Abstract

Refractive index modification in glass or crystalline materials typically involves conversion of state (amorphous to crystalline or crystalline to amorphous) through a homogeneous, external stimulus such as laser- or current-induced heating, melting, or localized (resonant) bond modification. With the exception of traditional phase change materials that exploit reversibility, usually at high speeds and over multiple cycles, localized patterning of the refractive index is most frequently employed to induce a complete change of phase to enable the creation of embedded or surface optical structures. The present effort employs a novel, laser-induced vitrification (LIV) process developed to spatially modify the refractive index in a fully homogeneous glass ceramic material. Such processing leads to a local re-vitrification of the pre-existing nanocrystalline microstructure within the material to realize spatially-defined, refractive index profiles. Post-processing refractive index modification on the order of ∆n ~-0.062 was realized in a partially crystallized, multi-component chalcogenide glass ceramic nanocomposite, subjected to bandgap laser exposure. Spatially-varied phase modification in the lateral and axial directions within a bulk glass ceramic is quantified and the optical function of the resulting structure is demonstrated in the formation of an infrared grating. The underlying mechanism associated with the resulting local refractive index modification is explained through quantification of the multi-phase material attributes including parent glass properties, crystal phase identity and phase fraction as determined through micro-XRD and electron microscopic analysis. This correlation validates the proposed mechanism associated with the modification. A threshold power density for LIV in the starting glass ceramic has been determined based on exposure conditions and material attributes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications

Laura Sisken, Charmayne Smith, Andrew Buff, Myungkoo Kang, Karima Chamma, Peter Wachtel, J. David Musgraves, Clara Rivero-Baleine, Andrew Kirk, Matthew Kalinowski, Megan Melvin, Theresa S. Mayer, and Kathleen Richardson
Opt. Mater. Express 7(9) 3077-3092 (2017)

Directly photoinscribed refractive index change and Bragg gratings in Ohara WMS-15 glass ceramic

Peter A. Krug, Rodica Matei Rogojan, and Jacques Albert
Appl. Opt. 48(18) 3429-3437 (2009)

Ultrafast laser-induced refractive index changes in Ge15As15S70 chalcogenide glass

C. D’Amico, C. Caillaud, P. K. Velpula, M. K Bhuyan, M. Somayaji, J.-P. Colombier, J. Troles, L. Calvez, V. Nazabal, A. Boukenter, and R. Stoian
Opt. Mater. Express 6(6) 1914-1928 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  2. R. Frerichs, “New optical glasses with good transparency in the infrared,” J. Opt. Soc. Am. 43(12), 1153 (1953).
    [Crossref]
  3. S. Parvanov, V. Vassilev, and K. Tomova, “Optical properties of new chalcogenide glasses from the GeSe2-Sb2Se3-PbSe system,” Mater. Lett. 62(12-13), 2021–2024 (2008).
    [Crossref]
  4. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
    [Crossref]
  5. S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594 (2016).
    [Crossref] [PubMed]
  6. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
    [Crossref]
  7. D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19(7), 1035–1038 (1980).
    [Crossref] [PubMed]
  8. X. H. Zhang, H. Ma, and J. Lucas, “Evaluation of glass fibers from the Ga-Ge-Sb-Se system for infrared applications,” Opt. Mater. 25(1), 85–89 (2004).
    [Crossref]
  9. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003).
    [Crossref]
  10. A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).
  11. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
    [Crossref]
  12. G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass formation and properties of chalcogenide in a GeSe2-As2Se3-PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
    [Crossref]
  13. H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2-As2Se3-PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
    [Crossref]
  14. L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J. D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T. S. Mayer, and K. Richardson, “Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications,” Opt. Mater. Express 7(9), 3077 (2017).
    [Crossref]
  15. F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J. L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154 (2006).
  16. M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).
  17. A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Long-lived monolithic micro-optics for multispectral GRIN applications,” Sci. Rep. 8(1), 7388 (2018).
    [Crossref] [PubMed]
  18. P. R. Sahm, H. Jones, and C. M. Adam, Science and Technology of the Undercooled Melt: Rapid Solidification Materials and Technologies (Springer Netherlands, 2012).
  19. B. Raj, Frontiers in Materials Science (Universities Press, 2005).
  20. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
    [Crossref] [PubMed]
  21. L. Sisken, “Laser-induced crystallization mechanisms in chalcogenide glass materials for advanced optical functionality,” PhD Thesis, CREOL, College of Optics and Photonics, University of Central Florida (2017).
  22. J. Chen and W. Z. Shen, “Raman study of phonon modes and disorder effects in Pb1-xSrxSe alloys grown by molecular beam epitaxy,” J. Appl. Phys. 99(1), 013513 (2006).
    [Crossref]
  23. R. Zallen, M. L. Slade, and A. T. Ward, “Lattice Vibrations and Interlayer Interactions in Crystalline As2S3 and As2Se3,” Phys. Rev. B 3(12), 4257–4273 (1971).
    [Crossref]
  24. J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
    [Crossref]
  25. R. Collier, C. B. Buckart, and L. H. Lin, Optical Holography (Academic, 1971).
  26. D. J. Cooke and L. Solymar, “Comparison of two-wave geometrical optics and N-wave theories for volume phase holograms,” J. Opt. Soc. Am. 70, 1631 (1980).
  27. A. Heifetz, J. T. Shen, and M. S. Shariar, “A simple method for Bragg diffraction in volume holographic gratings,” Am. J. Phys. 77(7), 623–628 (2009).
    [Crossref]

