Abstract

We demonstrate a new method for high resolution patterning of the facets of a nonlinear crystal, LiB3O5, based on lithographic exposure of its anti-reflection coating layer, followed by ion beam milling. This crystal is attractive for high intensity frequency conversion due to its high damage threshold. We demonstrate an application of our patterning method for shaping the fundamental beam, as well as the second harmonic beam that is generated in the crystal. We fabricated six different phase masks that generated the following beam profiles in both wavelengths: on- and off-axis high order Hermite-Gaussian beam, Airy beam, vortex beam, lens and a periodic Bragg grating. Such an optical device opens up new possibilities for compact beam shaping in high power nonlinear interaction in a broad range of frequencies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Shaping light beams in nonlinear processes using structured light and patterned crystals

Sivan Trajtenebrg-Mills and Ady Arie
Opt. Mater. Express 7(8) 2928-2942 (2017)

Temperature-insensitive second-harmonic generation based on noncollinear phase matching in a lithium triborate crystal

Daolong Tang, Jing Wang, Bingjie Zhou, Guoqiang Xie, Jingui Ma, Peng Yuan, Heyuan Zhu, and Liejia Qian
J. Opt. Soc. Am. B 34(8) 1659-1668 (2017)

Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals

Shlomi Lightman, Raz Gvishi, Gilad Hurvitz, and Ady Arie
Opt. Lett. 40(19) 4460-4463 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. L. S. Fred, M. Dickey, T. E. Lizotte, and S. C. Holswade, Laser Beam Shaping Applications (CRC Press, 2006).
  2. J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8(3), 660–664 (2002).
    [Crossref]
  3. Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100(6), 063902 (2008).
    [Crossref] [PubMed]
  4. T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, “Nonlinear photonic structures for all-optical deflection,” Opt. Express 16(5), 3077–3082 (2008).
    [Crossref] [PubMed]
  5. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of airy beams,” Nat. Photonics 3(7), 395–398 (2009).
    [Crossref]
  6. A. Shapira, I. Juwiler, and A. Arie, “Nonlinear computer-generated holograms,” Opt. Lett.  36(15), 3015–3017 (2011).
  7. A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
    [Crossref] [PubMed]
  8. A. Aadhi, N. A. Chaitanya, M. V. Jabir, P. Vaity, R. P. Singh, and G. K. Samanta, “Airy beam optical parametric oscillator,” Sci. Rep. 6(1), 25245 (2016).
    [Crossref] [PubMed]
  9. A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
    [Crossref]
  10. S. Lightman, R. Gvishi, G. Hurvitz, and A. Arie, “Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals,” Opt. Lett. 40(19), 4460–4463 (2015).
    [Crossref] [PubMed]
  11. Y. M. Andreev, M. Naftaly, J. F. Molloy, A. E. Kokh, G. V. Lanskii, V. A. Svetlichnyi, V. F. Losev, N. G. Kononova, and K. A. Kokh, “LBO: Optical properties and potential for THz application,” Laser Phys. Lett. 12(11), 115402 (2015).
    [Crossref]
  12. Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
    [Crossref]
  13. W.-H. Lee, “Binary computer-generated holograms,” Appl. Opt. 18(21), 3661–3669 (1979).
    [Crossref] [PubMed]
  14. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  15. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Edition (Wiley, 2007), p. 1200.
  16. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref] [PubMed]
  17. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  18. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Phys. Rev. Lett. Contemp. Phys 58(46), 1499–1501 (1987).
  19. J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao, and P. Lv, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47(35), 6638–6643 (2008).
    [Crossref] [PubMed]
  20. R. Schnabel, A. Bunkowski, O. Burmeister, and K. Danzmann, “Three-port beam splitters-combiners for interferometer applications,” Opt. Lett. 31(5), 658–660 (2006).
    [Crossref] [PubMed]
  21. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

2016 (1)

A. Aadhi, N. A. Chaitanya, M. V. Jabir, P. Vaity, R. P. Singh, and G. K. Samanta, “Airy beam optical parametric oscillator,” Sci. Rep. 6(1), 25245 (2016).
[Crossref] [PubMed]

2015 (2)

S. Lightman, R. Gvishi, G. Hurvitz, and A. Arie, “Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals,” Opt. Lett. 40(19), 4460–4463 (2015).
[Crossref] [PubMed]

