Abstract

The viscous behavior of fluorine-doped synthetic silica is studied using collapsing experiments with different fluorine-doped tubes on a modified chemical vapor deposition (MCVD) lathe. The principles, techniques, and evaluations of this method are the same as the ones demonstrated previously in detail with pure and doped silica. The present investigations provide information about the influence of fluorine doping up to a concentration of about 10 mol% F (3.4 wt% F) in a temperature range between 1600°C and 2000°C. Fluorine doping leads to a systematic decrease in the viscosity, combined with a decrease of the activation energy of the viscous flow and a certain increase of the pre-exponential factor. In summary, this demonstrates the weakening influence of fluorine on the glass network, similar to the incorporation of hydroxyl or chlorine.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Viscous behavior of synthetic silica glass tubes during collapsing

Johannes Kirchhof and Sonja Unger
Opt. Mater. Express 7(2) 386-400 (2017)

Diffusion coefficients of boron in vitreous silica at high temperatures

Johannes Kirchhof, Sonja Unger, Jan Dellith, Andy Scheffel, and Christian Teichmann
Opt. Mater. Express 2(5) 534-547 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Kirchhof and S. Unger, “The viscous behavior of synthetic silica glass tubes during collapsing,” Opt. Mater. Express 7(2), 386–400 (2017).
    [Crossref]
  2. G. Hetherington, K. H. Jack, and J. C. Kennedy, “The viscosity of vitreous silica,” Phys. Chem. Glasses 5(5), 130–136 (1964).
  3. R. Brückner, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids 5(2), 175–216 (1970).
    [Crossref]
  4. B. K. Leko, “Viscosity of vitreous silica,” Glass Physics and Chemistry 5(3), 258– 278 (1978).
  5. M. L. F. Nascimento and E. D. Zanotto, “Diffusion processes in vitreous silica revisited,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 48, 201–217 (2007).
  6. U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fiber drawing,” Glass Technol. 29(6), 265–269 (1988).
  7. A. Mühlich, K. Rau, F. Simmat, and N. Treber, “A new doped synthetic fused silica as bulk material for low-loss optical fibers,” First European Conference on Optical Fiber Communication, London (1975).
  8. J. W. Fleming and D. L. Wood, “Refractive index dispersion and related properties in fluorine doped silica,” Appl. Opt. 22(19), 3102–3104 (1983).
    [Crossref] [PubMed]
  9. M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
    [Crossref]
  10. T. Kakuta, K. Ara, K. Sanada, N. Shamoto, T. Tsumanuma, and S. Chigira, “Radiation resistance of fluorine doped silica core fibers,” Fujikura Techn. Rev. 24, 17–19 (1995).
  11. M. Fokine, “Thermal stability of chemical composition gratings in fluorine-germanium-doped silica fibers,” Opt. Lett. 27(12), 1016–1018 (2002).
    [Crossref] [PubMed]
  12. M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
    [Crossref]
  13. J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids 354(2-9), 540–545 (2008).
    [Crossref]
  14. K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
  15. B. Hooda, A. Pal, V. Rastogi, R. Sen, J. Gandhi, and J. Kobelke, “Segmented cladding fiber fabricated in silica-based glass,” Opt. Eng. 54(7), 075103 (2015).
    [Crossref]
  16. K. Jens, B. Jörg, W. Katrin, A. Claudia, P. Zhiwen, U. Sonja, S. Kay, and B. Hartmut, “Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers,” Materials (Basel) 7(9), 6879–6892 (2014).
    [Crossref] [PubMed]
  17. Heraeus, “Fused silica tubes for fiber production,” https://www.heraeus.com/en/hqs/products_hqs/optical_fiber/tubes_fiber/Tubes_fiber_production.aspx .
  18. U. Haken, O. Humbach, S. Ortner, and H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265(1-2), 9–18 (2000).
    [Crossref]
  19. S. J. B. Reed, Electron Microprobe Analysis, Second edition (Cambridge University Press 1993).
  20. H. Wehr and D. Wiechert, “Refractive index and density of fluorine doped silica prepared by the PCVD process,” Mater. Res. Bull. 21(5), 559–566 (1986).
    [Crossref]
  21. P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
    [Crossref]
  22. J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181(3), 266–273 (1995).
    [Crossref]
  23. M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
    [Crossref]
  24. K. Shiraki and M. Ohashi, “Scattering property of fluorine-doped silica glasses,” Electron. Lett. 28(17), 1565–1566 (1992).
    [Crossref]
  25. K. Shiraki, M. Ohashi, K. Tajima, M. Tateda, and K. Tsujikawa, “Viscosity of F and GeO2 codoped silica glass,” Electron. Lett. 29(14), 1263–1265 (1993).
    [Crossref]
  26. M. Ohashi, M. Tateda, K. Shiraki, and K. Tajima, “Imperfection loss reduction in viscosity-matched optical fibers,” IEEE Photonics Technol. Lett. 5(7), 812–814 (1993).
    [Crossref]
  27. U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fibre drawing,” Glass Technol. 29(6), 263–266 (1988).
  28. H. Murata, “Recent developments in vapor phase axial deposition,” J. Lightw. Techn. 4(8), 1026–1033 (1986).
    [Crossref]
  29. R. E. Youngman and S. Sen, “Letter to the Editor: Structural role of fluorine in amorphous silica,” J. Non-Cryst. Solids 337, 182–186 (2004).
  30. R. E. Youngman and S. Sen, “Structural role of fluorine in amorphous silica,” J. Non-Cryst. Solids 349, 10–15 (2004).
    [Crossref]

