Abstract

In this study, we propose and demonstrate the enhancement of impurity-free vacancy diffusion (IFVD) quantum well intermixing (QWI) using supercritical fluid (SCF) treatment for photonic integration. Using an InGaAsP-based multiple quantum well (MQW) template for local bandgap engineering, SCF CO2 with H2O2 on a patterned SiOx capping layer could lower the QWI temperature to get a constant wavelength blueshift. Higher oxygen concentration was found in SiOx through high diffusivities and pressures of SCF and dehydration, enabling highly activated Ga2O3 reactions for more vacancies. Additionally, different schemes of semiconductor optical amplifier (SOA)-integrated electroabsorption modulators (EAM) were fabricated. SCF treatment could realize a 9- and 6-dB improvement in extinction ratio and gain, respectively, and then high-speed 45Gb/s modulation, greatly reducing the common issue of p-type dopant (zinc) diffusion during QWI.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical and physical properties of solgel-derived GeO2:SiO2 films in photonic applications

Charles K. F. Ho, Rajni Pal, H. S. Djie, Kantisara Pita, Nam Quoc Ngo, and T. Osipowicz
Appl. Opt. 46(20) 4397-4406 (2007)

Regrowth-free high-gain InGaAsP/InP active-passive platform via ion implantation

John S. Parker, Abirami Sivananthan, Erik Norberg, and Larry A. Coldren
Opt. Express 20(18) 19946-19955 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
    [Crossref]
  2. S. G. Ayling, A. C. Bryce, I. Gontijo, J. H. Marsh, and J. S. Roberts, “A comparison of carbon and zinc doping in GaAs/AlGaAs lasers bandgap-tuned by impurity-free vacancy disordering,” Semicond. Sci. Technol. 9(11), 2149–2151 (1994).
    [Crossref]
  3. K. Itaya, M. J. Mondry, P. D. Floyd, L. A. Coldren, and J. L. Merz, “Impurity-induced disordering of AIGalnAs quantum wells by low temperature Zn diffusion,” J. Electron. Mater. 25(5), 565–569 (1996).
    [Crossref]
  4. J. S. Parker, A. Sivananthan, E. Norberg, and L. A. Coldren, “Regrowth-free high-gain InGaAsP/InP active-passive platform via ion implantation,” Opt. Express 20(18), 19946–19955 (2012).
    [Crossref] [PubMed]
  5. P. N. K. Deenapanray, H. H. Tan, L. Fu, and C. Jagadish, “Influence of low‐temperature chemical vapor deposited SiO2 capping layer porosity on GaAs/AlGaAs quantum well intermixing,” Electrochem. Solid-State Lett. 3(4), 196–199 (1999).
    [Crossref]
  6. P. N. K. Deenapanray and C. Jagadish, “Impurity-free intermixing of GaAs/AlGaAs quantum wells using SiOx capping: Effect of nitrous oxide flow rate,” J. Vac. Sci. Technol. B 19(5), 1962–1966 (2001).
    [Crossref]
  7. P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C. Jagadish, “Silane flow rate dependence of SiOx cap layer induced impurity‐free intermixing of GaAs/AlGaAs quantum wells,” J. Electrochem. Soc. 147(5), 1950–1956 (2000).
    [Crossref]
  8. P. N. K. Deenapanray and C. Jagadish, “Effect of stress on impurity-free quantum well intermixing,” Electrochem. Solid-State Lett. 4(2), G11–G13 (2001).
    [Crossref]
  9. H. S. Djie, C. K. F. Ho, T. Mei, and B.-S. Ooi, “Quantum well intermixing enhancement using Ge-doped sol-gel derived SiO2 encapsulant layer in InGaAs/InP laser structure,” Appl. Phys. Lett. 86(8), 081106 (2005).
    [Crossref]
  10. P. Cusumano, B.-S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Rose, “Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer,” J. Appl. Phys. 81(5), 2445–2447 (1997).
    [Crossref]
  11. P Aleahmad, S Bakhshi, D Christodoulides and P. LiKamWa, “Controllable red and blue shifting of InGaAsP quantum well bandgap energy for photonic device integration,” Materials Research Express 2, 8 (2015).
  12. T. Tabbakh, P. Li, and K. Wa, “Blue and red shifted, partially intermixed InGaAsP quantum well semiconductor laser diodes,” IEEEPhotonics Conference (IPC) (2017).
    [Crossref]
  13. S. Das, D. Malik, T. Bhowmick, U. Das, and T. D. Das, “InGaAsP/InP QW impurity free intermixing for variable ZrO2 cap thickness,” IEEE Photonics Technol. Lett. 27(14), 1511–1514 (2015).
    [Crossref]
  14. S. Das, R. Kumar, T. Bhowmick, and U. Das, “Optical losses in InGaAsP/InP QW intermixed waveguides for ZrO2 cap with and without F implantation,” Opt. Quantum Electron. 48(1), 60 (2016).
    [Crossref]
  15. P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys. 78(4), 2367–2371 (1995).
    [Crossref]
  16. E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
    [Crossref]
  17. J. W. Raring and L. A. Coldren, “40-Gb/s widely tunable transceivers,” IEEE J. Sel. Top. Quantum Electron. 13(1), 3–14 (2007).
    [Crossref]
  18. M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron. 4(4), 741–745 (1998).
    [Crossref]
  19. V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B.-S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron. 8(4), 870–879 (2002).
    [Crossref]
  20. Y.-J. Chen, C.-L. Chen, S.-a. Yang, R.-Y. Chen, and Yi-Jen Chiu, “Enhancement of SOA-integrated EAM with low-temperature quantum well intermixing through supercritical fluid technique.” IEEE Photonics Conference (IPC) (2017).
  21. M. McHugh and V. Krukonis, Supercritical Fluid Extraction: Principles and Practice (Elsevier, 2013).

