive Self-phase-conjugated Passively Q-switched Laser using Volume Bragg Grating on the Photo-thermo-refractive Glass,“ Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology 1, 323–327 (2017)
  4. D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, “Ultimate efficiency of spectral beam combining by volume Bragg gratings,“ Appl. Opt. 52(30), 7233–7242 (2013)
    [Crossref] [PubMed]
  5. L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,“ J. Holography Speckle 5, 1–8 (2008)
  6. J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,“ Opt. Mater. 32(1), 139–146 (2009)
    [Crossref]
  7. G. P. Souza, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Micro and nanostructures in partially crystallised photothermorefractive glass,“ Phys. Chem. Glasses 50(5), 311–320 (2009)
  8. D. Manikandan, S. Mohan, and K. G. M. Nair, “Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory,“ Physica B 337(1–4), 64–68 (2003)
    [Crossref]
  9. N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, Silver Nanoparticles in Oxide Glasses: Technologies and Properties (InTech, 2010)
  10. M. Stoica, M. Kracker, and C. Rüsel, “Photoinduced formation of silver nanoparticles in a new Na2O/K2O/CaO/CaF2/Al2O3/ZnO/SiO2 photo thermal refractive glass: evidence of Ag - AgBr core shell structures,“ Opt. Mater. Express 7, 4427–4434 (2017)
    [Crossref]
  11. J. Lumeau, L. Glebova, and L. B. Glebov, “Absorption and scattering in photo-thermo-refractive glass induced by UV-exposure and thermal development,“ Opt. Mater. 36, 621–627 (2014)
    [Crossref]
  12. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,“ Annalen der Physik 330 (3), 377–445 (1908)
    [Crossref]
  13. W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,“ Appl. Opt. 42, 1710 (2003)
    [Crossref] [PubMed]
  14. O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,“ Computer Physics Communications 180, 2348–2354 (2009)
    [Crossref]
  15. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,“ Phys. Rev. B 6, 4370 (1972)
    [Crossref]
  16. H. Ehrenreich and H. R. Philipp, “Optical Properties of Ag and Cu,“ Phys. Rev. 128, 1622–1629 (1962)
    [Crossref]
  17. J. Euler, “Ultraoptische Eigenschaften von Metallen und mittlere freie Weglänge der Leitungselektronen,“ Zeitschrift für Physik 137, 318–332 (1954)
    [Crossref]
  18. U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,“ Zeitschrift für Physik 224, 307–323 (1969)
    [Crossref]
  19. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,“ Surface Science 156, 678–700 (1985)
    [Crossref]
  20. H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,“ Phys. Rev. B 91, 235137 (2015)
    [Crossref]
  21. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,“ Surface Science 156, 678–700 (1985)
    [Crossref]
  22. U. Kreibig, “Small silver particles in photosensitive glass: Their nucleation and growth,“ Appl. Phys. 10, 255–264 (1976)
    [Crossref]
  23. R. H. Doremus, “Optical Properties of Small Silver Particles,“ J. Chem. Phys. 42, 414–417 (1965)
    [Crossref]
  24. W. T. Doyle, “Absorption of Light by Colloids in Alkali Halide Crystals,“ Phys. Rev. 111, 1067–1072 (1958)
    [Crossref]
  25. G. P. Souza, V. M. Fokin, C. A. Baptista, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Effect of Bromine on NaF Crystallization in Photo-Thermo-Refractive Glass,“ Journal of the American Ceramic Society 94, 2906–2911 (2011)
    [Crossref]
  26. Ch. Weissmantel and C. Hamann, Grundlagen der Festkörperphysik (Springer, 1979)
  27. P. Varotsos, “Determination of the Dielectric Constant of Alkali Halide Mixed Crystals,“ physica status solidi (b) 100, K133–K138 (1980)
    [Crossref]
  28. H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,“ ‎J. Phys. Chem. Ref. Data 5, 329–528 (1976)
    [Crossref]
  29. H. Schroter, “Uber die Brechungsindizes einiger Schwermetallhalogenide im Sichtbaren und die Berechnung von Interpolationsformeln fur den Dispersionsverlauf,“ Zeitschrift fur Physik 67, 24–36 (1931)
    [Crossref]
  30. D.A.G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielek-trizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,“ Annalen der Physik 416, 636–664 (1935)
    [Crossref]