2017 (1)

2015 (1)

B. Hooda, A. Pal, V. Rastogi, R. Sen, J. Gandhi, and J. Kobelke, “Segmented cladding fiber fabricated in silica-based glass,” Opt. Eng. 54(7), 075103 (2015).
[Crossref]

2014 (2)

K. Jens, B. Jörg, W. Katrin, A. Claudia, P. Zhiwen, U. Sonja, S. Kay, and B. Hartmut, “Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers,” Materials (Basel) 7(9), 6879–6892 (2014).
[Crossref] [PubMed]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

2008 (1)

J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids 354(2-9), 540–545 (2008).
[Crossref]

2007 (1)

M. L. F. Nascimento and E. D. Zanotto, “Diffusion processes in vitreous silica revisited,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 48, 201–217 (2007).

2004 (2)

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[Crossref]

R. E. Youngman and S. Sen, “Structural role of fluorine in amorphous silica,” J. Non-Cryst. Solids 349, 10–15 (2004).
[Crossref]

2002 (1)

2000 (1)

U. Haken, O. Humbach, S. Ortner, and H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265(1-2), 9–18 (2000).
[Crossref]

1995 (2)

T. Kakuta, K. Ara, K. Sanada, N. Shamoto, T. Tsumanuma, and S. Chigira, “Radiation resistance of fluorine doped silica core fibers,” Fujikura Techn. Rev. 24, 17–19 (1995).

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181(3), 266–273 (1995).
[Crossref]

1993 (3)

K. Shiraki, M. Ohashi, K. Tajima, M. Tateda, and K. Tsujikawa, “Viscosity of F and GeO2 codoped silica glass,” Electron. Lett. 29(14), 1263–1265 (1993).
[Crossref]

M. Ohashi, M. Tateda, K. Shiraki, and K. Tajima, “Imperfection loss reduction in viscosity-matched optical fibers,” IEEE Photonics Technol. Lett. 5(7), 812–814 (1993).
[Crossref]

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

1992 (2)

M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
[Crossref]

K. Shiraki and M. Ohashi, “Scattering property of fluorine-doped silica glasses,” Electron. Lett. 28(17), 1565–1566 (1992).
[Crossref]

1988 (2)

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fibre drawing,” Glass Technol. 29(6), 263–266 (1988).

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fiber drawing,” Glass Technol. 29(6), 265–269 (1988).