2016 (1)

S. Das, R. Kumar, T. Bhowmick, and U. Das, “Optical losses in InGaAsP/InP QW intermixed waveguides for ZrO2 cap with and without F implantation,” Opt. Quantum Electron. 48(1), 60 (2016).
[Crossref]

2015 (1)

S. Das, D. Malik, T. Bhowmick, U. Das, and T. D. Das, “InGaAsP/InP QW impurity free intermixing for variable ZrO2 cap thickness,” IEEE Photonics Technol. Lett. 27(14), 1511–1514 (2015).
[Crossref]

2012 (1)

2007 (1)

J. W. Raring and L. A. Coldren, “40-Gb/s widely tunable transceivers,” IEEE J. Sel. Top. Quantum Electron. 13(1), 3–14 (2007).
[Crossref]

2005 (1)

H. S. Djie, C. K. F. Ho, T. Mei, and B.-S. Ooi, “Quantum well intermixing enhancement using Ge-doped sol-gel derived SiO2 encapsulant layer in InGaAs/InP laser structure,” Appl. Phys. Lett. 86(8), 081106 (2005).
[Crossref]

2003 (1)

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

2002 (1)

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B.-S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron. 8(4), 870–879 (2002).
[Crossref]

2001 (2)

P. N. K. Deenapanray and C. Jagadish, “Impurity-free intermixing of GaAs/AlGaAs quantum wells using SiOx capping: Effect of nitrous oxide flow rate,” J. Vac. Sci. Technol. B 19(5), 1962–1966 (2001).
[Crossref]

P. N. K. Deenapanray and C. Jagadish, “Effect of stress on impurity-free quantum well intermixing,” Electrochem. Solid-State Lett. 4(2), G11–G13 (2001).
[Crossref]

2000 (1)

P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C. Jagadish, “Silane flow rate dependence of SiOx cap layer induced impurity‐free intermixing of GaAs/AlGaAs quantum wells,” J. Electrochem. Soc. 147(5), 1950–1956 (2000).
[Crossref]

1999 (1)

P. N. K. Deenapanray, H. H. Tan, L. Fu, and C. Jagadish, “Influence of low‐temperature chemical vapor deposited SiO2 capping layer porosity on GaAs/AlGaAs quantum well intermixing,” Electrochem. Solid-State Lett. 3(4), 196–199 (1999).
[Crossref]

1998 (2)

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron. 4(4), 741–745 (1998).
[Crossref]

1997 (1)

P. Cusumano, B.-S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Rose, “Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer,” J. Appl. Phys. 81(5), 2445–2447 (1997).
[Crossref]

