Abstract

Crystalline Gaq3 (tris-(8-hydroxyquinoline)gallium) nanorods and nanoparticles have been obtained by a solvent-evaporation-induced self-assembly approach in the absence of an anti-solvent and surfactant assistant. The obtained assemblies have regular shape and good crystallinity. The rods length of Gaq3 can reach 50 ± 5 μm, and the length/diameter (L/D ratio) of Gaq3 rods and particles are about 60 and 2, respectively. The photo-luminescence and waveguide characteristics of the nanostructures were investigated, respectively. The results exhibit that the obtained Gaq3 products have excellent green light-emitting and waveguide performances.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-energy Q-switched ytterbium-doped all-fiber laser with tris-(8-hydroxyquinoline) aluminum as saturable absorber

Sameer Salam, Wei Ru Wong, A. H. H. Al-Masoodi, and S. W. Harun
Opt. Mater. Express 9(8) 3215-3225 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Zhou and B. C. Li, “Origins of a damage-induced green photoluminescence band in fused silica revealed by time-resolved photoluminescence spectroscopy,” Opt. Mater. Express 7(8), 2888–2898 (2017).
    [Crossref]
  2. F. F. Muhammad, M. Y. Yahya, and K. Sulaiman, “Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T:Mq3:PCBM (M=Ga,Al),” Mater. Chem. Phys. 188, 86–94 (2017).
    [Crossref]
  3. J. Yi, L. L. Miao, J. Li, W. Hu, C. J. Zhao, and S. C. Wen, “Third-order nonlinear optical response of CH3NH3PbI3 perovskite in the mid-infrared regime,” Opt. Mater. Express 7(11), 3894–3901 (2017).
    [Crossref]
  4. Y. Wang, L. Zhu, Y. Hu, Z. Deng, Z. Lou, Y. Hou, and F. Teng, “High sensitivity and fast response solution processed polymer photodetectors with polyethylenimine ethoxylated (PEIE) modified ITO electrode,” Opt. Express 25(7), 7719–7729 (2017).
    [Crossref] [PubMed]
  5. J. C. S. Costa, R. J. S. Taveira, C. F. R. A. C. Lima, A. Mendes, and L. M. N. B. F. Santos, “Optical band gaps of organic semiconductor materials,” Opt. Mater. 58, 51–60 (2016).
    [Crossref]
  6. W. F. Xie, Z. T. Chi, H. M. Yuan, F. Jiang, Z. Y. Pang, and S. H. Han, “One-step synthesis of crystalline tris(8-hydroxyquinoline) aluminum microtubes and their waveguide properties,” J. Phys. Chem. Solids 120, 6–11 (2018).
    [Crossref]
  7. H. Chen, N. Cheng, W. Ma, M. Li, S. Hu, L. Gu, S. Meng, and X. Guo, “Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors,” ACS Nano 10(1), 436–445 (2016).
    [Crossref] [PubMed]
  8. C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5(1), 5745–5748 (2014).
    [Crossref] [PubMed]
  9. F. F. Muhammad, A. I. A. Hapip, and K. Sulaiman, “Study of optoelectronic energy bands and molecular energy levels of tris (8-hydroxyquinolinate) gallium and aluminum organometallic materials from their spectroscopic and electrochemical analysis,” J. Organomet. Chem. 695(23), 2526–2531 (2010).
    [Crossref]
  10. Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, “Giant magnetoresistance in organic spin-valves,” Nature 427(6977), 821–824 (2004).
    [Crossref] [PubMed]
  11. D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, “Giant magnetoresistance in organic spin valves,” Phys. Rev. Lett. 104(23), 236602 (2010).
    [Crossref] [PubMed]
  12. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
    [Crossref]
  13. J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
    [Crossref] [PubMed]
  14. P. E. Burrows, L. S. Sapochak, D. M. Mccarty, S. R. Forrest, and M. E. Thompson, “Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices,” Appl. Phys. Lett. 64(20), 2718–2720 (1994).
    [Crossref]
  15. H. Zheng, T. Zhu, X. Li, G. Wang, and Q. Jia, “Immobilization of β-cyclodextrin-conjugated lactoferrin onto polymer monolith for enrichment of Ga in metabolic residues of Ga-based anticancer drugs,” Biomacromolecules 18(12), 3971–3977 (2017).
    [Crossref] [PubMed]
  16. K. Ossipov, L. S. Foteeva, I. F. Seregina, S. A. Perevalov, A. R. Timerbaev, and M. A. Bolshov, “Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry,” Anal. Chim. Acta 785, 22–26 (2013).
    [Crossref] [PubMed]
  17. A. R. Timerbaev, “Advances in developing tris(8-quinolinolato)gallium(iii) as an anticancer drug: critical appraisal and prospects,” Metallomics 1(3), 193–198 (2009).
    [Crossref] [PubMed]
  18. Y. L. Cao, J. D. Hu, R. F. Wang, and D. Z. Jia, “Room-temperature solid-state synthesis and fluorescence performance of 8-hydroxyquinoline-based nanomaterial complexes with different morphology,” J. Lumin. 190, 429–435 (2017).
    [Crossref]
  19. B. W. Wang, L. Ma, C. Sun, Z. J. Cheng, W. L. Gui, and C. F. Cheng, “Solid-state optoelectronic device based on TiO2/SnSe2 core-shell nanocable structure,” Opt. Mater. Express 7(10), 3691–3696 (2017).
    [Crossref]
  20. F. F. Muhammad and K. Sulaiman, “Optical and morphological modifications in post-thermally treated tris(8-hydroxyquinoline) gallium films deposited on quartz substrates,” Mater. Chem. Phys. 148(1–2), 473–477 (2014).
    [Crossref]
  21. F. F. Muhammad, K. A. Ketuly, and M. Y. Yahya, “Effect of thermal annealing on a ternary organic solar cell incorporating Gaq3 organometallic as a boosting acceptor,” J. Inorg. Organomet. Polym. 28(1), 102–109 (2018).
    [Crossref]
  22. Y. W. Yu, C. P. Cho, and T. P. Perng, “Crystalline Gaq3 nanostructures: preparation, thermal property and spectroscopy characterization,” Nanoscale Res. Lett. 4(8), 820–827 (2009).
    [Crossref] [PubMed]
  23. M. Brinkmann, B. Fite, S. Pratontep, and C. Chaumont, “Structure and spectroscopic properties of the crystalline structures containing meridional and facial isomers of tris(8-hydroxyquinoline) gallium(III),” Chem. Mater. 16(23), 4627–4633 (2004).
    [Crossref]
  24. I. Hernández and W. P. Gillin, “Influence of high hydrostatic pressure on Alq3, Gaq3, and Inq3 (q = 8-hydroxyquinoline),” J. Phys. Chem. B 113(43), 14079–14086 (2009).
    [Crossref] [PubMed]
  25. L. Ju, T. S. Xu, Y. J. Zhang, and L. Sun, “Theoretical study on magnetism induced by H vacancy in isolated Alq3 and Gaq3 molecules,” Mater. Res. Express 4(10), 106103 (2017).
    [Crossref]
  26. H. Y. Deng, W. C. Hao, H. Z. Xu, and C. Wang, “Effect of intrinsic oxygen vacancy on the electronic structure of gamma-Bi2O3: first-principles calculations,” J. Phys. Chem. C 116(1), 1251–1255 (2012).
    [Crossref]
  27. W. F. Xie, J. H. Fan, H. Song, F. Jiang, H. M. Yuan, Z. X. Wei, Z. W. Ji, Z. Y. Pang, and S. H. Han, “Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure,” Physica E 84, 519–523 (2016).
    [Crossref]
  28. H. F. Qi, W. C. Hao, H. Z. Xu, J. Zhang, and T. Wang, “Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure,” Colloid Polym. Sci. 287(2), 243–248 (2009).
    [Crossref]
  29. F. F. Muhammad and K. Sulaiman, “Effects of thermal annealing on the optical, spectroscopic, and structural properties of tris(8-hydroxyquinolinate) gallium films grown on quartz substrates,” Mater. Chem. Phys. 129(3), 1152–1158 (2011).
    [Crossref]
  30. G. Xu, Y. B. Tang, C. H. Tsang, J. A. Zapien, C. S. Lee, and N. B. Wong, “Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties,” J. Mater. Chem. 20(15), 3006–3010 (2010).
    [Crossref]