1986 (2)

H. Wehr and D. Wiechert, “Refractive index and density of fluorine doped silica prepared by the PCVD process,” Mater. Res. Bull. 21(5), 559–566 (1986).
[Crossref]

H. Murata, “Recent developments in vapor phase axial deposition,” J. Lightw. Techn. 4(8), 1026–1033 (1986).
[Crossref]

1983 (1)

1982 (1)

P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
[Crossref]

1978 (1)

B. K. Leko, “Viscosity of vitreous silica,” Glass Physics and Chemistry 5(3), 258– 278 (1978).

1970 (1)

R. Brückner, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids 5(2), 175–216 (1970).
[Crossref]

1964 (1)

G. Hetherington, K. H. Jack, and J. C. Kennedy, “The viscosity of vitreous silica,” Phys. Chem. Glasses 5(5), 130–136 (1964).

Aichele, C.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Ara, K.

T. Kakuta, K. Ara, K. Sanada, N. Shamoto, T. Tsumanuma, and S. Chigira, “Radiation resistance of fluorine doped silica core fibers,” Fujikura Techn. Rev. 24, 17–19 (1995).

Bartelt, H.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Bierlich, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Brückner, R.

R. Brückner, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids 5(2), 175–216 (1970).
[Crossref]

Chigira, S.

T. Kakuta, K. Ara, K. Sanada, N. Shamoto, T. Tsumanuma, and S. Chigira, “Radiation resistance of fluorine doped silica core fibers,” Fujikura Techn. Rev. 24, 17–19 (1995).

Claudia, A.

K. Jens, B. Jörg, W. Katrin, A. Claudia, P. Zhiwen, U. Sonja, S. Kay, and B. Hartmut, “Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers,” Materials (Basel) 7(9), 6879–6892 (2014).
[Crossref] [PubMed]

Corset, J.

P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
[Crossref]

Dumas, P.

P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
[Crossref]

Fabian, H.

U. Haken, O. Humbach, S. Ortner, and H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265(1-2), 9–18 (2000).
[Crossref]

Fleming, J. W.

Fokine, M.

Gandhi, J.

B. Hooda, A. Pal, V. Rastogi, R. Sen, J. Gandhi, and J. Kobelke, “Segmented cladding fiber fabricated in silica-based glass,” Opt. Eng. 54(7), 075103 (2015).
[Crossref]

Grimm, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Haken, U.

U. Haken, O. Humbach, S. Ortner, and H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265(1-2), 9–18 (2000).
[Crossref]

Hartmut, B.

K. Jens, B. Jörg, W. Katrin, A. Claudia, P. Zhiwen, U. Sonja, S. Kay, and B. Hartmut, “Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers,” Materials (Basel) 7(9), 6879–6892 (2014).
[Crossref] [PubMed]

Hetherington, G.

G. Hetherington, K. H. Jack, and J. C. Kennedy, “The viscosity of vitreous silica,” Phys. Chem. Glasses 5(5), 130–136 (1964).

Hirano, M.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[Crossref]

Hooda, B.

B. Hooda, A. Pal, V. Rastogi, R. Sen, J. Gandhi, and J. Kobelke, “Segmented cladding fiber fabricated in silica-based glass,” Opt. Eng. 54(7), 075103 (2015).
[Crossref]

Hosono, H.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[Crossref]

Humbach, O.

U. Haken, O. Humbach, S. Ortner, and H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265(1-2), 9–18 (2000).
[Crossref]

Ishiguro, Y.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

Ishikawa, S.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

Jack, K. H.

G. Hetherington, K. H. Jack, and J. C. Kennedy, “The viscosity of vitreous silica,” Phys. Chem. Glasses 5(5), 130–136 (1964).

Jens, K.

K. Jens, B. Jörg, W. Katrin, A. Claudia, P. Zhiwen, U. Sonja, S. Kay, and B. Hartmut, “Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers,” Materials (Basel) 7(9), 6879–6892 (2014).
[Crossref] [PubMed]

Jörg, B.

K. Jens, B. Jörg, W. Katrin, A. Claudia, P. Zhiwen, U. Sonja, S. Kay, and B. Hartmut, “Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers,” Materials (Basel) 7(9), 6879–6892 (2014).
[Crossref] [PubMed]

Kakuta, T.