2018 (1)

A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Long-lived monolithic micro-optics for multispectral GRIN applications,” Sci. Rep. 8(1), 7388 (2018).
[Crossref] [PubMed]

2017 (2)

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J. D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T. S. Mayer, and K. Richardson, “Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications,” Opt. Mater. Express 7(9), 3077 (2017).
[Crossref]

2016 (1)

2014 (2)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

2009 (2)

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2-As2Se3-PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

A. Heifetz, J. T. Shen, and M. S. Shariar, “A simple method for Bragg diffraction in volume holographic gratings,” Am. J. Phys. 77(7), 623–628 (2009).
[Crossref]

2008 (2)

S. Parvanov, V. Vassilev, and K. Tomova, “Optical properties of new chalcogenide glasses from the GeSe2-Sb2Se3-PbSe system,” Mater. Lett. 62(12-13), 2021–2024 (2008).
[Crossref]

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[Crossref] [PubMed]

2007 (1)

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass formation and properties of chalcogenide in a GeSe2-As2Se3-PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

2006 (2)

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J. L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154 (2006).

J. Chen and W. Z. Shen, “Raman study of phonon modes and disorder effects in Pb1-xSrxSe alloys grown by molecular beam epitaxy,” J. Appl. Phys. 99(1), 013513 (2006).
[Crossref]

2004 (1)

X. H. Zhang, H. Ma, and J. Lucas, “Evaluation of glass fibers from the Ga-Ge-Sb-Se system for infrared applications,” Opt. Mater. 25(1), 85–89 (2004).
[Crossref]

2003 (1)

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003).
[Crossref]

2002 (1)

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[Crossref]

1999 (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
[Crossref]

1980 (2)

D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19(7), 1035–1038 (1980).
[Crossref] [PubMed]

D. J. Cooke and L. Solymar, “Comparison of two-wave geometrical optics and N-wave theories for volume phase holograms,” J. Opt. Soc. Am. 70, 1631 (1980).

1971 (1)

R. Zallen, M. L. Slade, and A. T. Ward, “Lattice Vibrations and Interlayer Interactions in Crystalline As2S3 and As2Se3,” Phys. Rev. B 3(12), 4257–4273 (1971).
[Crossref]

1953 (1)

Adam, J. L.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2-As2Se3-PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass formation and properties of chalcogenide in a GeSe2-As2Se3-PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J. L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154 (2006).

Adamietz, F.

