Abstract

We report a study on transformations in absorption and emission spectra of novel bismuth (Bi) doped hafnia-yttria-alumina-silicate fiber, which arise as the result of bombardment by high-energy (β) electrons. Among the featuring data obtained, we reveal substantial growth of ‘active’ Bi center content in the fiber core-glass with increasing β-irradiation dosage, resulting in dose-dependent intensification of the resonant-absorption bands and enhancement of the emissive potential of the fiber in near-IR, inherent to these centers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bismuth-doped hafnia-yttria-alumina-silica based fiber: spectral characterization in NIR to mid-IR

A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, D. Dutta, A. Dhar, S. Das, and M. C. Paul
Opt. Mater. Express 7(10) 3548-3560 (2017)

Hafnia-yttria-alumina-silica based optical fibers with diminished mid-IR (>2 µm) loss

A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, S. Das, D. Dutta, A. Dhar, A. V. Khakhalin, E. M. Sholokhov, N. N. Il’ichev, S. I. Didenko, and M. C. Paul
Opt. Mater. Express 7(7) 2511-2518 (2017)

Influence of electron irradiation on optical properties of Bismuth doped silica fibers

Alexander V. Kir’yanov, Vladislav V. Dvoyrin, Valery M. Mashinsky, Nikolai N. Il’ichev, Nina S. Kozlova, and Evgueny M. Dianov
Opt. Express 19(7) 6599-6608 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Kir’yanov, “Effects of electron irradiation upon absorptive and fluorescent properties of some doped optical fibers,” in Radiation Effects in Materials W A. Monteiro (Ed.) (InTech, 2016)..
  2. A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, S. Das, D. Dutta, A. Dhar, V. G. Plotnichenko, V. V. Koltashev, A. V. Khakhalin, E. M. Sholokhov, N. N. Il’ichev, S. I. Didenko, and M. C. Paul, “Hafnia-yttria-alumina-silicate optical fibers with diminished mid-IR (>2 µm) loss,” Opt. Mater. Express 7(7), 2511–2518 (2017).
    [Crossref]
  3. A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, D. Dutta, A. Dhar, S. Das, and M. C. Paul, “Bismuth-doped hafnia-yttria-alumina-silica based fiber: spectral characterization in NIR to mid-IR,” Opt. Mater. Express 7(10), 3548–3560 (2017).
    [Crossref]
  4. E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1084–1085 (2005).
    [Crossref]
  5. A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).
    [Crossref] [PubMed]
  6. R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
    [Crossref]
  7. J. K. Sahu, P. Dupriez, J. Kim, A. J. Boyland. C. A. Codemard, J. Nilsson, and D. N. Payne, “New Yb:Hf-doped silica fiber for high-power fiber lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), CTuK1.
  8. D. Ramirez-Granados, A. V. Kir’yanov, Y. O. Barmenkov, A. Halder, S. Das, A. Dhar, M. C. Paul, S. Bhadra, S. I. Didenko, V. V. Koltashev, and V. G. Plotnichenko, “Effects of elevating temperature and high-temperature annealing upon state-of-the-art of yttia-alumino-silicate fibers doped with Bismuth,” Opt. Mater. Express 6(2), 486–508 (2016).
    [Crossref]
  9. Y. Chu, J. Hao, J. Zhang, J. Ren, G.-D. Peng, and L. Yuan, “Temperature properties and potential temperature sensor based on the Bismuth/Erbium co-doped optical fibers,” in 25th International Conference on Optical Fiber Sensors, Proc. SPIE10323, 1032371 (2017).
  10. S. Firstov, A. Kharakhordin, S. Alyshev, K. Riumkin, E. Firstova, M. Melkumov, V. Khopin, A. Guryanov, and E. Dianov, “Formation of laser-active centers in bismuth-doped high-germania silica fibers by thermal treatment,” Opt. Express 26(10), 12363–12371 (2018).
    [Crossref] [PubMed]
  11. V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
    [Crossref]

2018 (1)

2017 (2)

2016 (1)

2011 (1)

2010 (1)

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

2005 (1)

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1084–1085 (2005).
[Crossref]

2002 (1)

R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
[Crossref]

Alyshev, S.