Y. M. Andreev, M. Naftaly, J. F. Molloy, A. E. Kokh, G. V. Lanskii, V. A. Svetlichnyi, V. F. Losev, N. G. Kononova, and K. A. Kokh, “LBO: Optical properties and potential for THz application,” Laser Phys. Lett. 12(11), 115402 (2015).
[Crossref]

2013 (1)

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
[Crossref]

2012 (1)

2011 (1)

A. Shapira, I. Juwiler, and A. Arie, “Nonlinear computer-generated holograms,” Opt. Lett.  36(15), 3015–3017 (2011).

2009 (1)

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[Crossref]

2008 (3)

2007 (1)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

2006 (1)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2002 (1)

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8(3), 660–664 (2002).
[Crossref]

1994 (1)

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1987 (1)

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Phys. Rev. Lett. Contemp. Phys 58(46), 1499–1501 (1987).

1979 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Aadhi, A.

A. Aadhi, N. A. Chaitanya, M. V. Jabir, P. Vaity, R. P. Singh, and G. K. Samanta, “Airy beam optical parametric oscillator,” Sci. Rep. 6(1), 25245 (2016).
[Crossref] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Andreev, Y. M.

Y. M. Andreev, M. Naftaly, J. F. Molloy, A. E. Kokh, G. V. Lanskii, V. A. Svetlichnyi, V. F. Losev, N. G. Kononova, and K. A. Kokh, “LBO: Optical properties and potential for THz application,” Laser Phys. Lett. 12(11), 115402 (2015).
[Crossref]

Arie, A.

S. Lightman, R. Gvishi, G. Hurvitz, and A. Arie, “Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals,” Opt. Lett. 40(19), 4460–4463 (2015).
[Crossref] [PubMed]

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
[Crossref]

A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
[Crossref] [PubMed]

A. Shapira, I. Juwiler, and A. Arie, “Nonlinear computer-generated holograms,” Opt. Lett.  36(15), 3015–3017 (2011).

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[Crossref]

T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, “Nonlinear photonic structures for all-optical deflection,” Opt. Express 16(5), 3077–3082 (2008).
[Crossref] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Phys. Rev. Lett. Contemp. Phys 58(46), 1499–1501 (1987).

Bunkowski, A.

Burmeister, O.

Cao, H.

Chaitanya, N. A.

A. Aadhi, N. A. Chaitanya, M. V. Jabir, P. Vaity, R. P. Singh, and G. K. Samanta, “Airy beam optical parametric oscillator,” Sci. Rep. 6(1), 25245 (2016).
[Crossref] [PubMed]

Christodoulides, D. N.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Phys. Rev. Lett. Contemp. Phys 58(46), 1499–1501 (1987).

Danzmann, K.

Dickey, M.

D. L. S. Fred, M. Dickey, T. E. Lizotte, and S. C. Holswade, Laser Beam Shaping Applications (CRC Press, 2006).

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Phys. Rev. Lett. Contemp. Phys 58(46), 1499–1501 (1987).

Ellenbogen, T.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[Crossref]

T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, “Nonlinear photonic structures for all-optical deflection,” Opt. Express 16(5), 3077–3082 (2008).
[Crossref] [PubMed]

Fejer, M. M.

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8(3), 660–664 (2002).
[Crossref]

Feng, J.

Fred, D. L. S.

D. L. S. Fred, M. Dickey, T. E. Lizotte, and S. C. Holswade, Laser Beam Shaping Applications (CRC Press, 2006).

Fujita, H.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[Crossref]

Furukawa, Y.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[Crossref]

Ganany-Padowicz, A.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[Crossref]

T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, “Nonlinear photonic structures for all-optical deflection,” Opt. Express 16(5), 3077–3082 (2008).
[Crossref] [PubMed]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Gvishi, R.

Holswade, S. C.

D. L. S. Fred, M. Dickey, T. E. Lizotte, and S. C. Holswade, Laser Beam Shaping Applications (CRC Press, 2006).

Hu, X. P.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100(6), 063902 (2008).
[Crossref] [PubMed]

Hum, D. S.

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8(3), 660–664 (2002).
[Crossref]

Hurvitz, G.

Jabir, M. V.

A. Aadhi, N. A. Chaitanya, M. V. Jabir, P. Vaity, R. P. Singh, and G. K. Samanta, “Airy beam optical parametric oscillator,” Sci. Rep. 6(1), 25245 (2016).
[Crossref] [PubMed]

Jia, W.

Juwiler, I.

A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
[Crossref] [PubMed]

A. Shapira, I. Juwiler, and A. Arie, “Nonlinear computer-generated holograms,” Opt. Lett.  36(15), 3015–3017 (2011).

Kokh, A. E.