2017 (1)

2016 (1)

J. Lumeau and E. D. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,“ Int. Mater. Rev. 62(6), 348–366 (2016)
[Crossref]

2015 (1)

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,“ Phys. Rev. B 91, 235137 (2015)
[Crossref]

2014 (1)

J. Lumeau, L. Glebova, and L. B. Glebov, “Absorption and scattering in photo-thermo-refractive glass induced by UV-exposure and thermal development,“ Opt. Mater. 36, 621–627 (2014)
[Crossref]

2013 (1)

2011 (1)

G. P. Souza, V. M. Fokin, C. A. Baptista, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Effect of Bromine on NaF Crystallization in Photo-Thermo-Refractive Glass,“ Journal of the American Ceramic Society 94, 2906–2911 (2011)
[Crossref]

2009 (3)

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,“ Opt. Mater. 32(1), 139–146 (2009)
[Crossref]

G. P. Souza, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Micro and nanostructures in partially crystallised photothermorefractive glass,“ Phys. Chem. Glasses 50(5), 311–320 (2009)

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,“ Computer Physics Communications 180, 2348–2354 (2009)
[Crossref]

2008 (1)

L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,“ J. Holography Speckle 5, 1–8 (2008)

2005 (1)

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,“ Proc. SPIE 5711, 166–176 (2005)
[Crossref]

2003 (2)

D. Manikandan, S. Mohan, and K. G. M. Nair, “Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory,“ Physica B 337(1–4), 64–68 (2003)
[Crossref]

W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,“ Appl. Opt. 42, 1710 (2003)
[Crossref] [PubMed]

1985 (2)

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,“ Surface Science 156, 678–700 (1985)
[Crossref]

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,“ Surface Science 156, 678–700 (1985)
[Crossref]

1980 (1)

P. Varotsos, “Determination of the Dielectric Constant of Alkali Halide Mixed Crystals,“ physica status solidi (b) 100, K133–K138 (1980)
[Crossref]

1976 (2)

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,“ ‎J. Phys. Chem. Ref. Data 5, 329–528 (1976)
[Crossref]

U. Kreibig, “Small silver particles in photosensitive glass: Their nucleation and growth,“ Appl. Phys. 10, 255–264 (1976)
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,“ Phys. Rev. B 6, 4370 (1972)
[Crossref]

1969 (1)

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,“ Zeitschrift für Physik 224, 307–323 (1969)
[Crossref]

1965 (1)

R. H. Doremus, “Optical Properties of Small Silver Particles,“ J. Chem. Phys. 42, 414–417 (1965)
[Crossref]

1962 (1)

H. Ehrenreich and H. R. Philipp, “Optical Properties of Ag and Cu,“ Phys. Rev. 128, 1622–1629 (1962)
[Crossref]

1958 (1)

W. T. Doyle, “Absorption of Light by Colloids in Alkali Halide Crystals,“ Phys. Rev. 111, 1067–1072 (1958)
[Crossref]

1954 (1)

J. Euler, “Ultraoptische Eigenschaften von Metallen und mittlere freie Weglänge der Leitungselektronen,“ Zeitschrift für Physik 137, 318–332 (1954)
[Crossref]

1935 (1)

D.A.G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielek-trizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,“ Annalen der Physik 416, 636–664 (1935)
[Crossref]

1931 (1)

H. Schroter, “Uber die Brechungsindizes einiger Schwermetallhalogenide im Sichtbaren und die Berechnung von Interpolationsformeln fur den Dispersionsverlauf,“ Zeitschrift fur Physik 67, 24–36 (1931)
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,“ Annalen der Physik 330 (3), 377–445 (1908)
[Crossref]

Andrusyak, O.

Baptista, C. A.

G. P. Souza, V. M. Fokin, C. A. Baptista, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Effect of Bromine on NaF Crystallization in Photo-Thermo-Refractive Glass,“ Journal of the American Ceramic Society 94, 2906–2911 (2011)
[Crossref]

Boreman, G. D.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,“ Phys. Rev. B 91, 235137 (2015)
[Crossref]

Bruggeman, D.A.G.

D.A.G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielek-trizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,“ Annalen der Physik 416, 636–664 (1935)
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,“ Phys. Rev. B 6, 4370 (1972)
[Crossref]

D’Archangel, J.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,“ Phys. Rev. B 91, 235137 (2015)
[Crossref]

Doremus, R. H.

