Abstract

We report on a Yb:LuPO4 microchip laser that is able to be passively Q-switched with few-layer WS2 or MoS2 deposited on its sapphire etalon output coupler. With 11.9 W of pump power absorbed, an average output power of 2.34 W is produced at a pulse repetition rate of 1.43 MHz with a slope efficiency of 31%, in WS2 passive Q-switching; the pulse energy, duration, and peak power are respectively 1.64 μJ, 34 ns, and 48.2 W. While passively Q-switched by MoS2, the laser can generate an average output power of 1.57 W at a repetition rate of 1.27 MHz, with the shortest pulse duration of 39 ns. Our work provides a novel simple way of making compact, reliable, high-repetition-rate pulsed lasers capable of producing multi-watt output power with several tens ns of pulse duration.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Watt-level passively Q-switched Yb:LuPO4 miniature crystal laser with few-layer MoS2 saturable absorber

Xiaodan Dou, Jingnan Yang, Min Zhu, Honghao Xu, Wenjuan Han, Degao Zhong, Bing Teng, and Junhai Liu
Opt. Express 26(11) 14232-14240 (2018)

Passive Q-switching induced by few-layer MoTe2 in an Yb:YCOB microchip laser

Yanjun Ma, Kan Tian, Xiaodan Dou, Jingnan Yang, Yuhang Li, Wenjuan Han, Honghao Xu, and Junhai Liu
Opt. Express 26(19) 25147-25155 (2018)

Repetitively Q-switched laser operation of a miniature Yb:LuPO4 crystal rod

Lisha Wang, Xiaodan Dou, Wenjuan Han, Honghao Xu, Degao Zhong, Bing Teng, and Junhai Liu
Opt. Mater. Express 7(3) 1048-1054 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher, “Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photon. Res. 3(2), A30–A42 (2015).
    [Crossref]
  2. R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
    [Crossref] [PubMed]
  3. F. Lou, R. Zhao, J. He, Z. Jia, X. Su, Z. Wang, J. Hou, and B. Zhang, “Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber,” Photon. Res. 3(2), A25–A29 (2015).
    [Crossref]
  4. Y. Zhan, L. Wang, J. Y. Wang, H. W. Li, and Z. H. Yu, “Yb:YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber,” Laser Phys. 25(2), 025901 (2015).
    [Crossref]
  5. Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
    [Crossref]
  6. Y. Sun, J. Xu, Z. Zhu, Y. Wang, H. Xia, Z. You, C. Lee, and C. Tu, “Comparison of MoS2 nanosheets and hierarchical nanospheres in the application of pulsed solid-state lasers,” Opt. Mater. Express 5(12), 2924–2932 (2015).
    [Crossref]
  7. J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6(10), 3262–3273 (2016).
    [Crossref]
  8. J. Liu, J. Tian, H. Guoyu, R. Xu, K. Li, Y. Song, X. Zhang, L. Su, and J. Xu, “Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber,” Chin. Phys. B 25(3), 034207 (2016).
    [Crossref]
  9. J. Ma, W. Jiang, C. Shen, and S. Yuan, “Passively Q-switched Yb:YAG laser based on a MoSe2 saturable absorber,” Appl. Opt. 57(8), 1958–1961 (2018).
    [Crossref] [PubMed]
  10. X. Dou, J. Yang, M. Zhu, H. Xu, W. Han, D. Zhong, B. Teng, and J. Liu, “Watt-level passively Q-switched Yb:LuPO4 miniature crystal laser with few-layer MoS2 saturable absorber,” Opt. Express 26(11), 14232–14240 (2018).
    [Crossref] [PubMed]
  11. A. E. Siegman, Lasers (University Science Books, 1986).
  12. X. Dou, Y. Ma, M. Zhu, H. Xu, D. Zhong, B. Teng, and J. Liu, “Multi-watt sub-30 ns passively Q-switched Yb:LuPO4/WS2 miniature laser operating under high output couplings,” Opt. Lett. 43(15), 3666–3669 (2018).
    [Crossref]
  13. O. Svelto, Principles of Lasers (Springer, 2010).
  14. J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32(3), 183–186 (2000).
    [Crossref]
  15. J. Liu, W. Han, X. Chen, D. Zhong, B. Teng, C. Wang, and Y. Li, “Spectroscopic properties and continuous-wave laser operation of Yb:LuPO4 crystal,” Opt. Lett. 39(20), 5881–5884 (2014).
    [Crossref] [PubMed]
  16. B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
    [Crossref] [PubMed]
  17. X. Dou, L. Wang, W. Han, H. Xu, D. Zhong, B. Teng, and J. Liu, “Near-IR 1-μm high-repetition-rate pulsed radiation generated with an Yb:LuPO4 miniature crystal rod laser,” Opt. Commun. 420, 90–94 (2018).
    [Crossref]
  18. X. D. Dou, J. N. Yang, Y. J. Ma, W. J. Han, H. H. Xu, and J. H. Liu, “Passive Q-switching of a Yb:LuVO4 laser with Cr4+:YAG: approaching the intrinsic upper limit of repetition rate,” Chin. Phys. Lett. 35(6), 064201 (2018).
    [Crossref]
  19. H. Liu, Z. Sun, X. Wang, Y. Wang, and G. Cheng, “Several nanosecond Nd:YVO4 lasers Q-switched by two dimensional materials: tungsten disulfide, molybdenum disulfide, and black phosphorous,” Opt. Express 25(6), 6244–6252 (2017).
    [Crossref] [PubMed]