1996 (1)

K. Itaya, M. J. Mondry, P. D. Floyd, L. A. Coldren, and J. L. Merz, “Impurity-induced disordering of AIGalnAs quantum wells by low temperature Zn diffusion,” J. Electron. Mater. 25(5), 565–569 (1996).
[Crossref]

1995 (1)

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys. 78(4), 2367–2371 (1995).
[Crossref]

1994 (1)

S. G. Ayling, A. C. Bryce, I. Gontijo, J. H. Marsh, and J. S. Roberts, “A comparison of carbon and zinc doping in GaAs/AlGaAs lasers bandgap-tuned by impurity-free vacancy disordering,” Semicond. Sci. Technol. 9(11), 2149–2151 (1994).
[Crossref]

Aers, G. C.

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys. 78(4), 2367–2371 (1995).
[Crossref]

Aimez, V.

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B.-S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron. 8(4), 870–879 (2002).
[Crossref]

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron. 4(4), 741–745 (1998).
[Crossref]

Ayling, S. G.

P. Cusumano, B.-S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Rose, “Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer,” J. Appl. Phys. 81(5), 2445–2447 (1997).
[Crossref]

S. G. Ayling, A. C. Bryce, I. Gontijo, J. H. Marsh, and J. S. Roberts, “A comparison of carbon and zinc doping in GaAs/AlGaAs lasers bandgap-tuned by impurity-free vacancy disordering,” Semicond. Sci. Technol. 9(11), 2149–2151 (1994).
[Crossref]

Barton, J. S.

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

Beauvais, J.

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B.-S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron. 8(4), 870–879 (2002).
[Crossref]

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron. 4(4), 741–745 (1998).
[Crossref]

Beerens, J.

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B.-S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron. 8(4), 870–879 (2002).
[Crossref]

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron. 4(4), 741–745 (1998).
[Crossref]

Bhowmick, T.

S. Das, R. Kumar, T. Bhowmick, and U. Das, “Optical losses in InGaAsP/InP QW intermixed waveguides for ZrO2 cap with and without F implantation,” Opt. Quantum Electron. 48(1), 60 (2016).
[Crossref]

S. Das, D. Malik, T. Bhowmick, U. Das, and T. D. Das, “InGaAsP/InP QW impurity free intermixing for variable ZrO2 cap thickness,” IEEE Photonics Technol. Lett. 27(14), 1511–1514 (2015).
[Crossref]

Bryce, A. C.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

P. Cusumano, B.-S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Rose, “Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer,” J. Appl. Phys. 81(5), 2445–2447 (1997).
[Crossref]

S. G. Ayling, A. C. Bryce, I. Gontijo, J. H. Marsh, and J. S. Roberts, “A comparison of carbon and zinc doping in GaAs/AlGaAs lasers bandgap-tuned by impurity-free vacancy disordering,” Semicond. Sci. Technol. 9(11), 2149–2151 (1994).
[Crossref]

Buchanan, M.

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys. 78(4), 2367–2371 (1995).
[Crossref]

Camacho, F.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Charbonneau, S.

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron. 4(4), 741–745 (1998).
[Crossref]

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys. 78(4), 2367–2371 (1995).
[Crossref]

Cohen, M. I.

P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C. Jagadish, “Silane flow rate dependence of SiOx cap layer induced impurity‐free intermixing of GaAs/AlGaAs quantum wells,” J. Electrochem. Soc. 147(5), 1950–1956 (2000).
[Crossref]

Coldren, L. A.

J. S. Parker, A. Sivananthan, E. Norberg, and L. A. Coldren, “Regrowth-free high-gain InGaAsP/InP active-passive platform via ion implantation,” Opt. Express 20(18), 19946–19955 (2012).
[Crossref] [PubMed]

J. W. Raring and L. A. Coldren, “40-Gb/s widely tunable transceivers,” IEEE J. Sel. Top. Quantum Electron. 13(1), 3–14 (2007).
[Crossref]

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

K. Itaya, M. J. Mondry, P. D. Floyd, L. A. Coldren, and J. L. Merz, “Impurity-induced disordering of AIGalnAs quantum wells by low temperature Zn diffusion,” J. Electron. Mater. 25(5), 565–569 (1996).
[Crossref]

Cusumano, P.