R. H. Doremus, “Optical Properties of Small Silver Particles,“ J. Chem. Phys. 42, 414–417 (1965)
[Crossref]

Doyle, W. T.

W. T. Doyle, “Absorption of Light by Colloids in Alkali Halide Crystals,“ Phys. Rev. 111, 1067–1072 (1958)
[Crossref]

Drachenberg, D. R.

Ehrenreich, H.

H. Ehrenreich and H. R. Philipp, “Optical Properties of Ag and Cu,“ Phys. Rev. 128, 1622–1629 (1962)
[Crossref]

Euler, J.

J. Euler, “Ultraoptische Eigenschaften von Metallen und mittlere freie Weglänge der Leitungselektronen,“ Zeitschrift für Physik 137, 318–332 (1954)
[Crossref]

Fedin, A.

S. Ivanov, A. Pogoda, N. Nikonorov, A. Fedin, and A. Sergeev, “Frequency Stabilization of an Adaptive Self-phase-conjugated Passively Q-switched Laser using Volume Bragg Grating on the Photo-thermo-refractive Glass,“ Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology 1, 323–327 (2017)

Fokin, V. M.

G. P. Souza, V. M. Fokin, C. A. Baptista, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Effect of Bromine on NaF Crystallization in Photo-Thermo-Refractive Glass,“ Journal of the American Ceramic Society 94, 2906–2911 (2011)
[Crossref]

G. P. Souza, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Micro and nanostructures in partially crystallised photothermorefractive glass,“ Phys. Chem. Glasses 50(5), 311–320 (2009)

Fragstein, C. V.

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,“ Zeitschrift für Physik 224, 307–323 (1969)
[Crossref]

Genzel, L.

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,“ Surface Science 156, 678–700 (1985)
[Crossref]

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,“ Surface Science 156, 678–700 (1985)
[Crossref]

Glebov, L. B.

J. Lumeau, L. Glebova, and L. B. Glebov, “Absorption and scattering in photo-thermo-refractive glass induced by UV-exposure and thermal development,“ Opt. Mater. 36, 621–627 (2014)
[Crossref]

D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, “Ultimate efficiency of spectral beam combining by volume Bragg gratings,“ Appl. Opt. 52(30), 7233–7242 (2013)
[Crossref] [PubMed]

G. P. Souza, V. M. Fokin, C. A. Baptista, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Effect of Bromine on NaF Crystallization in Photo-Thermo-Refractive Glass,“ Journal of the American Ceramic Society 94, 2906–2911 (2011)
[Crossref]

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,“ Opt. Mater. 32(1), 139–146 (2009)
[Crossref]

G. P. Souza, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Micro and nanostructures in partially crystallised photothermorefractive glass,“ Phys. Chem. Glasses 50(5), 311–320 (2009)

L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,“ J. Holography Speckle 5, 1–8 (2008)

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,“ Proc. SPIE 5711, 166–176 (2005)
[Crossref]

Glebova, L.

J. Lumeau, L. Glebova, and L. B. Glebov, “Absorption and scattering in photo-thermo-refractive glass induced by UV-exposure and thermal development,“ Opt. Mater. 36, 621–627 (2014)
[Crossref]

G. P. Souza, V. M. Fokin, C. A. Baptista, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Effect of Bromine on NaF Crystallization in Photo-Thermo-Refractive Glass,“ Journal of the American Ceramic Society 94, 2906–2911 (2011)
[Crossref]

G. P. Souza, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Micro and nanostructures in partially crystallised photothermorefractive glass,“ Phys. Chem. Glasses 50(5), 311–320 (2009)

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,“ Opt. Mater. 32(1), 139–146 (2009)
[Crossref]

Golubkov, V.

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,“ Opt. Mater. 32(1), 139–146 (2009)
[Crossref]

Hamann, C.

Ch. Weissmantel and C. Hamann, Grundlagen der Festkörperphysik (Springer, 1979)

Ivanov, S.

S. Ivanov, A. Pogoda, N. Nikonorov, A. Fedin, and A. Sergeev, “Frequency Stabilization of an Adaptive Self-phase-conjugated Passively Q-switched Laser using Volume Bragg Grating on the Photo-thermo-refractive Glass,“ Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology 1, 323–327 (2017)

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,“ Phys. Rev. B 6, 4370 (1972)
[Crossref]

Kracker, M.