2018 (2)

W. F. Xie, Z. T. Chi, H. M. Yuan, F. Jiang, Z. Y. Pang, and S. H. Han, “One-step synthesis of crystalline tris(8-hydroxyquinoline) aluminum microtubes and their waveguide properties,” J. Phys. Chem. Solids 120, 6–11 (2018).
[Crossref]

F. F. Muhammad, K. A. Ketuly, and M. Y. Yahya, “Effect of thermal annealing on a ternary organic solar cell incorporating Gaq3 organometallic as a boosting acceptor,” J. Inorg. Organomet. Polym. 28(1), 102–109 (2018).
[Crossref]

2017 (8)

L. Ju, T. S. Xu, Y. J. Zhang, and L. Sun, “Theoretical study on magnetism induced by H vacancy in isolated Alq3 and Gaq3 molecules,” Mater. Res. Express 4(10), 106103 (2017).
[Crossref]

J. N. Zhou and B. C. Li, “Origins of a damage-induced green photoluminescence band in fused silica revealed by time-resolved photoluminescence spectroscopy,” Opt. Mater. Express 7(8), 2888–2898 (2017).
[Crossref]

F. F. Muhammad, M. Y. Yahya, and K. Sulaiman, “Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T:Mq3:PCBM (M=Ga,Al),” Mater. Chem. Phys. 188, 86–94 (2017).
[Crossref]

J. Yi, L. L. Miao, J. Li, W. Hu, C. J. Zhao, and S. C. Wen, “Third-order nonlinear optical response of CH3NH3PbI3 perovskite in the mid-infrared regime,” Opt. Mater. Express 7(11), 3894–3901 (2017).
[Crossref]

Y. Wang, L. Zhu, Y. Hu, Z. Deng, Z. Lou, Y. Hou, and F. Teng, “High sensitivity and fast response solution processed polymer photodetectors with polyethylenimine ethoxylated (PEIE) modified ITO electrode,” Opt. Express 25(7), 7719–7729 (2017).
[Crossref] [PubMed]

H. Zheng, T. Zhu, X. Li, G. Wang, and Q. Jia, “Immobilization of β-cyclodextrin-conjugated lactoferrin onto polymer monolith for enrichment of Ga in metabolic residues of Ga-based anticancer drugs,” Biomacromolecules 18(12), 3971–3977 (2017).
[Crossref] [PubMed]

Y. L. Cao, J. D. Hu, R. F. Wang, and D. Z. Jia, “Room-temperature solid-state synthesis and fluorescence performance of 8-hydroxyquinoline-based nanomaterial complexes with different morphology,” J. Lumin. 190, 429–435 (2017).
[Crossref]

B. W. Wang, L. Ma, C. Sun, Z. J. Cheng, W. L. Gui, and C. F. Cheng, “Solid-state optoelectronic device based on TiO2/SnSe2 core-shell nanocable structure,” Opt. Mater. Express 7(10), 3691–3696 (2017).
[Crossref]

2016 (3)

J. C. S. Costa, R. J. S. Taveira, C. F. R. A. C. Lima, A. Mendes, and L. M. N. B. F. Santos, “Optical band gaps of organic semiconductor materials,” Opt. Mater. 58, 51–60 (2016).
[Crossref]

H. Chen, N. Cheng, W. Ma, M. Li, S. Hu, L. Gu, S. Meng, and X. Guo, “Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors,” ACS Nano 10(1), 436–445 (2016).
[Crossref] [PubMed]

W. F. Xie, J. H. Fan, H. Song, F. Jiang, H. M. Yuan, Z. X. Wei, Z. W. Ji, Z. Y. Pang, and S. H. Han, “Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure,” Physica E 84, 519–523 (2016).
[Crossref]

2014 (2)

C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5(1), 5745–5748 (2014).
[Crossref] [PubMed]

F. F. Muhammad and K. Sulaiman, “Optical and morphological modifications in post-thermally treated tris(8-hydroxyquinoline) gallium films deposited on quartz substrates,” Mater. Chem. Phys. 148(1–2), 473–477 (2014).
[Crossref]

2013 (1)

K. Ossipov, L. S. Foteeva, I. F. Seregina, S. A. Perevalov, A. R. Timerbaev, and M. A. Bolshov, “Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry,” Anal. Chim. Acta 785, 22–26 (2013).
[Crossref] [PubMed]

2012 (1)

H. Y. Deng, W. C. Hao, H. Z. Xu, and C. Wang, “Effect of intrinsic oxygen vacancy on the electronic structure of gamma-Bi2O3: first-principles calculations,” J. Phys. Chem. C 116(1), 1251–1255 (2012).
[Crossref]

2011 (1)

F. F. Muhammad and K. Sulaiman, “Effects of thermal annealing on the optical, spectroscopic, and structural properties of tris(8-hydroxyquinolinate) gallium films grown on quartz substrates,” Mater. Chem. Phys. 129(3), 1152–1158 (2011).
[Crossref]