P. Cusumano, B.-S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Rose, “Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer,” J. Appl. Phys. 81(5), 2445–2447 (1997).
[Crossref]

Das, S.

S. Das, R. Kumar, T. Bhowmick, and U. Das, “Optical losses in InGaAsP/InP QW intermixed waveguides for ZrO2 cap with and without F implantation,” Opt. Quantum Electron. 48(1), 60 (2016).
[Crossref]

S. Das, D. Malik, T. Bhowmick, U. Das, and T. D. Das, “InGaAsP/InP QW impurity free intermixing for variable ZrO2 cap thickness,” IEEE Photonics Technol. Lett. 27(14), 1511–1514 (2015).
[Crossref]

Das, T. D.

S. Das, D. Malik, T. Bhowmick, U. Das, and T. D. Das, “InGaAsP/InP QW impurity free intermixing for variable ZrO2 cap thickness,” IEEE Photonics Technol. Lett. 27(14), 1511–1514 (2015).
[Crossref]

Das, U.

S. Das, R. Kumar, T. Bhowmick, and U. Das, “Optical losses in InGaAsP/InP QW intermixed waveguides for ZrO2 cap with and without F implantation,” Opt. Quantum Electron. 48(1), 60 (2016).
[Crossref]

S. Das, D. Malik, T. Bhowmick, U. Das, and T. D. Das, “InGaAsP/InP QW impurity free intermixing for variable ZrO2 cap thickness,” IEEE Photonics Technol. Lett. 27(14), 1511–1514 (2015).
[Crossref]

De La Rue, R. M.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Deenapanray, P. N. K.

P. N. K. Deenapanray and C. Jagadish, “Effect of stress on impurity-free quantum well intermixing,” Electrochem. Solid-State Lett. 4(2), G11–G13 (2001).
[Crossref]

P. N. K. Deenapanray and C. Jagadish, “Impurity-free intermixing of GaAs/AlGaAs quantum wells using SiOx capping: Effect of nitrous oxide flow rate,” J. Vac. Sci. Technol. B 19(5), 1962–1966 (2001).
[Crossref]

P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C. Jagadish, “Silane flow rate dependence of SiOx cap layer induced impurity‐free intermixing of GaAs/AlGaAs quantum wells,” J. Electrochem. Soc. 147(5), 1950–1956 (2000).
[Crossref]

P. N. K. Deenapanray, H. H. Tan, L. Fu, and C. Jagadish, “Influence of low‐temperature chemical vapor deposited SiO2 capping layer porosity on GaAs/AlGaAs quantum well intermixing,” Electrochem. Solid-State Lett. 3(4), 196–199 (1999).
[Crossref]

DenBaars, S. P.

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

Dion, M.

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys. 78(4), 2367–2371 (1995).
[Crossref]

Djie, H. S.

H. S. Djie, C. K. F. Ho, T. Mei, and B.-S. Ooi, “Quantum well intermixing enhancement using Ge-doped sol-gel derived SiO2 encapsulant layer in InGaAs/InP laser structure,” Appl. Phys. Lett. 86(8), 081106 (2005).
[Crossref]

Floyd, P. D.

K. Itaya, M. J. Mondry, P. D. Floyd, L. A. Coldren, and J. L. Merz, “Impurity-induced disordering of AIGalnAs quantum wells by low temperature Zn diffusion,” J. Electron. Mater. 25(5), 565–569 (1996).
[Crossref]

Fu, L.

P. N. K. Deenapanray, H. H. Tan, L. Fu, and C. Jagadish, “Influence of low‐temperature chemical vapor deposited SiO2 capping layer porosity on GaAs/AlGaAs quantum well intermixing,” Electrochem. Solid-State Lett. 3(4), 196–199 (1999).
[Crossref]

Gaff, K.

P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C. Jagadish, “Silane flow rate dependence of SiOx cap layer induced impurity‐free intermixing of GaAs/AlGaAs quantum wells,” J. Electrochem. Soc. 147(5), 1950–1956 (2000).
[Crossref]

Goldberg, R. D.

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys. 78(4), 2367–2371 (1995).
[Crossref]

Gontijo, I.