Barmenkov, Y. O.

Bhadra, S.

Carturan, G.

R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
[Crossref]

Chiasera, A.

R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
[Crossref]

Chu, Y.

Y. Chu, J. Hao, J. Zhang, J. Ren, G.-D. Peng, and L. Yuan, “Temperature properties and potential temperature sensor based on the Bismuth/Erbium co-doped optical fibers,” in 25th International Conference on Optical Fiber Sensors, Proc. SPIE10323, 1032371 (2017).

Das, S.

Dhar, A.

Dianov, E.

Dianov, E. M.

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).
[Crossref] [PubMed]

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1084–1085 (2005).
[Crossref]

Didenko, S. I.

Dutta, D.

Dvoyrin, V. V.

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).
[Crossref] [PubMed]

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1084–1085 (2005).
[Crossref]

Ferrari, M.

R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
[Crossref]

Firstov, S.

Firstova, E.

Gonçalves, R. R.

R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
[Crossref]

Guryanov, A.

Guryanov, A. N.

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1084–1085 (2005).
[Crossref]

Halder, A.

Hao, J.

Y. Chu, J. Hao, J. Zhang, J. Ren, G.-D. Peng, and L. Yuan, “Temperature properties and potential temperature sensor based on the Bismuth/Erbium co-doped optical fibers,” in 25th International Conference on Optical Fiber Sensors, Proc. SPIE10323, 1032371 (2017).

Il’ichev, N. N.

Khakhalin, A. V.

Kharakhordin, A.

Khopin, V.

Kir’yanov, A. V.

Koltashev, V. V.

Kozlova, N. S.

Mashinsky, V. M.

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).
[Crossref] [PubMed]

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1084–1085 (2005).
[Crossref]

Medvedkov, O. I.

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

Melkumov, M.

Messaddeq, Y.

R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
[Crossref]

Montagna, M.

R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
[Crossref]

Paul, M. C.

Pelli, S.

R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
[Crossref]

Peng, G.-D.

Y. Chu, J. Hao, J. Zhang, J. Ren, G.-D. Peng, and L. Yuan, “Temperature properties and potential temperature sensor based on the Bismuth/Erbium co-doped optical fibers,” in 25th International Conference on Optical Fiber Sensors, Proc. SPIE10323, 1032371 (2017).

Plotnichenko, V. G.

Ramirez-Granados, D.

Ren, J.

Y. Chu, J. Hao, J. Zhang, J. Ren, G.-D. Peng, and L. Yuan, “Temperature properties and potential temperature sensor based on the Bismuth/Erbium co-doped optical fibers,” in 25th International Conference on Optical Fiber Sensors, Proc. SPIE10323, 1032371 (2017).

Ribeiro, S. J. L.

R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
[Crossref]

Righini, G. C.

R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
[Crossref]

Riumkin, K.

Sholokhov, E. M.

Siddiki, S. H.

Umnikov, A. A.

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1084–1085 (2005).
[Crossref]

Yashkov, M. V.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1084–1085 (2005).
[Crossref]

Yuan, L.

Y. Chu, J. Hao, J. Zhang, J. Ren, G.-D. Peng, and L. Yuan, “Temperature properties and potential temperature sensor based on the Bismuth/Erbium co-doped optical fibers,” in 25th International Conference on Optical Fiber Sensors, Proc. SPIE10323, 1032371 (2017).

Zampedri, L.

R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
[Crossref]

Zhang, J.

Y. Chu, J. Hao, J. Zhang, J. Ren, G.-D. Peng, and L. Yuan, “Temperature properties and potential temperature sensor based on the Bismuth/Erbium co-doped optical fibers,” in 25th International Conference on Optical Fiber Sensors, Proc. SPIE10323, 1032371 (2017).