A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Long-lived monolithic micro-optics for multispectral GRIN applications,” Sci. Rep. 8(1), 7388 (2018).
[Crossref] [PubMed]

Aggarwal, I. D.

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
[Crossref]

Aiken, S.

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Bellec, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003).
[Crossref]

Blanco, C.

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

Bondu, F.

A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Long-lived monolithic micro-optics for multispectral GRIN applications,” Sci. Rep. 8(1), 7388 (2018).
[Crossref] [PubMed]

Booth, M. J.

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Brocker, D. E.

Buff, A.

L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J. D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T. S. Mayer, and K. Richardson, “Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications,” Opt. Mater. Express 7(9), 3077 (2017).
[Crossref]

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

Campbell, S. D.

Caraccio, J.

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

Chamma, K.

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J. D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T. S. Mayer, and K. Richardson, “Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications,” Opt. Mater. Express 7(9), 3077 (2017).
[Crossref]

Chan, J. W.

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[Crossref]

Chen, G.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2-As2Se3-PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass formation and properties of chalcogenide in a GeSe2-As2Se3-PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J. L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154 (2006).

Chen, J.

J. Chen and W. Z. Shen, “Raman study of phonon modes and disorder effects in Pb1-xSrxSe alloys grown by molecular beam epitaxy,” J. Appl. Phys. 99(1), 013513 (2006).
[Crossref]

Cook, J.

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Cooke, D. J.

D. J. Cooke and L. Solymar, “Comparison of two-wave geometrical optics and N-wave theories for volume phase holograms,” J. Opt. Soc. Am. 70, 1631 (1980).

Danto, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Divliansky, I.

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Dussauze, M.

A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Long-lived monolithic micro-optics for multispectral GRIN applications,” Sci. Rep. 8(1), 7388 (2018).
[Crossref] [PubMed]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Frerichs, R.

Glebov, L. B.

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Grabowski, B.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[Crossref] [PubMed]

Gu, Z.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2-As2Se3-PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

Guimond, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003).
[Crossref]

Hayden, J. S.

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[Crossref]

Heifetz, A.

A. Heifetz, J. T. Shen, and M. S. Shariar, “A simple method for Bragg diffraction in volume holographic gratings,” Am. J. Phys. 77(7), 623–628 (2009).
[Crossref]

Hickel, T.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[Crossref] [PubMed]

Hu, J.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Huser, T.

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[Crossref]

Kalinowski, M.

Kang, M.

A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Long-lived monolithic micro-optics for multispectral GRIN applications,” Sci. Rep. 8(1), 7388 (2018).
[Crossref] [PubMed]

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J. D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T. S. Mayer, and K. Richardson, “Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications,” Opt. Mater. Express 7(9), 3077 (2017).
[Crossref]

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Kirk, A.

L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J. D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T. S. Mayer, and K. Richardson, “Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications,” Opt. Mater. Express 7(9), 3077 (2017).
[Crossref]

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Kompan, F.

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Krol, D. M.

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[Crossref]

Lencer, D.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[Crossref] [PubMed]

Lepicard, A.

A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Long-lived monolithic micro-optics for multispectral GRIN applications,” Sci. Rep. 8(1), 7388 (2018).
[Crossref] [PubMed]

Li, L.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lin, H.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Liu, L.

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Lonergan, C.

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Lonergan, J.

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lucas, J.

X. H. Zhang, H. Ma, and J. Lucas, “Evaluation of glass fibers from the Ga-Ge-Sb-Se system for infrared applications,” Opt. Mater. 25(1), 85–89 (2004).
[Crossref]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Ma, H.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2-As2Se3-PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass formation and properties of chalcogenide in a GeSe2-As2Se3-PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J. L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154 (2006).

X. H. Zhang, H. Ma, and J. Lucas, “Evaluation of glass fibers from the Ga-Ge-Sb-Se system for infrared applications,” Opt. Mater. 25(1), 85–89 (2004).
[Crossref]

Malendevych, T.

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Mayer, T.

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

Mayer, T. S.