S. G. Ayling, A. C. Bryce, I. Gontijo, J. H. Marsh, and J. S. Roberts, “A comparison of carbon and zinc doping in GaAs/AlGaAs lasers bandgap-tuned by impurity-free vacancy disordering,” Semicond. Sci. Technol. 9(11), 2149–2151 (1994).
[Crossref]

Hamilton, C. J.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Helmy, A. S.

P. Cusumano, B.-S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Rose, “Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer,” J. Appl. Phys. 81(5), 2445–2447 (1997).
[Crossref]

Ho, C. K. F.

H. S. Djie, C. K. F. Ho, T. Mei, and B.-S. Ooi, “Quantum well intermixing enhancement using Ge-doped sol-gel derived SiO2 encapsulant layer in InGaAs/InP laser structure,” Appl. Phys. Lett. 86(8), 081106 (2005).
[Crossref]

Itaya, K.

K. Itaya, M. J. Mondry, P. D. Floyd, L. A. Coldren, and J. L. Merz, “Impurity-induced disordering of AIGalnAs quantum wells by low temperature Zn diffusion,” J. Electron. Mater. 25(5), 565–569 (1996).
[Crossref]

Jackman, T. E.

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys. 78(4), 2367–2371 (1995).
[Crossref]

Jagadish, C.

P. N. K. Deenapanray and C. Jagadish, “Effect of stress on impurity-free quantum well intermixing,” Electrochem. Solid-State Lett. 4(2), G11–G13 (2001).
[Crossref]

P. N. K. Deenapanray and C. Jagadish, “Impurity-free intermixing of GaAs/AlGaAs quantum wells using SiOx capping: Effect of nitrous oxide flow rate,” J. Vac. Sci. Technol. B 19(5), 1962–1966 (2001).
[Crossref]

P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C. Jagadish, “Silane flow rate dependence of SiOx cap layer induced impurity‐free intermixing of GaAs/AlGaAs quantum wells,” J. Electrochem. Soc. 147(5), 1950–1956 (2000).
[Crossref]

P. N. K. Deenapanray, H. H. Tan, L. Fu, and C. Jagadish, “Influence of low‐temperature chemical vapor deposited SiO2 capping layer porosity on GaAs/AlGaAs quantum well intermixing,” Electrochem. Solid-State Lett. 3(4), 196–199 (1999).
[Crossref]

Ke, M.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Kowalski, O. P.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Kumar, R.

S. Das, R. Kumar, T. Bhowmick, and U. Das, “Optical losses in InGaAsP/InP QW intermixed waveguides for ZrO2 cap with and without F implantation,” Opt. Quantum Electron. 48(1), 60 (2016).
[Crossref]

Lim, H. S.

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B.-S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron. 8(4), 870–879 (2002).
[Crossref]

Malik, D.

S. Das, D. Malik, T. Bhowmick, U. Das, and T. D. Das, “InGaAsP/InP QW impurity free intermixing for variable ZrO2 cap thickness,” IEEE Photonics Technol. Lett. 27(14), 1511–1514 (2015).
[Crossref]

Marsh, J. H.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

P. Cusumano, B.-S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Rose, “Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer,” J. Appl. Phys. 81(5), 2445–2447 (1997).
[Crossref]

S. G. Ayling, A. C. Bryce, I. Gontijo, J. H. Marsh, and J. S. Roberts, “A comparison of carbon and zinc doping in GaAs/AlGaAs lasers bandgap-tuned by impurity-free vacancy disordering,” Semicond. Sci. Technol. 9(11), 2149–2151 (1994).
[Crossref]

McDougall, S. D.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Mei, T.

H. S. Djie, C. K. F. Ho, T. Mei, and B.-S. Ooi, “Quantum well intermixing enhancement using Ge-doped sol-gel derived SiO2 encapsulant layer in InGaAs/InP laser structure,” Appl. Phys. Lett. 86(8), 081106 (2005).
[Crossref]

Merz, J. L.

K. Itaya, M. J. Mondry, P. D. Floyd, L. A. Coldren, and J. L. Merz, “Impurity-induced disordering of AIGalnAs quantum wells by low temperature Zn diffusion,” J. Electron. Mater. 25(5), 565–569 (1996).
[Crossref]

Mitchell, I. V.