T. Kakuta, K. Ara, K. Sanada, N. Shamoto, T. Tsumanuma, and S. Chigira, “Radiation resistance of fluorine doped silica core fibers,” Fujikura Techn. Rev. 24, 17–19 (1995).

Katrin, W.

K. Jens, B. Jörg, W. Katrin, A. Claudia, P. Zhiwen, U. Sonja, S. Kay, and B. Hartmut, “Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers,” Materials (Basel) 7(9), 6879–6892 (2014).
[Crossref] [PubMed]

Kay, S.

K. Jens, B. Jörg, W. Katrin, A. Claudia, P. Zhiwen, U. Sonja, S. Kay, and B. Hartmut, “Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers,” Materials (Basel) 7(9), 6879–6892 (2014).
[Crossref] [PubMed]

Kennedy, J. C.

G. Hetherington, K. H. Jack, and J. C. Kennedy, “The viscosity of vitreous silica,” Phys. Chem. Glasses 5(5), 130–136 (1964).

Kikugawa, S.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[Crossref]

Kirchhof, J.

J. Kirchhof and S. Unger, “The viscous behavior of synthetic silica glass tubes during collapsing,” Opt. Mater. Express 7(2), 386–400 (2017).
[Crossref]

J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids 354(2-9), 540–545 (2008).
[Crossref]

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181(3), 266–273 (1995).
[Crossref]

Klein, K.-F.

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181(3), 266–273 (1995).
[Crossref]

Knappe, B.

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181(3), 266–273 (1995).
[Crossref]

Kobelke, J.

B. Hooda, A. Pal, V. Rastogi, R. Sen, J. Gandhi, and J. Kobelke, “Segmented cladding fiber fabricated in silica-based glass,” Opt. Eng. 54(7), 075103 (2015).
[Crossref]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Kurkjian, C. R.

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fiber drawing,” Glass Technol. 29(6), 265–269 (1988).

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fibre drawing,” Glass Technol. 29(6), 263–266 (1988).

Kyoto, M.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

Leko, B. K.

B. K. Leko, “Viscosity of vitreous silica,” Glass Physics and Chemistry 5(3), 258– 278 (1978).

Levy, Y.

P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
[Crossref]

Lindner, F.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Litzkendorf, D.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Miura, T.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[Crossref]

Mühlich, A.

A. Mühlich, K. Rau, F. Simmat, and N. Treber, “A new doped synthetic fused silica as bulk material for low-loss optical fibers,” First European Conference on Optical Fiber Communication, London (1975).

Murata, H.

H. Murata, “Recent developments in vapor phase axial deposition,” J. Lightw. Techn. 4(8), 1026–1033 (1986).
[Crossref]

Nascimento, M. L. F.

M. L. F. Nascimento and E. D. Zanotto, “Diffusion processes in vitreous silica revisited,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 48, 201–217 (2007).

Neumann, V.

P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
[Crossref]

Ohashi, M.

K. Shiraki, M. Ohashi, K. Tajima, M. Tateda, and K. Tsujikawa, “Viscosity of F and GeO2 codoped silica glass,” Electron. Lett. 29(14), 1263–1265 (1993).
[Crossref]

M. Ohashi, M. Tateda, K. Shiraki, and K. Tajima, “Imperfection loss reduction in viscosity-matched optical fibers,” IEEE Photonics Technol. Lett. 5(7), 812–814 (1993).
[Crossref]

M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
[Crossref]

K. Shiraki and M. Ohashi, “Scattering property of fluorine-doped silica glasses,” Electron. Lett. 28(17), 1565–1566 (1992).
[Crossref]

Ohoga, Y.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

Ortner, S.

U. Haken, O. Humbach, S. Ortner, and H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265(1-2), 9–18 (2000).
[Crossref]

Oto, M.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[Crossref]

Paek, U. C.

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fiber drawing,” Glass Technol. 29(6), 265–269 (1988).

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fibre drawing,” Glass Technol. 29(6), 263–266 (1988).

Pal, A.

B. Hooda, A. Pal, V. Rastogi, R. Sen, J. Gandhi, and J. Kobelke, “Segmented cladding fiber fabricated in silica-based glass,” Opt. Eng. 54(7), 075103 (2015).
[Crossref]

Rastogi, V.