L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J. D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T. S. Mayer, and K. Richardson, “Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications,” Opt. Mater. Express 7(9), 3077 (2017).
[Crossref]

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Melvin, M.

Moore, D. T.

Musgraves, J. D.

Nagar, J.

Neugebauer, J.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[Crossref] [PubMed]

Pantano, C. G.

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Parvanov, S.

S. Parvanov, V. Vassilev, and K. Tomova, “Optical properties of new chalcogenide glasses from the GeSe2-Sb2Se3-PbSe system,” Mater. Lett. 62(12-13), 2021–2024 (2008).
[Crossref]

Pogrebnyakov, A. V.

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Ren, J.

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass formation and properties of chalcogenide in a GeSe2-As2Se3-PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J. L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154 (2006).

Richardson, K.

A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Long-lived monolithic micro-optics for multispectral GRIN applications,” Sci. Rep. 8(1), 7388 (2018).
[Crossref] [PubMed]

L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J. D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T. S. Mayer, and K. Richardson, “Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications,” Opt. Mater. Express 7(9), 3077 (2017).
[Crossref]

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Richardson, M. C.

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Risbud, S. H.

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[Crossref]

Rivero-Baleine, C.

L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J. D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T. S. Mayer, and K. Richardson, “Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications,” Opt. Mater. Express 7(9), 3077 (2017).
[Crossref]

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Rodriguez, V.

A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Long-lived monolithic micro-optics for multispectral GRIN applications,” Sci. Rep. 8(1), 7388 (2018).
[Crossref] [PubMed]

Salinga, M.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[Crossref] [PubMed]

Sanghera, J. S.

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
[Crossref]

Shariar, M. S.

A. Heifetz, J. T. Shen, and M. S. Shariar, “A simple method for Bragg diffraction in volume holographic gratings,” Am. J. Phys. 77(7), 623–628 (2009).
[Crossref]

Shen, J. T.

A. Heifetz, J. T. Shen, and M. S. Shariar, “A simple method for Bragg diffraction in volume holographic gratings,” Am. J. Phys. 77(7), 623–628 (2009).
[Crossref]

Shen, W. Z.

J. Chen and W. Z. Shen, “Raman study of phonon modes and disorder effects in Pb1-xSrxSe alloys grown by molecular beam epitaxy,” J. Appl. Phys. 99(1), 013513 (2006).
[Crossref]

Sisken, L.

A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Long-lived monolithic micro-optics for multispectral GRIN applications,” Sci. Rep. 8(1), 7388 (2018).
[Crossref] [PubMed]

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J. D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T. S. Mayer, and K. Richardson, “Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications,” Opt. Mater. Express 7(9), 3077 (2017).
[Crossref]

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Slade, M. L.

R. Zallen, M. L. Slade, and A. T. Ward, “Lattice Vibrations and Interlayer Interactions in Crystalline As2S3 and As2Se3,” Phys. Rev. B 3(12), 4257–4273 (1971).
[Crossref]

Smith, C.

L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J. D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T. S. Mayer, and K. Richardson, “Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications,” Opt. Mater. Express 7(9), 3077 (2017).
[Crossref]

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

Solymar, L.

D. J. Cooke and L. Solymar, “Comparison of two-wave geometrical optics and N-wave theories for volume phase holograms,” J. Opt. Soc. Am. 70, 1631 (1980).

Swisher, A. M.

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Tomova, K.

S. Parvanov, V. Vassilev, and K. Tomova, “Optical properties of new chalcogenide glasses from the GeSe2-Sb2Se3-PbSe system,” Mater. Lett. 62(12-13), 2021–2024 (2008).
[Crossref]

Vassilev, V.

S. Parvanov, V. Vassilev, and K. Tomova, “Optical properties of new chalcogenide glasses from the GeSe2-Sb2Se3-PbSe system,” Mater. Lett. 62(12-13), 2021–2024 (2008).
[Crossref]

Wachtel, P.

Wang, H.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2-As2Se3-PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

Ward, A. T.