2018 (5)

2017 (1)

2016 (2)

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6(10), 3262–3273 (2016).
[Crossref]

J. Liu, J. Tian, H. Guoyu, R. Xu, K. Li, Y. Song, X. Zhang, L. Su, and J. Xu, “Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber,” Chin. Phys. B 25(3), 034207 (2016).
[Crossref]

2015 (7)

Y. Zhan, L. Wang, J. Y. Wang, H. W. Li, and Z. H. Yu, “Yb:YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber,” Laser Phys. 25(2), 025901 (2015).
[Crossref]

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

F. Lou, R. Zhao, J. He, Z. Jia, X. Su, Z. Wang, J. Hou, and B. Zhang, “Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber,” Photon. Res. 3(2), A25–A29 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher, “Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photon. Res. 3(2), A30–A42 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref] [PubMed]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref] [PubMed]

Y. Sun, J. Xu, Z. Zhu, Y. Wang, H. Xia, Z. You, C. Lee, and C. Tu, “Comparison of MoS2 nanosheets and hierarchical nanospheres in the application of pulsed solid-state lasers,” Opt. Mater. Express 5(12), 2924–2932 (2015).
[Crossref]

2014 (1)

2000 (1)

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32(3), 183–186 (2000).
[Crossref]

Aguiló, M.

Chen, B.

Chen, J.

Chen, X.

Chen, Y.

Cheng, G.

Díaz, F.

Dou, X.

Dou, X. D.

X. D. Dou, J. N. Yang, Y. J. Ma, W. J. Han, H. H. Xu, and J. H. Liu, “Passive Q-switching of a Yb:LuVO4 laser with Cr4+:YAG: approaching the intrinsic upper limit of repetition rate,” Chin. Phys. Lett. 35(6), 064201 (2018).
[Crossref]

Gao, S.

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Griebner, U.

Guoyu, H.

J. Liu, J. Tian, H. Guoyu, R. Xu, K. Li, Y. Song, X. Zhang, L. Su, and J. Xu, “Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber,” Chin. Phys. B 25(3), 034207 (2016).
[Crossref]

Han, W.

Han, W. J.

X. D. Dou, J. N. Yang, Y. J. Ma, W. J. Han, H. H. Xu, and J. H. Liu, “Passive Q-switching of a Yb:LuVO4 laser with Cr4+:YAG: approaching the intrinsic upper limit of repetition rate,” Chin. Phys. Lett. 35(6), 064201 (2018).
[Crossref]

Hasan, T.

He, J.

Hou, J.

Howe, R. C. T.

Hu, G.

Jia, Z.

Jiang, M.

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32(3), 183–186 (2000).
[Crossref]

Jiang, W.

Kelleher, E. J. R.

Lee, C.

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Y. Sun, J. Xu, Z. Zhu, Y. Wang, H. Xia, Z. You, C. Lee, and C. Tu, “Comparison of MoS2 nanosheets and hierarchical nanospheres in the application of pulsed solid-state lasers,” Opt. Mater. Express 5(12), 2924–2932 (2015).
[Crossref]

Li, H. W.

Y. Zhan, L. Wang, J. Y. Wang, H. W. Li, and Z. H. Yu, “Yb:YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber,” Laser Phys. 25(2), 025901 (2015).
[Crossref]

Li, K.

J. Liu, J. Tian, H. Guoyu, R. Xu, K. Li, Y. Song, X. Zhang, L. Su, and J. Xu, “Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber,” Chin. Phys. B 25(3), 034207 (2016).
[Crossref]

Li, Y.

Liu, H.

Liu, J.