2010 (3)

G. Xu, Y. B. Tang, C. H. Tsang, J. A. Zapien, C. S. Lee, and N. B. Wong, “Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties,” J. Mater. Chem. 20(15), 3006–3010 (2010).
[Crossref]

D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, “Giant magnetoresistance in organic spin valves,” Phys. Rev. Lett. 104(23), 236602 (2010).
[Crossref] [PubMed]

F. F. Muhammad, A. I. A. Hapip, and K. Sulaiman, “Study of optoelectronic energy bands and molecular energy levels of tris (8-hydroxyquinolinate) gallium and aluminum organometallic materials from their spectroscopic and electrochemical analysis,” J. Organomet. Chem. 695(23), 2526–2531 (2010).
[Crossref]

2009 (4)

A. R. Timerbaev, “Advances in developing tris(8-quinolinolato)gallium(iii) as an anticancer drug: critical appraisal and prospects,” Metallomics 1(3), 193–198 (2009).
[Crossref] [PubMed]

H. F. Qi, W. C. Hao, H. Z. Xu, J. Zhang, and T. Wang, “Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure,” Colloid Polym. Sci. 287(2), 243–248 (2009).
[Crossref]

Y. W. Yu, C. P. Cho, and T. P. Perng, “Crystalline Gaq3 nanostructures: preparation, thermal property and spectroscopy characterization,” Nanoscale Res. Lett. 4(8), 820–827 (2009).
[Crossref] [PubMed]

I. Hernández and W. P. Gillin, “Influence of high hydrostatic pressure on Alq3, Gaq3, and Inq3 (q = 8-hydroxyquinoline),” J. Phys. Chem. B 113(43), 14079–14086 (2009).
[Crossref] [PubMed]

2007 (1)

J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
[Crossref] [PubMed]

2004 (2)

Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, “Giant magnetoresistance in organic spin-valves,” Nature 427(6977), 821–824 (2004).
[Crossref] [PubMed]

M. Brinkmann, B. Fite, S. Pratontep, and C. Chaumont, “Structure and spectroscopic properties of the crystalline structures containing meridional and facial isomers of tris(8-hydroxyquinoline) gallium(III),” Chem. Mater. 16(23), 4627–4633 (2004).
[Crossref]

1994 (1)

P. E. Burrows, L. S. Sapochak, D. M. Mccarty, S. R. Forrest, and M. E. Thompson, “Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices,” Appl. Phys. Lett. 64(20), 2718–2720 (1994).
[Crossref]

1987 (1)

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Arias, A. C.

C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5(1), 5745–5748 (2014).
[Crossref] [PubMed]

Bolshov, M. A.

K. Ossipov, L. S. Foteeva, I. F. Seregina, S. A. Perevalov, A. R. Timerbaev, and M. A. Bolshov, “Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry,” Anal. Chim. Acta 785, 22–26 (2013).
[Crossref] [PubMed]

Brinkmann, M.

M. Brinkmann, B. Fite, S. Pratontep, and C. Chaumont, “Structure and spectroscopic properties of the crystalline structures containing meridional and facial isomers of tris(8-hydroxyquinoline) gallium(III),” Chem. Mater. 16(23), 4627–4633 (2004).
[Crossref]

Burrows, P. E.

P. E. Burrows, L. S. Sapochak, D. M. Mccarty, S. R. Forrest, and M. E. Thompson, “Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices,” Appl. Phys. Lett. 64(20), 2718–2720 (1994).
[Crossref]

Cao, A. M.

J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
[Crossref] [PubMed]

Cao, Y. L.

Y. L. Cao, J. D. Hu, R. F. Wang, and D. Z. Jia, “Room-temperature solid-state synthesis and fluorescence performance of 8-hydroxyquinoline-based nanomaterial complexes with different morphology,” J. Lumin. 190, 429–435 (2017).
[Crossref]

Chaumont, C.

M. Brinkmann, B. Fite, S. Pratontep, and C. Chaumont, “Structure and spectroscopic properties of the crystalline structures containing meridional and facial isomers of tris(8-hydroxyquinoline) gallium(III),” Chem. Mater. 16(23), 4627–4633 (2004).
[Crossref]

Chen, H.

H. Chen, N. Cheng, W. Ma, M. Li, S. Hu, L. Gu, S. Meng, and X. Guo, “Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors,” ACS Nano 10(1), 436–445 (2016).
[Crossref] [PubMed]

Cheng, C. F.

Cheng, N.

H. Chen, N. Cheng, W. Ma, M. Li, S. Hu, L. Gu, S. Meng, and X. Guo, “Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors,” ACS Nano 10(1), 436–445 (2016).
[Crossref] [PubMed]

Cheng, Z.

D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, “Giant magnetoresistance in organic spin valves,” Phys. Rev. Lett. 104(23), 236602 (2010).
[Crossref] [PubMed]

Cheng, Z. J.

Chi, Z. T.

W. F. Xie, Z. T. Chi, H. M. Yuan, F. Jiang, Z. Y. Pang, and S. H. Han, “One-step synthesis of crystalline tris(8-hydroxyquinoline) aluminum microtubes and their waveguide properties,” J. Phys. Chem. Solids 120, 6–11 (2018).
[Crossref]

Cho, C. P.

Y. W. Yu, C. P. Cho, and T. P. Perng, “Crystalline Gaq3 nanostructures: preparation, thermal property and spectroscopy characterization,” Nanoscale Res. Lett. 4(8), 820–827 (2009).
[Crossref] [PubMed]

Costa, J. C. S.

J. C. S. Costa, R. J. S. Taveira, C. F. R. A. C. Lima, A. Mendes, and L. M. N. B. F. Santos, “Optical band gaps of organic semiconductor materials,” Opt. Mater. 58, 51–60 (2016).
[Crossref]

Deng, H. Y.

H. Y. Deng, W. C. Hao, H. Z. Xu, and C. Wang, “Effect of intrinsic oxygen vacancy on the electronic structure of gamma-Bi2O3: first-principles calculations,” J. Phys. Chem. C 116(1), 1251–1255 (2012).
[Crossref]

Deng, Z.

Fan, J. H.

W. F. Xie, J. H. Fan, H. Song, F. Jiang, H. M. Yuan, Z. X. Wei, Z. W. Ji, Z. Y. Pang, and S. H. Han, “Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure,” Physica E 84, 519–523 (2016).
[Crossref]

Fite, B.

M. Brinkmann, B. Fite, S. Pratontep, and C. Chaumont, “Structure and spectroscopic properties of the crystalline structures containing meridional and facial isomers of tris(8-hydroxyquinoline) gallium(III),” Chem. Mater. 16(23), 4627–4633 (2004).
[Crossref]

Forrest, S. R.