Y. M. Andreev, M. Naftaly, J. F. Molloy, A. E. Kokh, G. V. Lanskii, V. A. Svetlichnyi, V. F. Losev, N. G. Kononova, and K. A. Kokh, “LBO: Optical properties and potential for THz application,” Laser Phys. Lett. 12(11), 115402 (2015).
[Crossref]

Kokh, K. A.

Y. M. Andreev, M. Naftaly, J. F. Molloy, A. E. Kokh, G. V. Lanskii, V. A. Svetlichnyi, V. F. Losev, N. G. Kononova, and K. A. Kokh, “LBO: Optical properties and potential for THz application,” Laser Phys. Lett. 12(11), 115402 (2015).
[Crossref]

Kononova, N. G.

Y. M. Andreev, M. Naftaly, J. F. Molloy, A. E. Kokh, G. V. Lanskii, V. A. Svetlichnyi, V. F. Losev, N. G. Kononova, and K. A. Kokh, “LBO: Optical properties and potential for THz application,” Laser Phys. Lett. 12(11), 115402 (2015).
[Crossref]

Kurz, J. R.

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8(3), 660–664 (2002).
[Crossref]

Lanskii, G. V.

Y. M. Andreev, M. Naftaly, J. F. Molloy, A. E. Kokh, G. V. Lanskii, V. A. Svetlichnyi, V. F. Losev, N. G. Kononova, and K. A. Kokh, “LBO: Optical properties and potential for THz application,” Laser Phys. Lett. 12(11), 115402 (2015).
[Crossref]

Lee, W.-H.

Libster, A.

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
[Crossref]

Lightman, S.

Lilach, Y.

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
[Crossref]

Lizotte, T. E.

D. L. S. Fred, M. Dickey, T. E. Lizotte, and S. C. Holswade, Laser Beam Shaping Applications (CRC Press, 2006).

Losev, V. F.

Y. M. Andreev, M. Naftaly, J. F. Molloy, A. E. Kokh, G. V. Lanskii, V. A. Svetlichnyi, V. F. Losev, N. G. Kononova, and K. A. Kokh, “LBO: Optical properties and potential for THz application,” Laser Phys. Lett. 12(11), 115402 (2015).
[Crossref]

Lv, P.

Markgraf, S. A.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[Crossref]

Molloy, J. F.

Y. M. Andreev, M. Naftaly, J. F. Molloy, A. E. Kokh, G. V. Lanskii, V. A. Svetlichnyi, V. F. Losev, N. G. Kononova, and K. A. Kokh, “LBO: Optical properties and potential for THz application,” Laser Phys. Lett. 12(11), 115402 (2015).
[Crossref]

Naftaly, M.

Y. M. Andreev, M. Naftaly, J. F. Molloy, A. E. Kokh, G. V. Lanskii, V. A. Svetlichnyi, V. F. Losev, N. G. Kononova, and K. A. Kokh, “LBO: Optical properties and potential for THz application,” Laser Phys. Lett. 12(11), 115402 (2015).
[Crossref]

Nakai, S.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[Crossref]

Qin, Y. Q.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100(6), 063902 (2008).
[Crossref] [PubMed]

Saltzman, A. J.

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8(3), 660–664 (2002).
[Crossref]

Samanta, G. K.

A. Aadhi, N. A. Chaitanya, M. V. Jabir, P. Vaity, R. P. Singh, and G. K. Samanta, “Airy beam optical parametric oscillator,” Sci. Rep. 6(1), 25245 (2016).
[Crossref] [PubMed]

Sasaki, T.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[Crossref]

Sato, M.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[Crossref]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Schnabel, R.

Schober, A. M.

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8(3), 660–664 (2002).
[Crossref]

Shapira, A.

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
[Crossref]

A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
[Crossref] [PubMed]

A. Shapira, I. Juwiler, and A. Arie, “Nonlinear computer-generated holograms,” Opt. Lett.  36(15), 3015–3017 (2011).

Shiloh, R.

Singh, R. P.

A. Aadhi, N. A. Chaitanya, M. V. Jabir, P. Vaity, R. P. Singh, and G. K. Samanta, “Airy beam optical parametric oscillator,” Sci. Rep. 6(1), 25245 (2016).
[Crossref] [PubMed]

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Phys. Rev. Lett. Contemp. Phys 58(46), 1499–1501 (1987).

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Svetlichnyi, V. A.