X. Dou, J. Yang, M. Zhu, H. Xu, W. Han, D. Zhong, B. Teng, and J. Liu, “Watt-level passively Q-switched Yb:LuPO4 miniature crystal laser with few-layer MoS2 saturable absorber,” Opt. Express 26(11), 14232–14240 (2018).
[Crossref] [PubMed]

X. Dou, Y. Ma, M. Zhu, H. Xu, D. Zhong, B. Teng, and J. Liu, “Multi-watt sub-30 ns passively Q-switched Yb:LuPO4/WS2 miniature laser operating under high output couplings,” Opt. Lett. 43(15), 3666–3669 (2018).
[Crossref]

X. Dou, L. Wang, W. Han, H. Xu, D. Zhong, B. Teng, and J. Liu, “Near-IR 1-μm high-repetition-rate pulsed radiation generated with an Yb:LuPO4 miniature crystal rod laser,” Opt. Commun. 420, 90–94 (2018).
[Crossref]

J. Liu, J. Tian, H. Guoyu, R. Xu, K. Li, Y. Song, X. Zhang, L. Su, and J. Xu, “Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber,” Chin. Phys. B 25(3), 034207 (2016).
[Crossref]

J. Liu, W. Han, X. Chen, D. Zhong, B. Teng, C. Wang, and Y. Li, “Spectroscopic properties and continuous-wave laser operation of Yb:LuPO4 crystal,” Opt. Lett. 39(20), 5881–5884 (2014).
[Crossref] [PubMed]

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32(3), 183–186 (2000).
[Crossref]

Liu, J. H.

X. D. Dou, J. N. Yang, Y. J. Ma, W. J. Han, H. H. Xu, and J. H. Liu, “Passive Q-switching of a Yb:LuVO4 laser with Cr4+:YAG: approaching the intrinsic upper limit of repetition rate,” Chin. Phys. Lett. 35(6), 064201 (2018).
[Crossref]

Liu, Y.

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32(3), 183–186 (2000).
[Crossref]

Loiko, P.

Lou, F.

Ma, J.

Ma, Y.

Ma, Y. J.

X. D. Dou, J. N. Yang, Y. J. Ma, W. J. Han, H. H. Xu, and J. H. Liu, “Passive Q-switching of a Yb:LuVO4 laser with Cr4+:YAG: approaching the intrinsic upper limit of repetition rate,” Chin. Phys. Lett. 35(6), 064201 (2018).
[Crossref]

Mateos, X.

Petrov, V.

Runcorn, T. H.

Serres, J. M.

Shao, Z.

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32(3), 183–186 (2000).
[Crossref]

Shen, C.

Song, Y.

J. Liu, J. Tian, H. Guoyu, R. Xu, K. Li, Y. Song, X. Zhang, L. Su, and J. Xu, “Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber,” Chin. Phys. B 25(3), 034207 (2016).
[Crossref]

Su, L.

J. Liu, J. Tian, H. Guoyu, R. Xu, K. Li, Y. Song, X. Zhang, L. Su, and J. Xu, “Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber,” Chin. Phys. B 25(3), 034207 (2016).
[Crossref]

Su, X.

Sun, Y.

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Y. Sun, J. Xu, Z. Zhu, Y. Wang, H. Xia, Z. You, C. Lee, and C. Tu, “Comparison of MoS2 nanosheets and hierarchical nanospheres in the application of pulsed solid-state lasers,” Opt. Mater. Express 5(12), 2924–2932 (2015).
[Crossref]

Sun, Z.

Teng, B.

Tian, J.

J. Liu, J. Tian, H. Guoyu, R. Xu, K. Li, Y. Song, X. Zhang, L. Su, and J. Xu, “Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber,” Chin. Phys. B 25(3), 034207 (2016).
[Crossref]

Torrisi, F.

Tu, C.

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Y. Sun, J. Xu, Z. Zhu, Y. Wang, H. Xia, Z. You, C. Lee, and C. Tu, “Comparison of MoS2 nanosheets and hierarchical nanospheres in the application of pulsed solid-state lasers,” Opt. Mater. Express 5(12), 2924–2932 (2015).
[Crossref]

Wang, C.

J. Liu, W. Han, X. Chen, D. Zhong, B. Teng, C. Wang, and Y. Li, “Spectroscopic properties and continuous-wave laser operation of Yb:LuPO4 crystal,” Opt. Lett. 39(20), 5881–5884 (2014).
[Crossref] [PubMed]

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32(3), 183–186 (2000).
[Crossref]

Wang, H.

Wang, J.

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref] [PubMed]

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32(3), 183–186 (2000).
[Crossref]

Wang, J. Y.

Y. Zhan, L. Wang, J. Y. Wang, H. W. Li, and Z. H. Yu, “Yb:YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber,” Laser Phys. 25(2), 025901 (2015).
[Crossref]

Wang, L.