P. E. Burrows, L. S. Sapochak, D. M. Mccarty, S. R. Forrest, and M. E. Thompson, “Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices,” Appl. Phys. Lett. 64(20), 2718–2720 (1994).
[Crossref]

Foteeva, L. S.

K. Ossipov, L. S. Foteeva, I. F. Seregina, S. A. Perevalov, A. R. Timerbaev, and M. A. Bolshov, “Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry,” Anal. Chim. Acta 785, 22–26 (2013).
[Crossref] [PubMed]

Gai, Z.

D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, “Giant magnetoresistance in organic spin valves,” Phys. Rev. Lett. 104(23), 236602 (2010).
[Crossref] [PubMed]

Gillin, W. P.

I. Hernández and W. P. Gillin, “Influence of high hydrostatic pressure on Alq3, Gaq3, and Inq3 (q = 8-hydroxyquinoline),” J. Phys. Chem. B 113(43), 14079–14086 (2009).
[Crossref] [PubMed]

Gu, L.

H. Chen, N. Cheng, W. Ma, M. Li, S. Hu, L. Gu, S. Meng, and X. Guo, “Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors,” ACS Nano 10(1), 436–445 (2016).
[Crossref] [PubMed]

Gui, W. L.

Guo, H.

D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, “Giant magnetoresistance in organic spin valves,” Phys. Rev. Lett. 104(23), 236602 (2010).
[Crossref] [PubMed]

Guo, X.

H. Chen, N. Cheng, W. Ma, M. Li, S. Hu, L. Gu, S. Meng, and X. Guo, “Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors,” ACS Nano 10(1), 436–445 (2016).
[Crossref] [PubMed]

Han, S. H.

W. F. Xie, Z. T. Chi, H. M. Yuan, F. Jiang, Z. Y. Pang, and S. H. Han, “One-step synthesis of crystalline tris(8-hydroxyquinoline) aluminum microtubes and their waveguide properties,” J. Phys. Chem. Solids 120, 6–11 (2018).
[Crossref]

W. F. Xie, J. H. Fan, H. Song, F. Jiang, H. M. Yuan, Z. X. Wei, Z. W. Ji, Z. Y. Pang, and S. H. Han, “Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure,” Physica E 84, 519–523 (2016).
[Crossref]

Hao, W. C.

H. Y. Deng, W. C. Hao, H. Z. Xu, and C. Wang, “Effect of intrinsic oxygen vacancy on the electronic structure of gamma-Bi2O3: first-principles calculations,” J. Phys. Chem. C 116(1), 1251–1255 (2012).
[Crossref]

H. F. Qi, W. C. Hao, H. Z. Xu, J. Zhang, and T. Wang, “Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure,” Colloid Polym. Sci. 287(2), 243–248 (2009).
[Crossref]

Hapip, A. I. A.

F. F. Muhammad, A. I. A. Hapip, and K. Sulaiman, “Study of optoelectronic energy bands and molecular energy levels of tris (8-hydroxyquinolinate) gallium and aluminum organometallic materials from their spectroscopic and electrochemical analysis,” J. Organomet. Chem. 695(23), 2526–2531 (2010).
[Crossref]

Hernández, I.

I. Hernández and W. P. Gillin, “Influence of high hydrostatic pressure on Alq3, Gaq3, and Inq3 (q = 8-hydroxyquinoline),” J. Phys. Chem. B 113(43), 14079–14086 (2009).
[Crossref] [PubMed]

Hou, Y.

Hu, J. D.

Y. L. Cao, J. D. Hu, R. F. Wang, and D. Z. Jia, “Room-temperature solid-state synthesis and fluorescence performance of 8-hydroxyquinoline-based nanomaterial complexes with different morphology,” J. Lumin. 190, 429–435 (2017).
[Crossref]

Hu, J. S.

J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
[Crossref] [PubMed]

Hu, S.

H. Chen, N. Cheng, W. Ma, M. Li, S. Hu, L. Gu, S. Meng, and X. Guo, “Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors,” ACS Nano 10(1), 436–445 (2016).
[Crossref] [PubMed]

Hu, W.

Hu, Y.

Huang, Z. X.

J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
[Crossref] [PubMed]

Ji, H. X.

J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
[Crossref] [PubMed]

Ji, Z. W.

W. F. Xie, J. H. Fan, H. Song, F. Jiang, H. M. Yuan, Z. X. Wei, Z. W. Ji, Z. Y. Pang, and S. H. Han, “Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure,” Physica E 84, 519–523 (2016).
[Crossref]

Jia, D. Z.

Y. L. Cao, J. D. Hu, R. F. Wang, and D. Z. Jia, “Room-temperature solid-state synthesis and fluorescence performance of 8-hydroxyquinoline-based nanomaterial complexes with different morphology,” J. Lumin. 190, 429–435 (2017).
[Crossref]

Jia, Q.

H. Zheng, T. Zhu, X. Li, G. Wang, and Q. Jia, “Immobilization of β-cyclodextrin-conjugated lactoferrin onto polymer monolith for enrichment of Ga in metabolic residues of Ga-based anticancer drugs,” Biomacromolecules 18(12), 3971–3977 (2017).
[Crossref] [PubMed]

Jiang, F.

W. F. Xie, Z. T. Chi, H. M. Yuan, F. Jiang, Z. Y. Pang, and S. H. Han, “One-step synthesis of crystalline tris(8-hydroxyquinoline) aluminum microtubes and their waveguide properties,” J. Phys. Chem. Solids 120, 6–11 (2018).
[Crossref]

W. F. Xie, J. H. Fan, H. Song, F. Jiang, H. M. Yuan, Z. X. Wei, Z. W. Ji, Z. Y. Pang, and S. H. Han, “Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure,” Physica E 84, 519–523 (2016).
[Crossref]

Ju, L.

L. Ju, T. S. Xu, Y. J. Zhang, and L. Sun, “Theoretical study on magnetism induced by H vacancy in isolated Alq3 and Gaq3 molecules,” Mater. Res. Express 4(10), 106103 (2017).
[Crossref]

Ketuly, K. A.

F. F. Muhammad, K. A. Ketuly, and M. Y. Yahya, “Effect of thermal annealing on a ternary organic solar cell incorporating Gaq3 organometallic as a boosting acceptor,” J. Inorg. Organomet. Polym. 28(1), 102–109 (2018).
[Crossref]

Khan, Y.

C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5(1), 5745–5748 (2014).
[Crossref] [PubMed]

Lee, C. S.