R. Zallen, M. L. Slade, and A. T. Ward, “Lattice Vibrations and Interlayer Interactions in Crystalline As2S3 and As2Se3,” Phys. Rev. B 3(12), 4257–4273 (1971).
[Crossref]

Werner, D. H.

Wuttig, M.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[Crossref] [PubMed]

Xia, F.

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J. L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154 (2006).

Xu, Y.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2-As2Se3-PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

Yadav, A.

A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Long-lived monolithic micro-optics for multispectral GRIN applications,” Sci. Rep. 8(1), 7388 (2018).
[Crossref] [PubMed]

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

Yang, G.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2-As2Se3-PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass formation and properties of chalcogenide in a GeSe2-As2Se3-PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

Yunxia, Y.

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass formation and properties of chalcogenide in a GeSe2-As2Se3-PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

Zallen, R.

R. Zallen, M. L. Slade, and A. T. Ward, “Lattice Vibrations and Interlayer Interactions in Crystalline As2S3 and As2Se3,” Phys. Rev. B 3(12), 4257–4273 (1971).
[Crossref]

Zhang, X.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2-As2Se3-PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass formation and properties of chalcogenide in a GeSe2-As2Se3-PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J. L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154 (2006).

Zhang, X. H.

X. H. Zhang, H. Ma, and J. Lucas, “Evaluation of glass fibers from the Ga-Ge-Sb-Se system for infrared applications,” Opt. Mater. 25(1), 85–89 (2004).
[Crossref]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003).
[Crossref]

Zou, Y.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Am. J. Phys. (1)

A. Heifetz, J. T. Shen, and M. S. Shariar, “A simple method for Bragg diffraction in volume holographic gratings,” Am. J. Phys. 77(7), 623–628 (2009).
[Crossref]

Appl. Opt. (2)

Ceram. Int. (1)

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2-As2Se3-PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

J. Am. Ceram. Soc. (3)

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J. L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154 (2006).

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass formation and properties of chalcogenide in a GeSe2-As2Se3-PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[Crossref]

J. Appl. Phys. (1)

J. Chen and W. Z. Shen, “Raman study of phonon modes and disorder effects in Pb1-xSrxSe alloys grown by molecular beam epitaxy,” J. Appl. Phys. 99(1), 013513 (2006).
[Crossref]

J. Non-Cryst. Solids (2)

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
[Crossref]

J. Opt. Soc. Am. (2)

R. Frerichs, “New optical glasses with good transparency in the infrared,” J. Opt. Soc. Am. 43(12), 1153 (1953).
[Crossref]

D. J. Cooke and L. Solymar, “Comparison of two-wave geometrical optics and N-wave theories for volume phase holograms,” J. Opt. Soc. Am. 70, 1631 (1980).

Light Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Mater. Lett. (1)

S. Parvanov, V. Vassilev, and K. Tomova, “Optical properties of new chalcogenide glasses from the GeSe2-Sb2Se3-PbSe system,” Mater. Lett. 62(12-13), 2021–2024 (2008).
[Crossref]

Nat. Mater. (1)

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Opt. Mater. (1)

X. H. Zhang, H. Ma, and J. Lucas, “Evaluation of glass fibers from the Ga-Ge-Sb-Se system for infrared applications,” Opt. Mater. 25(1), 85–89 (2004).
[Crossref]

Opt. Mater. Express (1)

Phys. Chem. Glasses (1)

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Phys. Chem. Glasses 58, 115 (2017).

Phys. Rev. B (1)

R. Zallen, M. L. Slade, and A. T. Ward, “Lattice Vibrations and Interlayer Interactions in Crystalline As2S3 and As2Se3,” Phys. Rev. B 3(12), 4257–4273 (1971).
[Crossref]

Sci. Rep. (1)

A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Long-lived monolithic micro-optics for multispectral GRIN applications,” Sci. Rep. 8(1), 7388 (2018).
[Crossref] [PubMed]

Other (5)

P. R. Sahm, H. Jones, and C. M. Adam, Science and Technology of the Undercooled Melt: Rapid Solidification Materials and Technologies (Springer Netherlands, 2012).