Appl. Phys. Lett. (1)

R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, and Y. Messaddeq, “Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5-µm applications,” Appl. Phys. Lett. 81(1), 28–30 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (3)

Quantum Electron. (1)

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1084–1085 (2005).
[Crossref]

Other (3)

A. V. Kir’yanov, “Effects of electron irradiation upon absorptive and fluorescent properties of some doped optical fibers,” in Radiation Effects in Materials W A. Monteiro (Ed.) (InTech, 2016)..

Y. Chu, J. Hao, J. Zhang, J. Ren, G.-D. Peng, and L. Yuan, “Temperature properties and potential temperature sensor based on the Bismuth/Erbium co-doped optical fibers,” in 25th International Conference on Optical Fiber Sensors, Proc. SPIE10323, 1032371 (2017).

J. K. Sahu, P. Dupriez, J. Kim, A. J. Boyland. C. A. Codemard, J. Nilsson, and D. N. Payne, “New Yb:Hf-doped silica fiber for high-power fiber lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), CTuK1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (main-frame) Attenuation spectra of Bi-HYAS (curve 1) and SMF-28 (curve 2) fibers, measured in VIS/NIR spectral region, with characteristic BACs bands being asterisked and (inset) micro-photograph of Bi-HYAS fiber at WL illumination.
Fig. 2
Fig. 2 (top) Transmission spectra in VIS/NIR domain of 20-cm pieces of Bi-HYAS (red curves) and analogous Bi-free HYAS (blue curves) fibers, exemplified for doses ‘1’, ‘2, and ‘4’; (bottom) micro-photographs of cleaved ends of these fibers (upper line – Bi-HYAS; lower line – HYAS), obtained at WL-illumination, in pristine state ‘0’ (a) and after bombardment with doses ‘1’ (b), ‘2’ (c), ‘3′ (d), and ‘4’ (e).
Fig. 3
Fig. 3 (main-frame) Attenuation spectra in VIS of Bi-HYAS fiber (red curve) and dopants-free SMF-28 (black curve) fiber, measured after irradiation with dose ‘4’. (insets) micro-photographs of core-areas of the two fibers, suffered this dose.
Fig. 4
Fig. 4 Micro-images of cleaved ends of core-area of Bi-HYAS fiber samples being in (a) pristine state ‘0’ and (b) after β-bombardment with dose ‘4’.
Fig. 5
Fig. 5 (a) Attenuation spectra in VIS/NIR of Bi-HYAS fiber in pristine state (‘0’) and at growing β-irradiation doses ‘1’ to ‘4’ (inset presents the same spectra in logarithmic scale); (b) absorption of Bi-HYAS fiber vs. β-dose in the characteristic domains: ~0.5 (curve 1), ~0.8 (curve 2), and ~1000 (curve 3) µm. In (b), the red dashed line schematizes proportionality between absorption magnitude in the BACs NIR (~1 µm) band and β-dose.
Fig. 6
Fig. 6 Emission spectra in NIR of pristine Bi-HYAS fiber (a) and at growing β-irradiation doses ‘1’ (b), ‘2’ (c), ‘3′ (d), and ‘4’ (e); all data are obtained with fiber samples of the same length (Lf = 30 cm) in the same conditions.
Fig. 7
Fig. 7 (a) Dose dependence of relative (to the pristine-state) emission power at ~1.15 µm. The red line schematizes the proportionality law between BACs-related NIR (>1.1 µm) power and irradiation dose whilst the yellow line marks the dose, at which emission growth is suddenly replaced by decrease. Lf = 30 cm. ((b) Dose dependences of BC (curve 1) and amplitude ratio of emission decay (curve 2), fitted by the model of two exponents.
Fig. 8
Fig. 8 Nonlinear absorption coefficients of Bi-HYAS fiber in pristine state ‘0’ (curve 1) and after irradiation with doses ‘1’ – ‘4’ (curves 2 – 5). vs. pump power at 1060 nm.
Fig. 9
Fig. 9 Normalized NIR emission decays in Bi-HYAS fiber, measured in pristine state ‘0’ (black) and after dose ‘4’ (gray).

Metrics