G. Xu, Y. B. Tang, C. H. Tsang, J. A. Zapien, C. S. Lee, and N. B. Wong, “Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties,” J. Mater. Chem. 20(15), 3006–3010 (2010).
[Crossref]

Lee, S. T.

J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
[Crossref] [PubMed]

Li, B. C.

Li, J.

Li, M.

H. Chen, N. Cheng, W. Ma, M. Li, S. Hu, L. Gu, S. Meng, and X. Guo, “Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors,” ACS Nano 10(1), 436–445 (2016).
[Crossref] [PubMed]

Li, X.

H. Zheng, T. Zhu, X. Li, G. Wang, and Q. Jia, “Immobilization of β-cyclodextrin-conjugated lactoferrin onto polymer monolith for enrichment of Ga in metabolic residues of Ga-based anticancer drugs,” Biomacromolecules 18(12), 3971–3977 (2017).
[Crossref] [PubMed]

Lima, C. F. R. A. C.

J. C. S. Costa, R. J. S. Taveira, C. F. R. A. C. Lima, A. Mendes, and L. M. N. B. F. Santos, “Optical band gaps of organic semiconductor materials,” Opt. Mater. 58, 51–60 (2016).
[Crossref]

Lochner, C. M.

C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5(1), 5745–5748 (2014).
[Crossref] [PubMed]

Lou, Z.

Ma, L.

Ma, W.

H. Chen, N. Cheng, W. Ma, M. Li, S. Hu, L. Gu, S. Meng, and X. Guo, “Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors,” ACS Nano 10(1), 436–445 (2016).
[Crossref] [PubMed]

Mccarty, D. M.

P. E. Burrows, L. S. Sapochak, D. M. Mccarty, S. R. Forrest, and M. E. Thompson, “Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices,” Appl. Phys. Lett. 64(20), 2718–2720 (1994).
[Crossref]

Mendes, A.

J. C. S. Costa, R. J. S. Taveira, C. F. R. A. C. Lima, A. Mendes, and L. M. N. B. F. Santos, “Optical band gaps of organic semiconductor materials,” Opt. Mater. 58, 51–60 (2016).
[Crossref]

Meng, S.

H. Chen, N. Cheng, W. Ma, M. Li, S. Hu, L. Gu, S. Meng, and X. Guo, “Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors,” ACS Nano 10(1), 436–445 (2016).
[Crossref] [PubMed]

Meng, X. M.

J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
[Crossref] [PubMed]

Miao, L. L.

Muhammad, F. F.

F. F. Muhammad, K. A. Ketuly, and M. Y. Yahya, “Effect of thermal annealing on a ternary organic solar cell incorporating Gaq3 organometallic as a boosting acceptor,” J. Inorg. Organomet. Polym. 28(1), 102–109 (2018).
[Crossref]

F. F. Muhammad, M. Y. Yahya, and K. Sulaiman, “Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T:Mq3:PCBM (M=Ga,Al),” Mater. Chem. Phys. 188, 86–94 (2017).
[Crossref]

F. F. Muhammad and K. Sulaiman, “Optical and morphological modifications in post-thermally treated tris(8-hydroxyquinoline) gallium films deposited on quartz substrates,” Mater. Chem. Phys. 148(1–2), 473–477 (2014).
[Crossref]

F. F. Muhammad and K. Sulaiman, “Effects of thermal annealing on the optical, spectroscopic, and structural properties of tris(8-hydroxyquinolinate) gallium films grown on quartz substrates,” Mater. Chem. Phys. 129(3), 1152–1158 (2011).
[Crossref]

F. F. Muhammad, A. I. A. Hapip, and K. Sulaiman, “Study of optoelectronic energy bands and molecular energy levels of tris (8-hydroxyquinolinate) gallium and aluminum organometallic materials from their spectroscopic and electrochemical analysis,” J. Organomet. Chem. 695(23), 2526–2531 (2010).
[Crossref]

Ossipov, K.

K. Ossipov, L. S. Foteeva, I. F. Seregina, S. A. Perevalov, A. R. Timerbaev, and M. A. Bolshov, “Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry,” Anal. Chim. Acta 785, 22–26 (2013).
[Crossref] [PubMed]

Pang, Z. Y.

W. F. Xie, Z. T. Chi, H. M. Yuan, F. Jiang, Z. Y. Pang, and S. H. Han, “One-step synthesis of crystalline tris(8-hydroxyquinoline) aluminum microtubes and their waveguide properties,” J. Phys. Chem. Solids 120, 6–11 (2018).
[Crossref]

W. F. Xie, J. H. Fan, H. Song, F. Jiang, H. M. Yuan, Z. X. Wei, Z. W. Ji, Z. Y. Pang, and S. H. Han, “Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure,” Physica E 84, 519–523 (2016).
[Crossref]

Perevalov, S. A.

K. Ossipov, L. S. Foteeva, I. F. Seregina, S. A. Perevalov, A. R. Timerbaev, and M. A. Bolshov, “Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry,” Anal. Chim. Acta 785, 22–26 (2013).
[Crossref] [PubMed]

Perng, T. P.

Y. W. Yu, C. P. Cho, and T. P. Perng, “Crystalline Gaq3 nanostructures: preparation, thermal property and spectroscopy characterization,” Nanoscale Res. Lett. 4(8), 820–827 (2009).
[Crossref] [PubMed]

Pierre, A.

C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5(1), 5745–5748 (2014).
[Crossref] [PubMed]

Pratontep, S.

M. Brinkmann, B. Fite, S. Pratontep, and C. Chaumont, “Structure and spectroscopic properties of the crystalline structures containing meridional and facial isomers of tris(8-hydroxyquinoline) gallium(III),” Chem. Mater. 16(23), 4627–4633 (2004).
[Crossref]

Qi, H. F.

H. F. Qi, W. C. Hao, H. Z. Xu, J. Zhang, and T. Wang, “Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure,” Colloid Polym. Sci. 287(2), 243–248 (2009).
[Crossref]

Santos, L. M. N. B. F.

J. C. S. Costa, R. J. S. Taveira, C. F. R. A. C. Lima, A. Mendes, and L. M. N. B. F. Santos, “Optical band gaps of organic semiconductor materials,” Opt. Mater. 58, 51–60 (2016).
[Crossref]

Sapochak, L. S.

P. E. Burrows, L. S. Sapochak, D. M. Mccarty, S. R. Forrest, and M. E. Thompson, “Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices,” Appl. Phys. Lett. 64(20), 2718–2720 (1994).
[Crossref]

Seregina, I. F.

K. Ossipov, L. S. Foteeva, I. F. Seregina, S. A. Perevalov, A. R. Timerbaev, and M. A. Bolshov, “Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry,” Anal. Chim. Acta 785, 22–26 (2013).
[Crossref] [PubMed]

Shen, J.