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys. 78(4), 2367–2371 (1995).
[Crossref]

Mondry, M. J.

K. Itaya, M. J. Mondry, P. D. Floyd, L. A. Coldren, and J. L. Merz, “Impurity-induced disordering of AIGalnAs quantum wells by low temperature Zn diffusion,” J. Electron. Mater. 25(5), 565–569 (1996).
[Crossref]

Morris, D.

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B.-S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron. 8(4), 870–879 (2002).
[Crossref]

Norberg, E.

Ooi, B.-S.

H. S. Djie, C. K. F. Ho, T. Mei, and B.-S. Ooi, “Quantum well intermixing enhancement using Ge-doped sol-gel derived SiO2 encapsulant layer in InGaAs/InP laser structure,” Appl. Phys. Lett. 86(8), 081106 (2005).
[Crossref]

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B.-S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron. 8(4), 870–879 (2002).
[Crossref]

P. Cusumano, B.-S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Rose, “Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer,” J. Appl. Phys. 81(5), 2445–2447 (1997).
[Crossref]

Paquette, M.

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron. 4(4), 741–745 (1998).
[Crossref]

Parker, J. S.

Petravic, M.

P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C. Jagadish, “Silane flow rate dependence of SiOx cap layer induced impurity‐free intermixing of GaAs/AlGaAs quantum wells,” J. Electrochem. Soc. 147(5), 1950–1956 (2000).
[Crossref]

Poole, P. J.

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron. 4(4), 741–745 (1998).
[Crossref]

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys. 78(4), 2367–2371 (1995).
[Crossref]

Qiu, B.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Raring, J. W.

J. W. Raring and L. A. Coldren, “40-Gb/s widely tunable transceivers,” IEEE J. Sel. Top. Quantum Electron. 13(1), 3–14 (2007).
[Crossref]

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

Roberts, J. S.

S. G. Ayling, A. C. Bryce, I. Gontijo, J. H. Marsh, and J. S. Roberts, “A comparison of carbon and zinc doping in GaAs/AlGaAs lasers bandgap-tuned by impurity-free vacancy disordering,” Semicond. Sci. Technol. 9(11), 2149–2151 (1994).
[Crossref]

Rose, M. J.

P. Cusumano, B.-S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Rose, “Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer,” J. Appl. Phys. 81(5), 2445–2447 (1997).
[Crossref]

Roth, A. P.

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron. 4(4), 741–745 (1998).
[Crossref]

Sivananthan, A.

Skogen, E. J.

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

Tan, H. H.

P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C. Jagadish, “Silane flow rate dependence of SiOx cap layer induced impurity‐free intermixing of GaAs/AlGaAs quantum wells,” J. Electrochem. Soc. 147(5), 1950–1956 (2000).
[Crossref]

P. N. K. Deenapanray, H. H. Tan, L. Fu, and C. Jagadish, “Influence of low‐temperature chemical vapor deposited SiO2 capping layer porosity on GaAs/AlGaAs quantum well intermixing,” Electrochem. Solid-State Lett. 3(4), 196–199 (1999).
[Crossref]

Voegele, B.

P. Cusumano, B.-S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Rose, “Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer,” J. Appl. Phys. 81(5), 2445–2447 (1997).
[Crossref]

Appl. Phys. Lett. (1)

H. S. Djie, C. K. F. Ho, T. Mei, and B.-S. Ooi, “Quantum well intermixing enhancement using Ge-doped sol-gel derived SiO2 encapsulant layer in InGaAs/InP laser structure,” Appl. Phys. Lett. 86(8), 081106 (2005).
[Crossref]

Electrochem. Solid-State Lett. (2)

P. N. K. Deenapanray, H. H. Tan, L. Fu, and C. Jagadish, “Influence of low‐temperature chemical vapor deposited SiO2 capping layer porosity on GaAs/AlGaAs quantum well intermixing,” Electrochem. Solid-State Lett. 3(4), 196–199 (1999).
[Crossref]

P. N. K. Deenapanray and C. Jagadish, “Effect of stress on impurity-free quantum well intermixing,” Electrochem. Solid-State Lett. 4(2), G11–G13 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