B. Hooda, A. Pal, V. Rastogi, R. Sen, J. Gandhi, and J. Kobelke, “Segmented cladding fiber fabricated in silica-based glass,” Opt. Eng. 54(7), 075103 (2015).
[Crossref]

Rau, K.

A. Mühlich, K. Rau, F. Simmat, and N. Treber, “A new doped synthetic fused silica as bulk material for low-loss optical fibers,” First European Conference on Optical Fiber Communication, London (1975).

Sanada, K.

T. Kakuta, K. Ara, K. Sanada, N. Shamoto, T. Tsumanuma, and S. Chigira, “Radiation resistance of fluorine doped silica core fibers,” Fujikura Techn. Rev. 24, 17–19 (1995).

Schroeder, C. M.

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fiber drawing,” Glass Technol. 29(6), 265–269 (1988).

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fibre drawing,” Glass Technol. 29(6), 263–266 (1988).

Schuster, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Sen, R.

B. Hooda, A. Pal, V. Rastogi, R. Sen, J. Gandhi, and J. Kobelke, “Segmented cladding fiber fabricated in silica-based glass,” Opt. Eng. 54(7), 075103 (2015).
[Crossref]

Sen, S.

R. E. Youngman and S. Sen, “Structural role of fluorine in amorphous silica,” J. Non-Cryst. Solids 349, 10–15 (2004).
[Crossref]

Shamoto, N.

T. Kakuta, K. Ara, K. Sanada, N. Shamoto, T. Tsumanuma, and S. Chigira, “Radiation resistance of fluorine doped silica core fibers,” Fujikura Techn. Rev. 24, 17–19 (1995).

Shiraki, K.

K. Shiraki, M. Ohashi, K. Tajima, M. Tateda, and K. Tsujikawa, “Viscosity of F and GeO2 codoped silica glass,” Electron. Lett. 29(14), 1263–1265 (1993).
[Crossref]

M. Ohashi, M. Tateda, K. Shiraki, and K. Tajima, “Imperfection loss reduction in viscosity-matched optical fibers,” IEEE Photonics Technol. Lett. 5(7), 812–814 (1993).
[Crossref]

M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
[Crossref]

K. Shiraki and M. Ohashi, “Scattering property of fluorine-doped silica glasses,” Electron. Lett. 28(17), 1565–1566 (1992).
[Crossref]

Simmat, F.

A. Mühlich, K. Rau, F. Simmat, and N. Treber, “A new doped synthetic fused silica as bulk material for low-loss optical fibers,” First European Conference on Optical Fiber Communication, London (1975).

Sonja, U.

K. Jens, B. Jörg, W. Katrin, A. Claudia, P. Zhiwen, U. Sonja, S. Kay, and B. Hartmut, “Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers,” Materials (Basel) 7(9), 6879–6892 (2014).
[Crossref] [PubMed]

Tajima, K.

M. Ohashi, M. Tateda, K. Shiraki, and K. Tajima, “Imperfection loss reduction in viscosity-matched optical fibers,” IEEE Photonics Technol. Lett. 5(7), 812–814 (1993).
[Crossref]

K. Shiraki, M. Ohashi, K. Tajima, M. Tateda, and K. Tsujikawa, “Viscosity of F and GeO2 codoped silica glass,” Electron. Lett. 29(14), 1263–1265 (1993).
[Crossref]

M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
[Crossref]

Tateda, M.

K. Shiraki, M. Ohashi, K. Tajima, M. Tateda, and K. Tsujikawa, “Viscosity of F and GeO2 codoped silica glass,” Electron. Lett. 29(14), 1263–1265 (1993).
[Crossref]

M. Ohashi, M. Tateda, K. Shiraki, and K. Tajima, “Imperfection loss reduction in viscosity-matched optical fibers,” IEEE Photonics Technol. Lett. 5(7), 812–814 (1993).
[Crossref]

M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
[Crossref]

Treber, N.