Kreibig, U.

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,“ Surface Science 156, 678–700 (1985)
[Crossref]

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,“ Surface Science 156, 678–700 (1985)
[Crossref]

U. Kreibig, “Small silver particles in photosensitive glass: Their nucleation and growth,“ Appl. Phys. 10, 255–264 (1976)
[Crossref]

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,“ Zeitschrift für Physik 224, 307–323 (1969)
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,“ ‎J. Phys. Chem. Ref. Data 5, 329–528 (1976)
[Crossref]

Lumeau, J.

J. Lumeau and E. D. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,“ Int. Mater. Rev. 62(6), 348–366 (2016)
[Crossref]

J. Lumeau, L. Glebova, and L. B. Glebov, “Absorption and scattering in photo-thermo-refractive glass induced by UV-exposure and thermal development,“ Opt. Mater. 36, 621–627 (2014)
[Crossref]

D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, “Ultimate efficiency of spectral beam combining by volume Bragg gratings,“ Appl. Opt. 52(30), 7233–7242 (2013)
[Crossref] [PubMed]

G. P. Souza, V. M. Fokin, C. A. Baptista, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Effect of Bromine on NaF Crystallization in Photo-Thermo-Refractive Glass,“ Journal of the American Ceramic Society 94, 2906–2911 (2011)
[Crossref]

G. P. Souza, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Micro and nanostructures in partially crystallised photothermorefractive glass,“ Phys. Chem. Glasses 50(5), 311–320 (2009)

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,“ Opt. Mater. 32(1), 139–146 (2009)
[Crossref]

Manikandan, D.

D. Manikandan, S. Mohan, and K. G. M. Nair, “Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory,“ Physica B 337(1–4), 64–68 (2003)
[Crossref]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,“ Annalen der Physik 330 (3), 377–445 (1908)
[Crossref]

Mohan, S.

D. Manikandan, S. Mohan, and K. G. M. Nair, “Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory,“ Physica B 337(1–4), 64–68 (2003)
[Crossref]

Nair, K. G. M.

D. Manikandan, S. Mohan, and K. G. M. Nair, “Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory,“ Physica B 337(1–4), 64–68 (2003)
[Crossref]

Nikonorov, N.

S. Ivanov, A. Pogoda, N. Nikonorov, A. Fedin, and A. Sergeev, “Frequency Stabilization of an Adaptive Self-phase-conjugated Passively Q-switched Laser using Volume Bragg Grating on the Photo-thermo-refractive Glass,“ Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology 1, 323–327 (2017)

Nikonorov, N. V.

N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, Silver Nanoparticles in Oxide Glasses: Technologies and Properties (InTech, 2010)

Pal, U.

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,“ Computer Physics Communications 180, 2348–2354 (2009)
[Crossref]

Peña, O.

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,“ Computer Physics Communications 180, 2348–2354 (2009)
[Crossref]

Philipp, H. R.

H. Ehrenreich and H. R. Philipp, “Optical Properties of Ag and Cu,“ Phys. Rev. 128, 1622–1629 (1962)
[Crossref]

Pogoda, A.

S. Ivanov, A. Pogoda, N. Nikonorov, A. Fedin, and A. Sergeev, “Frequency Stabilization of an Adaptive Self-phase-conjugated Passively Q-switched Laser using Volume Bragg Grating on the Photo-thermo-refractive Glass,“ Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology 1, 323–327 (2017)

Raschke, M. B.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,“ Phys. Rev. B 91, 235137 (2015)
[Crossref]

Rüsel, C.

Schroter, H.

H. Schroter, “Uber die Brechungsindizes einiger Schwermetallhalogenide im Sichtbaren und die Berechnung von Interpolationsformeln fur den Dispersionsverlauf,“ Zeitschrift fur Physik 67, 24–36 (1931)
[Crossref]

Sergeev, A.

S. Ivanov, A. Pogoda, N. Nikonorov, A. Fedin, and A. Sergeev, “Frequency Stabilization of an Adaptive Self-phase-conjugated Passively Q-switched Laser using Volume Bragg Grating on the Photo-thermo-refractive Glass,“ Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology 1, 323–327 (2017)

Sevian, A.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,“ Proc. SPIE 5711, 166–176 (2005)
[Crossref]

Sidorov, A. I.