D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, “Giant magnetoresistance in organic spin valves,” Phys. Rev. Lett. 104(23), 236602 (2010).
[Crossref] [PubMed]

Shi, J.

Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, “Giant magnetoresistance in organic spin-valves,” Nature 427(6977), 821–824 (2004).
[Crossref] [PubMed]

Song, H.

W. F. Xie, J. H. Fan, H. Song, F. Jiang, H. M. Yuan, Z. X. Wei, Z. W. Ji, Z. Y. Pang, and S. H. Han, “Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure,” Physica E 84, 519–523 (2016).
[Crossref]

Sulaiman, K.

F. F. Muhammad, M. Y. Yahya, and K. Sulaiman, “Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T:Mq3:PCBM (M=Ga,Al),” Mater. Chem. Phys. 188, 86–94 (2017).
[Crossref]

F. F. Muhammad and K. Sulaiman, “Optical and morphological modifications in post-thermally treated tris(8-hydroxyquinoline) gallium films deposited on quartz substrates,” Mater. Chem. Phys. 148(1–2), 473–477 (2014).
[Crossref]

F. F. Muhammad and K. Sulaiman, “Effects of thermal annealing on the optical, spectroscopic, and structural properties of tris(8-hydroxyquinolinate) gallium films grown on quartz substrates,” Mater. Chem. Phys. 129(3), 1152–1158 (2011).
[Crossref]

F. F. Muhammad, A. I. A. Hapip, and K. Sulaiman, “Study of optoelectronic energy bands and molecular energy levels of tris (8-hydroxyquinolinate) gallium and aluminum organometallic materials from their spectroscopic and electrochemical analysis,” J. Organomet. Chem. 695(23), 2526–2531 (2010).
[Crossref]

Sun, C.

B. W. Wang, L. Ma, C. Sun, Z. J. Cheng, W. L. Gui, and C. F. Cheng, “Solid-state optoelectronic device based on TiO2/SnSe2 core-shell nanocable structure,” Opt. Mater. Express 7(10), 3691–3696 (2017).
[Crossref]

D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, “Giant magnetoresistance in organic spin valves,” Phys. Rev. Lett. 104(23), 236602 (2010).
[Crossref] [PubMed]

Sun, D.

D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, “Giant magnetoresistance in organic spin valves,” Phys. Rev. Lett. 104(23), 236602 (2010).
[Crossref] [PubMed]

Sun, L.

L. Ju, T. S. Xu, Y. J. Zhang, and L. Sun, “Theoretical study on magnetism induced by H vacancy in isolated Alq3 and Gaq3 molecules,” Mater. Res. Express 4(10), 106103 (2017).
[Crossref]

Tang, C. W.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Tang, Y. B.

G. Xu, Y. B. Tang, C. H. Tsang, J. A. Zapien, C. S. Lee, and N. B. Wong, “Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties,” J. Mater. Chem. 20(15), 3006–3010 (2010).
[Crossref]

Taveira, R. J. S.

J. C. S. Costa, R. J. S. Taveira, C. F. R. A. C. Lima, A. Mendes, and L. M. N. B. F. Santos, “Optical band gaps of organic semiconductor materials,” Opt. Mater. 58, 51–60 (2016).
[Crossref]

Teng, F.

Thompson, M. E.

P. E. Burrows, L. S. Sapochak, D. M. Mccarty, S. R. Forrest, and M. E. Thompson, “Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices,” Appl. Phys. Lett. 64(20), 2718–2720 (1994).
[Crossref]

Timerbaev, A. R.

K. Ossipov, L. S. Foteeva, I. F. Seregina, S. A. Perevalov, A. R. Timerbaev, and M. A. Bolshov, “Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry,” Anal. Chim. Acta 785, 22–26 (2013).
[Crossref] [PubMed]

A. R. Timerbaev, “Advances in developing tris(8-quinolinolato)gallium(iii) as an anticancer drug: critical appraisal and prospects,” Metallomics 1(3), 193–198 (2009).
[Crossref] [PubMed]

Tsang, C. H.

G. Xu, Y. B. Tang, C. H. Tsang, J. A. Zapien, C. S. Lee, and N. B. Wong, “Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties,” J. Mater. Chem. 20(15), 3006–3010 (2010).
[Crossref]

VanSlyke, S. A.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Vardeny, Z. V.

Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, “Giant magnetoresistance in organic spin-valves,” Nature 427(6977), 821–824 (2004).
[Crossref] [PubMed]

Wan, L. J.

J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
[Crossref] [PubMed]

Wang, B. W.

Wang, C.

H. Y. Deng, W. C. Hao, H. Z. Xu, and C. Wang, “Effect of intrinsic oxygen vacancy on the electronic structure of gamma-Bi2O3: first-principles calculations,” J. Phys. Chem. C 116(1), 1251–1255 (2012).
[Crossref]

Wang, G.

H. Zheng, T. Zhu, X. Li, G. Wang, and Q. Jia, “Immobilization of β-cyclodextrin-conjugated lactoferrin onto polymer monolith for enrichment of Ga in metabolic residues of Ga-based anticancer drugs,” Biomacromolecules 18(12), 3971–3977 (2017).
[Crossref] [PubMed]

Wang, R. F.

Y. L. Cao, J. D. Hu, R. F. Wang, and D. Z. Jia, “Room-temperature solid-state synthesis and fluorescence performance of 8-hydroxyquinoline-based nanomaterial complexes with different morphology,” J. Lumin. 190, 429–435 (2017).
[Crossref]

Wang, T.

H. F. Qi, W. C. Hao, H. Z. Xu, J. Zhang, and T. Wang, “Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure,” Colloid Polym. Sci. 287(2), 243–248 (2009).
[Crossref]

Wang, Y.

Ward, T. Z.

D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, “Giant magnetoresistance in organic spin valves,” Phys. Rev. Lett. 104(23), 236602 (2010).
[Crossref] [PubMed]

Wei, Z. X.

W. F. Xie, J. H. Fan, H. Song, F. Jiang, H. M. Yuan, Z. X. Wei, Z. W. Ji, Z. Y. Pang, and S. H. Han, “Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure,” Physica E 84, 519–523 (2016).
[Crossref]

Wen, S. C.

Wong, N. B.

G. Xu, Y. B. Tang, C. H. Tsang, J. A. Zapien, C. S. Lee, and N. B. Wong, “Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties,” J. Mater. Chem. 20(15), 3006–3010 (2010).
[Crossref]

Wu, D.

Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, “Giant magnetoresistance in organic spin-valves,” Nature 427(6977), 821–824 (2004).
[Crossref] [PubMed]

Xia, A. D.

J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
[Crossref] [PubMed]

Xie, W. F.

W. F. Xie, Z. T. Chi, H. M. Yuan, F. Jiang, Z. Y. Pang, and S. H. Han, “One-step synthesis of crystalline tris(8-hydroxyquinoline) aluminum microtubes and their waveguide properties,” J. Phys. Chem. Solids 120, 6–11 (2018).
[Crossref]

W. F. Xie, J. H. Fan, H. Song, F. Jiang, H. M. Yuan, Z. X. Wei, Z. W. Ji, Z. Y. Pang, and S. H. Han, “Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure,” Physica E 84, 519–523 (2016).
[Crossref]

Xiong, Z. H.

Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, “Giant magnetoresistance in organic spin-valves,” Nature 427(6977), 821–824 (2004).
[Crossref] [PubMed]

Xu, G.

G. Xu, Y. B. Tang, C. H. Tsang, J. A. Zapien, C. S. Lee, and N. B. Wong, “Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties,” J. Mater. Chem. 20(15), 3006–3010 (2010).
[Crossref]

Xu, H. Z.

H. Y. Deng, W. C. Hao, H. Z. Xu, and C. Wang, “Effect of intrinsic oxygen vacancy on the electronic structure of gamma-Bi2O3: first-principles calculations,” J. Phys. Chem. C 116(1), 1251–1255 (2012).
[Crossref]

H. F. Qi, W. C. Hao, H. Z. Xu, J. Zhang, and T. Wang, “Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure,” Colloid Polym. Sci. 287(2), 243–248 (2009).
[Crossref]

Xu, T. S.

L. Ju, T. S. Xu, Y. J. Zhang, and L. Sun, “Theoretical study on magnetism induced by H vacancy in isolated Alq3 and Gaq3 molecules,” Mater. Res. Express 4(10), 106103 (2017).
[Crossref]

Yahya, M. Y.

F. F. Muhammad, K. A. Ketuly, and M. Y. Yahya, “Effect of thermal annealing on a ternary organic solar cell incorporating Gaq3 organometallic as a boosting acceptor,” J. Inorg. Organomet. Polym. 28(1), 102–109 (2018).
[Crossref]

F. F. Muhammad, M. Y. Yahya, and K. Sulaiman, “Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T:Mq3:PCBM (M=Ga,Al),” Mater. Chem. Phys. 188, 86–94 (2017).
[Crossref]

Yi, J.

Yin, L.

D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, “Giant magnetoresistance in organic spin valves,” Phys. Rev. Lett. 104(23), 236602 (2010).
[Crossref] [PubMed]

Yu, D. P.

J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
[Crossref] [PubMed]

Yu, Y. W.

Y. W. Yu, C. P. Cho, and T. P. Perng, “Crystalline Gaq3 nanostructures: preparation, thermal property and spectroscopy characterization,” Nanoscale Res. Lett. 4(8), 820–827 (2009).
[Crossref] [PubMed]

Yuan, H. M.

W. F. Xie, Z. T. Chi, H. M. Yuan, F. Jiang, Z. Y. Pang, and S. H. Han, “One-step synthesis of crystalline tris(8-hydroxyquinoline) aluminum microtubes and their waveguide properties,” J. Phys. Chem. Solids 120, 6–11 (2018).
[Crossref]

W. F. Xie, J. H. Fan, H. Song, F. Jiang, H. M. Yuan, Z. X. Wei, Z. W. Ji, Z. Y. Pang, and S. H. Han, “Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure,” Physica E 84, 519–523 (2016).
[Crossref]

Zapien, J. A.

G. Xu, Y. B. Tang, C. H. Tsang, J. A. Zapien, C. S. Lee, and N. B. Wong, “Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties,” J. Mater. Chem. 20(15), 3006–3010 (2010).
[Crossref]

Zhang, J.

H. F. Qi, W. C. Hao, H. Z. Xu, J. Zhang, and T. Wang, “Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure,” Colloid Polym. Sci. 287(2), 243–248 (2009).
[Crossref]

Zhang, X. G.

D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, “Giant magnetoresistance in organic spin valves,” Phys. Rev. Lett. 104(23), 236602 (2010).
[Crossref] [PubMed]

Zhang, Y.

J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
[Crossref] [PubMed]

Zhang, Y. J.

L. Ju, T. S. Xu, Y. J. Zhang, and L. Sun, “Theoretical study on magnetism induced by H vacancy in isolated Alq3 and Gaq3 molecules,” Mater. Res. Express 4(10), 106103 (2017).
[Crossref]

Zhao, C. J.

Zheng, H.

H. Zheng, T. Zhu, X. Li, G. Wang, and Q. Jia, “Immobilization of β-cyclodextrin-conjugated lactoferrin onto polymer monolith for enrichment of Ga in metabolic residues of Ga-based anticancer drugs,” Biomacromolecules 18(12), 3971–3977 (2017).
[Crossref] [PubMed]

Zhou, J. N.

Zhu, L.

Zhu, T.

H. Zheng, T. Zhu, X. Li, G. Wang, and Q. Jia, “Immobilization of β-cyclodextrin-conjugated lactoferrin onto polymer monolith for enrichment of Ga in metabolic residues of Ga-based anticancer drugs,” Biomacromolecules 18(12), 3971–3977 (2017).
[Crossref] [PubMed]

ACS Nano (1)

H. Chen, N. Cheng, W. Ma, M. Li, S. Hu, L. Gu, S. Meng, and X. Guo, “Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors,” ACS Nano 10(1), 436–445 (2016).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

K. Ossipov, L. S. Foteeva, I. F. Seregina, S. A. Perevalov, A. R. Timerbaev, and M. A. Bolshov, “Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry,” Anal. Chim. Acta 785, 22–26 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

P. E. Burrows, L. S. Sapochak, D. M. Mccarty, S. R. Forrest, and M. E. Thompson, “Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices,” Appl. Phys. Lett. 64(20), 2718–2720 (1994).
[Crossref]

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Biomacromolecules (1)

H. Zheng, T. Zhu, X. Li, G. Wang, and Q. Jia, “Immobilization of β-cyclodextrin-conjugated lactoferrin onto polymer monolith for enrichment of Ga in metabolic residues of Ga-based anticancer drugs,” Biomacromolecules 18(12), 3971–3977 (2017).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

J. S. Hu, H. X. Ji, A. M. Cao, Z. X. Huang, Y. Zhang, L. J. Wan, A. D. Xia, D. P. Yu, X. M. Meng, and S. T. Lee, “Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties,” Chem. Commun. (Camb.) 29(29), 3083–3085 (2007).
[Crossref] [PubMed]