A. Mühlich, K. Rau, F. Simmat, and N. Treber, “A new doped synthetic fused silica as bulk material for low-loss optical fibers,” First European Conference on Optical Fiber Communication, London (1975).

Tsujikawa, K.

K. Shiraki, M. Ohashi, K. Tajima, M. Tateda, and K. Tsujikawa, “Viscosity of F and GeO2 codoped silica glass,” Electron. Lett. 29(14), 1263–1265 (1993).
[Crossref]

Tsumanuma, T.

T. Kakuta, K. Ara, K. Sanada, N. Shamoto, T. Tsumanuma, and S. Chigira, “Radiation resistance of fluorine doped silica core fibers,” Fujikura Techn. Rev. 24, 17–19 (1995).

Unger, S.

J. Kirchhof and S. Unger, “The viscous behavior of synthetic silica glass tubes during collapsing,” Opt. Mater. Express 7(2), 386–400 (2017).
[Crossref]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids 354(2-9), 540–545 (2008).
[Crossref]

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181(3), 266–273 (1995).
[Crossref]

Wehr, H.

H. Wehr and D. Wiechert, “Refractive index and density of fluorine doped silica prepared by the PCVD process,” Mater. Res. Bull. 21(5), 559–566 (1986).
[Crossref]

Wiechert, D.

H. Wehr and D. Wiechert, “Refractive index and density of fluorine doped silica prepared by the PCVD process,” Mater. Res. Bull. 21(5), 559–566 (1986).
[Crossref]

Wondraczek, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Wood, D. L.

Youngman, R. E.

R. E. Youngman and S. Sen, “Structural role of fluorine in amorphous silica,” J. Non-Cryst. Solids 349, 10–15 (2004).
[Crossref]

Zanotto, E. D.

M. L. F. Nascimento and E. D. Zanotto, “Diffusion processes in vitreous silica revisited,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 48, 201–217 (2007).

Zhiwen, P.

K. Jens, B. Jörg, W. Katrin, A. Claudia, P. Zhiwen, U. Sonja, S. Kay, and B. Hartmut, “Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers,” Materials (Basel) 7(9), 6879–6892 (2014).
[Crossref] [PubMed]

Adv. Opt. Technol. (1)

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Appl. Opt. (1)

Electron. Lett. (3)

M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
[Crossref]

K. Shiraki and M. Ohashi, “Scattering property of fluorine-doped silica glasses,” Electron. Lett. 28(17), 1565–1566 (1992).
[Crossref]

K. Shiraki, M. Ohashi, K. Tajima, M. Tateda, and K. Tsujikawa, “Viscosity of F and GeO2 codoped silica glass,” Electron. Lett. 29(14), 1263–1265 (1993).
[Crossref]

Fujikura Techn. Rev. (1)

T. Kakuta, K. Ara, K. Sanada, N. Shamoto, T. Tsumanuma, and S. Chigira, “Radiation resistance of fluorine doped silica core fibers,” Fujikura Techn. Rev. 24, 17–19 (1995).

Glass Physics and Chemistry (1)

B. K. Leko, “Viscosity of vitreous silica,” Glass Physics and Chemistry 5(3), 258– 278 (1978).

Glass Technol. (2)

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fiber drawing,” Glass Technol. 29(6), 265–269 (1988).

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fibre drawing,” Glass Technol. 29(6), 263–266 (1988).

IEEE Photonics Technol. Lett. (1)

M. Ohashi, M. Tateda, K. Shiraki, and K. Tajima, “Imperfection loss reduction in viscosity-matched optical fibers,” IEEE Photonics Technol. Lett. 5(7), 812–814 (1993).
[Crossref]

J. Lightw. Techn. (1)

H. Murata, “Recent developments in vapor phase axial deposition,” J. Lightw. Techn. 4(8), 1026–1033 (1986).
[Crossref]

J. Mater. Sci. (1)

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

J. Non-Cryst. Solids (6)

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[Crossref]

J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids 354(2-9), 540–545 (2008).
[Crossref]

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181(3), 266–273 (1995).
[Crossref]

R. E. Youngman and S. Sen, “Structural role of fluorine in amorphous silica,” J. Non-Cryst. Solids 349, 10–15 (2004).
[Crossref]