B. Raj, Frontiers in Materials Science (Universities Press, 2005).

L. Sisken, “Laser-induced crystallization mechanisms in chalcogenide glass materials for advanced optical functionality,” PhD Thesis, CREOL, College of Optics and Photonics, University of Central Florida (2017).

R. Collier, C. B. Buckart, and L. H. Lin, Optical Holography (Academic, 1971).

M. Kang, A. M. Swisher, A. V. Pogrebnyakov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero-Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion multicomponent thin film chalcogenide glass for broadband gradient index optics,” in press, Adv. Mater. (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Comparison of laser-assisted modification strategies used in this work. (TOP) Laser-induced crystallization (LIC), employs a homogeneous base glass material (blue) and then selectively grows crystals (red) in specific spatial locations. (BOTTOM) The reverse of this process, laser-induced vitrification (LIV), modifies a multi-phase glass-ceramic (red and blue represent crystal and glass phases), re-amorphizing local regions through spatially-selective laser exposure and vitrification.
Fig. 2
Fig. 2 (a) Laser irradiation geometry with its translational direction along red arrows and resulting pillars with a depth of 0.87 mm, a width of 4.43 µm, and a height of 1.00 mm. The concentric rings are meant to depict the varying focal area associated with the beam waist above and below the focal point. (b) Resulting grating structure with a targeted width of ~9 µm and a targeted spacing (period) of ~60 µm. (c) Computed depth-dependent laser power density as a function of radial position (irradiation area width at a fixed depth) as a function of depth below sample surface where pillar writing was started.
Fig. 3
Fig. 3 (a) Transmittance spectra illustrating a variation in optical transmittance (sample thickness: 3 mm, corrected for Fresnel loss) between glass ceramic and glass materials. The dotted vertical line indicates laser wavelength. (b) A DF TEM image (top) and a corresponding SAED pattern of the starting glass ceramic material (bottom). (c) Raman spectrum of a glass ceramic material, measured using excitation wavelength of λ = 785 nm.
Fig. 4
Fig. 4 (a) Raman spectra of starting glass ceramic and parent glass materials. (b) a Raman-converted refractive index profile map of a grating strip with four pillars that make up the strip. The legend indicates the refractive index scale corresponding to the colors shown. C (black), E (red) and A (blue) represent positions in the region directly above the center (C) of a pillar, at the edge of a pillar (E), and in an unirradiated region away (A) from a pillar (c) the corresponding Raman spectra collected at the center of a pillar (C), at the edge of the pillar (E), and away (A) from the pillar. Peak intensity has been normalized to 205 cm−1 (d) a BF TEM image and a corresponding SAED pattern of the laser-vitrified material. (e) a DF TEM image and a corresponding SAED pattern of the parent glass material.
Fig. 5
Fig. 5 (Top) A WLI image (area: 1,600 µm × 1,600 µm) of the laser- written grating surface illustrating the line patterns resulting from the pillar exposure modification to the bulk glass ceramic. (Bottom) Surface relief measured along a single laser written line (slice 1) and across all grating lines (slice two) within the laser-modified glass ceramic surface resulting in the LIV grating. Height profile variation are shown in microns.
Fig. 6
Fig. 6 (a) Bright field TEM images overlaid with a depth-dependent laser power density profile (left) and corresponding higher magnification TEM micrographs and SAED patterns for the top, middle, and bottom regions of the FIB-fabricated cross-sectional TEM specimen. (b) Grazing-incidence µ-XRD spectra collected from laser-induced grating regions and regions away from the structure. (c) A plot of integrated crystal phase peak intensity extracted from the XRD spectra for the positions identified in (b).
Fig. 7
Fig. 7 Diffractive properties of the laser-written ChG grating measured in reflection at λ = 0.632 µm (top) and transmission at λ = 2 µm (bottom) for the LIV grating.

Tables (1)

Tables Icon

Table 1 Optical and material parameters of 15-45-40 GAP-Se parent glass and post-heat treated starting glass ceramic specimens

Metrics