N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, Silver Nanoparticles in Oxide Glasses: Technologies and Properties (InTech, 2010)

Smirnov, V.

Smirnov, V. I.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,“ Proc. SPIE 5711, 166–176 (2005)
[Crossref]

Souza, G. P.

G. P. Souza, V. M. Fokin, C. A. Baptista, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Effect of Bromine on NaF Crystallization in Photo-Thermo-Refractive Glass,“ Journal of the American Ceramic Society 94, 2906–2911 (2011)
[Crossref]

G. P. Souza, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Micro and nanostructures in partially crystallised photothermorefractive glass,“ Phys. Chem. Glasses 50(5), 311–320 (2009)

Stoica, M.

Sundheimer, M. L.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,“ Phys. Rev. B 91, 235137 (2015)
[Crossref]

Tsekhomskii, V. A.

N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, Silver Nanoparticles in Oxide Glasses: Technologies and Properties (InTech, 2010)

Tucker, E.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,“ Phys. Rev. B 91, 235137 (2015)
[Crossref]

Varotsos, P.

P. Varotsos, “Determination of the Dielectric Constant of Alkali Halide Mixed Crystals,“ physica status solidi (b) 100, K133–K138 (1980)
[Crossref]

Venus, G.

Venus, G. B.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,“ Proc. SPIE 5711, 166–176 (2005)
[Crossref]

Weissmantel, Ch.

Ch. Weissmantel and C. Hamann, Grundlagen der Festkörperphysik (Springer, 1979)

Yang, H. U.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,“ Phys. Rev. B 91, 235137 (2015)
[Crossref]

Yang, W.

Zanotto, E. D.

J. Lumeau and E. D. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,“ Int. Mater. Rev. 62(6), 348–366 (2016)
[Crossref]

G. P. Souza, V. M. Fokin, C. A. Baptista, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Effect of Bromine on NaF Crystallization in Photo-Thermo-Refractive Glass,“ Journal of the American Ceramic Society 94, 2906–2911 (2011)
[Crossref]

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,“ Opt. Mater. 32(1), 139–146 (2009)
[Crossref]

G. P. Souza, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Micro and nanostructures in partially crystallised photothermorefractive glass,“ Phys. Chem. Glasses 50(5), 311–320 (2009)

?J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,“ ‎J. Phys. Chem. Ref. Data 5, 329–528 (1976)
[Crossref]

Annalen der Physik (2)

D.A.G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielek-trizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,“ Annalen der Physik 416, 636–664 (1935)
[Crossref]

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,“ Annalen der Physik 330 (3), 377–445 (1908)
[Crossref]

Appl. Opt. (2)

Appl. Phys. (1)

U. Kreibig, “Small silver particles in photosensitive glass: Their nucleation and growth,“ Appl. Phys. 10, 255–264 (1976)
[Crossref]

Computer Physics Communications (1)

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,“ Computer Physics Communications 180, 2348–2354 (2009)
[Crossref]

Int. Mater. Rev. (1)

J. Lumeau and E. D. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,“ Int. Mater. Rev. 62(6), 348–366 (2016)
[Crossref]

J. Chem. Phys. (1)

R. H. Doremus, “Optical Properties of Small Silver Particles,“ J. Chem. Phys. 42, 414–417 (1965)
[Crossref]

J. Holography Speckle (1)

L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,“ J. Holography Speckle 5, 1–8 (2008)

Journal of the American Ceramic Society (1)

G. P. Souza, V. M. Fokin, C. A. Baptista, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Effect of Bromine on NaF Crystallization in Photo-Thermo-Refractive Glass,“ Journal of the American Ceramic Society 94, 2906–2911 (2011)
[Crossref]

Opt. Mater. (2)

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,“ Opt. Mater. 32(1), 139–146 (2009)
[Crossref]

J. Lumeau, L. Glebova, and L. B. Glebov, “Absorption and scattering in photo-thermo-refractive glass induced by UV-exposure and thermal development,“ Opt. Mater. 36, 621–627 (2014)
[Crossref]

Opt. Mater. Express (1)

Phys. Chem. Glasses (1)