U. Haken, O. Humbach, S. Ortner, and H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265(1-2), 9–18 (2000).
[Crossref]

R. Brückner, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids 5(2), 175–216 (1970).
[Crossref]

J. Raman Spectrosc. (1)

P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
[Crossref]

Mater. Res. Bull. (1)

H. Wehr and D. Wiechert, “Refractive index and density of fluorine doped silica prepared by the PCVD process,” Mater. Res. Bull. 21(5), 559–566 (1986).
[Crossref]

Materials (Basel) (1)

K. Jens, B. Jörg, W. Katrin, A. Claudia, P. Zhiwen, U. Sonja, S. Kay, and B. Hartmut, “Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers,” Materials (Basel) 7(9), 6879–6892 (2014).
[Crossref] [PubMed]

Opt. Eng. (1)

B. Hooda, A. Pal, V. Rastogi, R. Sen, J. Gandhi, and J. Kobelke, “Segmented cladding fiber fabricated in silica-based glass,” Opt. Eng. 54(7), 075103 (2015).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Chem. Glasses (1)

G. Hetherington, K. H. Jack, and J. C. Kennedy, “The viscosity of vitreous silica,” Phys. Chem. Glasses 5(5), 130–136 (1964).

Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B (1)

M. L. F. Nascimento and E. D. Zanotto, “Diffusion processes in vitreous silica revisited,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 48, 201–217 (2007).

Other (4)

A. Mühlich, K. Rau, F. Simmat, and N. Treber, “A new doped synthetic fused silica as bulk material for low-loss optical fibers,” First European Conference on Optical Fiber Communication, London (1975).

Heraeus, “Fused silica tubes for fiber production,” https://www.heraeus.com/en/hqs/products_hqs/optical_fiber/tubes_fiber/Tubes_fiber_production.aspx .

S. J. B. Reed, Electron Microprobe Analysis, Second edition (Cambridge University Press 1993).

R. E. Youngman and S. Sen, “Letter to the Editor: Structural role of fluorine in amorphous silica,” J. Non-Cryst. Solids 337, 182–186 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Concentration profiles of fluorine (a) and chlorine (b) in the silica tubes used, measured via WD-EPMA.
Fig. 2
Fig. 2 Determined viscosity values η depending on temperature T for flames with oxygen excess (•) and hydrogen excess ( + ) for F520-28. lnη is the natural logarithm, Φo is the outer diameter, and w is the wall thickness of the tubes. The error of lnη of the single experiment is about ± 0.1.
Fig. 3
Fig. 3 Pre-exponential factor lnη0* acc. to Fig. 2 as a function of the wall thickness w for F520-28. The colors refer to the experiments and tube dimensions as described in the inset of Fig. 2.
Fig. 4
Fig. 4 Determined values of σ* depending on the tube dimensions for flames with oxygen excess (•) and hydrogen excess ( + ) for F520-28. The error of the single measurement is between ± 0.02 and ± 0.04 N· m−1.
Fig. 5
Fig. 5 Arrhenius plots of the viscosity, calculated with EA and lnη0 acc. to Table 1.
Fig. 6
Fig. 6 Activation energy EA depending on the fluorine content acc. to Table 1. One error bar is shown as an example.
Fig. 7
Fig. 7 Pre-exponential factor lnη0 depending on the fluorine content acc. to Table 1. One error bar is shown as an example.

Tables (1)

Tables Icon

Table 1 Composition of the tube materials used and results of the collapsing experiments

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

c F ( m o l % ) = 100 n F / n S i = 100 x 3.16 c F ( w t % )
c C l ( m o l % ) = 100 n C l / n S i = 100 z 1.69 c C l ( w t % )
(1xz)Si O 2 +xSi O 3/2 F+zSi O 3/2 Cl
ln η 0 *(w)=ln η 0 +y w 1.25
lnη=16.73+58800/T
E A =563.026.02 c F +1.035 c F 2 25 c Cl
ln η 0 =20.04+1.159 c F 0.042 c F 2 +0.8 c Cl

Metrics