Y. M. Andreev, M. Naftaly, J. F. Molloy, A. E. Kokh, G. V. Lanskii, V. A. Svetlichnyi, V. F. Losev, N. G. Kononova, and K. A. Kokh, “LBO: Optical properties and potential for THz application,” Laser Phys. Lett. 12(11), 115402 (2015).
[Crossref]

Vaity, P.

A. Aadhi, N. A. Chaitanya, M. V. Jabir, P. Vaity, R. P. Singh, and G. K. Samanta, “Airy beam optical parametric oscillator,” Sci. Rep. 6(1), 25245 (2016).
[Crossref] [PubMed]

Voloch-Bloch, N.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[Crossref]

Wang, B.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Yamanaka, T.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[Crossref]

Yoshida, H.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[Crossref]

Zhang, C.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100(6), 063902 (2008).
[Crossref] [PubMed]

Zhao, G.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100(6), 063902 (2008).
[Crossref] [PubMed]

Zheng, J.

Zhou, C.

Zhu, Y. Y.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100(6), 063902 (2008).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8(3), 660–664 (2002).
[Crossref]

Laser Phys. Lett. (1)

Y. M. Andreev, M. Naftaly, J. F. Molloy, A. E. Kokh, G. V. Lanskii, V. A. Svetlichnyi, V. F. Losev, N. G. Kononova, and K. A. Kokh, “LBO: Optical properties and potential for THz application,” Laser Phys. Lett. 12(11), 115402 (2015).
[Crossref]

Nat. Photonics (1)

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett (1)

A. Shapira, I. Juwiler, and A. Arie, “Nonlinear computer-generated holograms,” Opt. Lett.  36(15), 3015–3017 (2011).

Opt. Lett. (3)

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100(6), 063902 (2008).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. Contemp. Phys (1)

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Phys. Rev. Lett. Contemp. Phys 58(46), 1499–1501 (1987).

Sci. Rep. (1)

A. Aadhi, N. A. Chaitanya, M. V. Jabir, P. Vaity, R. P. Singh, and G. K. Samanta, “Airy beam optical parametric oscillator,” Sci. Rep. 6(1), 25245 (2016).
[Crossref] [PubMed]

Other (2)

D. L. S. Fred, M. Dickey, T. E. Lizotte, and S. C. Holswade, Laser Beam Shaping Applications (CRC Press, 2006).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Edition (Wiley, 2007), p. 1200.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the fabrication process of binary patterns using lithographic methods. (b-g) Confocal microscopic images of milled structures on the LBO facet, namely (b) binary phase step; (c) Bragg grating; (d) lens; (e) fork grating; (f) Hermite-Gauss of order 1,2; (g) Two-dimensional Airy beam. All scale bars are 40 µm.
Fig. 2
Fig. 2 (a, b) Schematic illustration of beam positioning on the π phase-step structure which determines the spatial distribution of HG10 mode. Simulated (bottom) and measured (top) for (c) SH and (d) FF of the generated HG10. The scale bar is 150µm.
Fig. 3
Fig. 3 Schematic of the optical setup. L1 and L2 are lenses. A band pass filter was used to remove the pump wavelength from the generated second harmonic frequency.
Fig. 4
Fig. 4 (a) Diffraction pattern of a Bragg grating with 50% duty cycle. (i) Measurement and (ii) simulation. Most of the intensity of the diffracted light is confined within the −1, 0, and + 1 orders. (b, c) Evolution of the diffraction pattern from the lens structure in Fig. 1(d), as measured at three different locations: (i) before, (ii) at focus and (iii) after focus, for (b) measured SH, (c) measured FF.
Fig. 5
Fig. 5 Comparison of the beam radius for the converging (positive) diffraction order of (a) SH, (b) FF and diverging (negative) diffraction order of (c) SH, and (d) FF, as measured and simulated in Fig. 4. The measurement of the beam radius was performed in the horizontal direction and the beam is assumed rotationally symmetric.
Fig. 6
Fig. 6 Simulated (top row), experimental SH (middle row) and experimental FF (bottom row) results of (a) vortex beam, (b) HG12 and (c) Airy beam. The scale bar is 150µm.

Tables (1)

Tables Icon

Table 1 Modulation expressions for desired beam profiles

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ ( x , y ) = 2 π ( n n a i r ) × h ( x , y ) λ
T(x,y)=exp{ ΔΦ 2 [1+sign[cos( 2π Λ +φ(x,y))cos(πq(x,y))]]}

Metrics