Chem. Mater. (1)

M. Brinkmann, B. Fite, S. Pratontep, and C. Chaumont, “Structure and spectroscopic properties of the crystalline structures containing meridional and facial isomers of tris(8-hydroxyquinoline) gallium(III),” Chem. Mater. 16(23), 4627–4633 (2004).
[Crossref]

Colloid Polym. Sci. (1)

H. F. Qi, W. C. Hao, H. Z. Xu, J. Zhang, and T. Wang, “Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure,” Colloid Polym. Sci. 287(2), 243–248 (2009).
[Crossref]

J. Inorg. Organomet. Polym. (1)

F. F. Muhammad, K. A. Ketuly, and M. Y. Yahya, “Effect of thermal annealing on a ternary organic solar cell incorporating Gaq3 organometallic as a boosting acceptor,” J. Inorg. Organomet. Polym. 28(1), 102–109 (2018).
[Crossref]

J. Lumin. (1)

Y. L. Cao, J. D. Hu, R. F. Wang, and D. Z. Jia, “Room-temperature solid-state synthesis and fluorescence performance of 8-hydroxyquinoline-based nanomaterial complexes with different morphology,” J. Lumin. 190, 429–435 (2017).
[Crossref]

J. Mater. Chem. (1)

G. Xu, Y. B. Tang, C. H. Tsang, J. A. Zapien, C. S. Lee, and N. B. Wong, “Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties,” J. Mater. Chem. 20(15), 3006–3010 (2010).
[Crossref]

J. Organomet. Chem. (1)

F. F. Muhammad, A. I. A. Hapip, and K. Sulaiman, “Study of optoelectronic energy bands and molecular energy levels of tris (8-hydroxyquinolinate) gallium and aluminum organometallic materials from their spectroscopic and electrochemical analysis,” J. Organomet. Chem. 695(23), 2526–2531 (2010).
[Crossref]

J. Phys. Chem. B (1)

I. Hernández and W. P. Gillin, “Influence of high hydrostatic pressure on Alq3, Gaq3, and Inq3 (q = 8-hydroxyquinoline),” J. Phys. Chem. B 113(43), 14079–14086 (2009).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

H. Y. Deng, W. C. Hao, H. Z. Xu, and C. Wang, “Effect of intrinsic oxygen vacancy on the electronic structure of gamma-Bi2O3: first-principles calculations,” J. Phys. Chem. C 116(1), 1251–1255 (2012).
[Crossref]

J. Phys. Chem. Solids (1)

W. F. Xie, Z. T. Chi, H. M. Yuan, F. Jiang, Z. Y. Pang, and S. H. Han, “One-step synthesis of crystalline tris(8-hydroxyquinoline) aluminum microtubes and their waveguide properties,” J. Phys. Chem. Solids 120, 6–11 (2018).
[Crossref]

Mater. Chem. Phys. (3)

F. F. Muhammad, M. Y. Yahya, and K. Sulaiman, “Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T:Mq3:PCBM (M=Ga,Al),” Mater. Chem. Phys. 188, 86–94 (2017).
[Crossref]

F. F. Muhammad and K. Sulaiman, “Optical and morphological modifications in post-thermally treated tris(8-hydroxyquinoline) gallium films deposited on quartz substrates,” Mater. Chem. Phys. 148(1–2), 473–477 (2014).
[Crossref]

F. F. Muhammad and K. Sulaiman, “Effects of thermal annealing on the optical, spectroscopic, and structural properties of tris(8-hydroxyquinolinate) gallium films grown on quartz substrates,” Mater. Chem. Phys. 129(3), 1152–1158 (2011).
[Crossref]

Mater. Res. Express (1)

L. Ju, T. S. Xu, Y. J. Zhang, and L. Sun, “Theoretical study on magnetism induced by H vacancy in isolated Alq3 and Gaq3 molecules,” Mater. Res. Express 4(10), 106103 (2017).
[Crossref]

Metallomics (1)

A. R. Timerbaev, “Advances in developing tris(8-quinolinolato)gallium(iii) as an anticancer drug: critical appraisal and prospects,” Metallomics 1(3), 193–198 (2009).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

Y. W. Yu, C. P. Cho, and T. P. Perng, “Crystalline Gaq3 nanostructures: preparation, thermal property and spectroscopy characterization,” Nanoscale Res. Lett. 4(8), 820–827 (2009).
[Crossref] [PubMed]

Nat. Commun. (1)

C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5(1), 5745–5748 (2014).
[Crossref] [PubMed]

Nature (1)

Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, “Giant magnetoresistance in organic spin-valves,” Nature 427(6977), 821–824 (2004).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (1)

J. C. S. Costa, R. J. S. Taveira, C. F. R. A. C. Lima, A. Mendes, and L. M. N. B. F. Santos, “Optical band gaps of organic semiconductor materials,” Opt. Mater. 58, 51–60 (2016).
[Crossref]

Opt. Mater. Express (3)

Phys. Rev. Lett. (1)

D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, “Giant magnetoresistance in organic spin valves,” Phys. Rev. Lett. 104(23), 236602 (2010).
[Crossref] [PubMed]

Physica E (1)

W. F. Xie, J. H. Fan, H. Song, F. Jiang, H. M. Yuan, Z. X. Wei, Z. W. Ji, Z. Y. Pang, and S. H. Han, “Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure,” Physica E 84, 519–523 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 A schematic view of the preparation process of crystalline Gaq3 nanostructures.
Fig. 2
Fig. 2 The SEM and TEM photographs of the as-prepared Gaq3 nanostructures. Figures 2(a) and 2(b) are low and high magnification SEM images of Gaq3 nanorods, respectively; Fig. 2(c) TEM image and inset table further reveal the morphology and chemical composition of as-prepared Gaq3 rods; Figs. 2(d) and 2(e) are low and high magnification SEM images of Gaq3 nanoparticles, respectively, the inset is the higher resolution image of single Gaq3 particle; The TEM image of Gaq3 nanoparticles, and the inset table is the chemical composition measured by EDX.
Fig. 3
Fig. 3 (a) and (b) the Raman and XRD spectra of of Gaq3 powder, rods and nanoparticles, respectively.
Fig. 4
Fig. 4 (a) and (c) the PL spectra, excited at 325 nm, of Gaq3 nanorods and nanoparticles, the insets are calculated CIE chromaticity coordinates (0.283, 0.551) and (0.277, 0.553) of Gaq3 rods and particles, respectively; Figs. 2(b) and 2(d) are the photoluminescence microscopy images of Gaq3 nanorods and nanoparticles excited with 380-450 nm.

Metrics