J. W. Raring and L. A. Coldren, “40-Gb/s widely tunable transceivers,” IEEE J. Sel. Top. Quantum Electron. 13(1), 3–14 (2007).
[Crossref]

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron. 4(4), 741–745 (1998).
[Crossref]

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B.-S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron. 8(4), 870–879 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Das, D. Malik, T. Bhowmick, U. Das, and T. D. Das, “InGaAsP/InP QW impurity free intermixing for variable ZrO2 cap thickness,” IEEE Photonics Technol. Lett. 27(14), 1511–1514 (2015).
[Crossref]

J. Appl. Phys. (2)

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys. 78(4), 2367–2371 (1995).
[Crossref]

P. Cusumano, B.-S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Rose, “Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer,” J. Appl. Phys. 81(5), 2445–2447 (1997).
[Crossref]

J. Electrochem. Soc. (1)

P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C. Jagadish, “Silane flow rate dependence of SiOx cap layer induced impurity‐free intermixing of GaAs/AlGaAs quantum wells,” J. Electrochem. Soc. 147(5), 1950–1956 (2000).
[Crossref]

J. Electron. Mater. (1)

K. Itaya, M. J. Mondry, P. D. Floyd, L. A. Coldren, and J. L. Merz, “Impurity-induced disordering of AIGalnAs quantum wells by low temperature Zn diffusion,” J. Electron. Mater. 25(5), 565–569 (1996).
[Crossref]

J. Vac. Sci. Technol. B (1)

P. N. K. Deenapanray and C. Jagadish, “Impurity-free intermixing of GaAs/AlGaAs quantum wells using SiOx capping: Effect of nitrous oxide flow rate,” J. Vac. Sci. Technol. B 19(5), 1962–1966 (2001).
[Crossref]

Opt. Express (1)

Opt. Quantum Electron. (1)

S. Das, R. Kumar, T. Bhowmick, and U. Das, “Optical losses in InGaAsP/InP QW intermixed waveguides for ZrO2 cap with and without F implantation,” Opt. Quantum Electron. 48(1), 60 (2016).
[Crossref]

Semicond. Sci. Technol. (1)

S. G. Ayling, A. C. Bryce, I. Gontijo, J. H. Marsh, and J. S. Roberts, “A comparison of carbon and zinc doping in GaAs/AlGaAs lasers bandgap-tuned by impurity-free vacancy disordering,” Semicond. Sci. Technol. 9(11), 2149–2151 (1994).
[Crossref]

Other (4)

P Aleahmad, S Bakhshi, D Christodoulides and P. LiKamWa, “Controllable red and blue shifting of InGaAsP quantum well bandgap energy for photonic device integration,” Materials Research Express 2, 8 (2015).

T. Tabbakh, P. Li, and K. Wa, “Blue and red shifted, partially intermixed InGaAsP quantum well semiconductor laser diodes,” IEEEPhotonics Conference (IPC) (2017).
[Crossref]

Y.-J. Chen, C.-L. Chen, S.-a. Yang, R.-Y. Chen, and Yi-Jen Chiu, “Enhancement of SOA-integrated EAM with low-temperature quantum well intermixing through supercritical fluid technique.” IEEE Photonics Conference (IPC) (2017).

M. McHugh and V. Krukonis, Supercritical Fluid Extraction: Principles and Practice (Elsevier, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic depicting the SCF technique for generating OH groups for a higher Ga2O3 reaction, thus improving the local QWI.
Fig. 2
Fig. 2 (a) Measured FTIR spectra of the OH-related band for samples A, B, C, and D. (b) Spectrum for the Si–O–Si in-phase stretching band.
Fig. 3
Fig. 3 (a) Refractive index spectrum (500–700 nm) for samples A, B, C, and D. (b) XPS measurement against with sample depth.
Fig. 4
Fig. 4 (a) PL spectrum for three samples after 650 °C and 700 °C RTA processing. (b) Photos of surface morphology before and after RTA, showing no significant degradation on the whole area. (c) Top-view of EAM-integrated SOA device and two steps of QWI.
Fig. 5
Fig. 5 (a–c) Transmission spectra of devices I, II, and III, respectively, for testing the modulation depth and optical gain. (d) EO response and Eye diagram of device C at 40 GHz and 45 Gb/s.

Metrics