G. P. Souza, V. M. Fokin, E. D. Zanotto, J. Lumeau, L. Glebova, and L. B. Glebov, “Micro and nanostructures in partially crystallised photothermorefractive glass,“ Phys. Chem. Glasses 50(5), 311–320 (2009)

Phys. Rev. (2)

H. Ehrenreich and H. R. Philipp, “Optical Properties of Ag and Cu,“ Phys. Rev. 128, 1622–1629 (1962)
[Crossref]

W. T. Doyle, “Absorption of Light by Colloids in Alkali Halide Crystals,“ Phys. Rev. 111, 1067–1072 (1958)
[Crossref]

Phys. Rev. B (2)

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,“ Phys. Rev. B 91, 235137 (2015)
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,“ Phys. Rev. B 6, 4370 (1972)
[Crossref]

Physica B (1)

D. Manikandan, S. Mohan, and K. G. M. Nair, “Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory,“ Physica B 337(1–4), 64–68 (2003)
[Crossref]

physica status solidi (b) (1)

P. Varotsos, “Determination of the Dielectric Constant of Alkali Halide Mixed Crystals,“ physica status solidi (b) 100, K133–K138 (1980)
[Crossref]

Proc. SPIE (1)

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,“ Proc. SPIE 5711, 166–176 (2005)
[Crossref]

Surface Science (2)

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,“ Surface Science 156, 678–700 (1985)
[Crossref]

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,“ Surface Science 156, 678–700 (1985)
[Crossref]

Zeitschrift fur Physik (1)

H. Schroter, “Uber die Brechungsindizes einiger Schwermetallhalogenide im Sichtbaren und die Berechnung von Interpolationsformeln fur den Dispersionsverlauf,“ Zeitschrift fur Physik 67, 24–36 (1931)
[Crossref]

Zeitschrift für Physik (2)

J. Euler, “Ultraoptische Eigenschaften von Metallen und mittlere freie Weglänge der Leitungselektronen,“ Zeitschrift für Physik 137, 318–332 (1954)
[Crossref]

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,“ Zeitschrift für Physik 224, 307–323 (1969)
[Crossref]

Other (3)

S. Ivanov, A. Pogoda, N. Nikonorov, A. Fedin, and A. Sergeev, “Frequency Stabilization of an Adaptive Self-phase-conjugated Passively Q-switched Laser using Volume Bragg Grating on the Photo-thermo-refractive Glass,“ Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology 1, 323–327 (2017)

N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, Silver Nanoparticles in Oxide Glasses: Technologies and Properties (InTech, 2010)

Ch. Weissmantel and C. Hamann, Grundlagen der Festkörperphysik (Springer, 1979)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Evolution of the absorption spectrum of the UV exposed sample of PTR glass for the heat treatment duration up to 90 min and (b) Dynamics of SPR peak location depending on the heat treatment duration for the parent PTR glass and glass with lowest possible concentration of fluorine.
Fig. 2
Fig. 2 Example of the experimental spectrum deconvolution.
Fig. 3
Fig. 3 a) TEM image of a grating recorded on a conventional PTR glass and (b) Model for the 3-layer system NP – highly refractive shell – NaF according to simulations taking into account the system size according to the TEM image photograph. Estimated thickness of the structures is denoted in nm.
Fig. 4
Fig. 4 (a) Calculated refractive index of a layer depending on the AgBr mole fraction for the mixed crystal AgxNa1−xBr and (b) for the mixed layer of AgBr crystal and glass matrix. The solid and dashed lines represent the n values for 416 and 460 nm wavelengths, respectively. The ranges of n values for wavelengths in between 416 and 460 nm are represented by the shaded areas. The corresponding SPR peak locations (in nm) are shown by circles.
Fig. 5
Fig. 5 Evolution of Ag mole fraction and AgBr filling factor in the course of the heat treatment process. The corresponding SPR peak positions are denoted in nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ ( R ) = γ bulk + A v F / R
Re ( ε free ) = ε 0 ω p 2 ω 2 + γ 2 ( R ) and Im ( ε free ) = ω p 2 γ ( R ) ω ( ω 2 + γ 2 ( R ) )
n x 2 1 n x 2 + 2 = x ( a AgBr a x ) 3 n AgBr 2 1 n AgBr 2 + 2 + ( 1 x ) ( a NaBr a x ) 3 n NaBr 2 1 n NaBr 2 + 2 + ionic polarizability

Metrics