X. Dou, L. Wang, W. Han, H. Xu, D. Zhong, B. Teng, and J. Liu, “Near-IR 1-μm high-repetition-rate pulsed radiation generated with an Yb:LuPO4 miniature crystal rod laser,” Opt. Commun. 420, 90–94 (2018).
[Crossref]

Y. Zhan, L. Wang, J. Y. Wang, H. W. Li, and Z. H. Yu, “Yb:YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber,” Laser Phys. 25(2), 025901 (2015).
[Crossref]

Wang, X.

Wang, Y.

Wang, Z.

Wei, J.

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32(3), 183–186 (2000).
[Crossref]

Woodward, R. I.

Wu, K.

Xia, H.

Y. Sun, J. Xu, Z. Zhu, Y. Wang, H. Xia, Z. You, C. Lee, and C. Tu, “Comparison of MoS2 nanosheets and hierarchical nanospheres in the application of pulsed solid-state lasers,” Opt. Mater. Express 5(12), 2924–2932 (2015).
[Crossref]

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Xu, H.

Xu, H. H.

X. D. Dou, J. N. Yang, Y. J. Ma, W. J. Han, H. H. Xu, and J. H. Liu, “Passive Q-switching of a Yb:LuVO4 laser with Cr4+:YAG: approaching the intrinsic upper limit of repetition rate,” Chin. Phys. Lett. 35(6), 064201 (2018).
[Crossref]

Xu, J.

J. Liu, J. Tian, H. Guoyu, R. Xu, K. Li, Y. Song, X. Zhang, L. Su, and J. Xu, “Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber,” Chin. Phys. B 25(3), 034207 (2016).
[Crossref]

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Y. Sun, J. Xu, Z. Zhu, Y. Wang, H. Xia, Z. You, C. Lee, and C. Tu, “Comparison of MoS2 nanosheets and hierarchical nanospheres in the application of pulsed solid-state lasers,” Opt. Mater. Express 5(12), 2924–2932 (2015).
[Crossref]

Xu, R.

J. Liu, J. Tian, H. Guoyu, R. Xu, K. Li, Y. Song, X. Zhang, L. Su, and J. Xu, “Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber,” Chin. Phys. B 25(3), 034207 (2016).
[Crossref]

Yang, J.

Yang, J. N.

X. D. Dou, J. N. Yang, Y. J. Ma, W. J. Han, H. H. Xu, and J. H. Liu, “Passive Q-switching of a Yb:LuVO4 laser with Cr4+:YAG: approaching the intrinsic upper limit of repetition rate,” Chin. Phys. Lett. 35(6), 064201 (2018).
[Crossref]

You, Z.

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Y. Sun, J. Xu, Z. Zhu, Y. Wang, H. Xia, Z. You, C. Lee, and C. Tu, “Comparison of MoS2 nanosheets and hierarchical nanospheres in the application of pulsed solid-state lasers,” Opt. Mater. Express 5(12), 2924–2932 (2015).
[Crossref]

Yu, H.

Yu, Z. H.

Y. Zhan, L. Wang, J. Y. Wang, H. W. Li, and Z. H. Yu, “Yb:YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber,” Laser Phys. 25(2), 025901 (2015).
[Crossref]

Yuan, S.

Yumashev, K.

Zhan, Y.

Y. Zhan, L. Wang, J. Y. Wang, H. W. Li, and Z. H. Yu, “Yb:YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber,” Laser Phys. 25(2), 025901 (2015).
[Crossref]

Zhang, B.

Zhang, H.

Zhang, M.

Zhang, X.

J. Liu, J. Tian, H. Guoyu, R. Xu, K. Li, Y. Song, X. Zhang, L. Su, and J. Xu, “Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber,” Chin. Phys. B 25(3), 034207 (2016).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref] [PubMed]

Zhao, R.

Zhong, D.

Zhu, M.

Zhu, Z.

Appl. Opt. (1)

Chin. Phys. B (1)

J. Liu, J. Tian, H. Guoyu, R. Xu, K. Li, Y. Song, X. Zhang, L. Su, and J. Xu, “Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber,” Chin. Phys. B 25(3), 034207 (2016).
[Crossref]

Chin. Phys. Lett. (1)

X. D. Dou, J. N. Yang, Y. J. Ma, W. J. Han, H. H. Xu, and J. H. Liu, “Passive Q-switching of a Yb:LuVO4 laser with Cr4+:YAG: approaching the intrinsic upper limit of repetition rate,” Chin. Phys. Lett. 35(6), 064201 (2018).
[Crossref]

Laser Phys. (1)

Y. Zhan, L. Wang, J. Y. Wang, H. W. Li, and Z. H. Yu, “Yb:YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber,” Laser Phys. 25(2), 025901 (2015).
[Crossref]

Mater. Lett. (1)

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Opt. Commun. (1)

X. Dou, L. Wang, W. Han, H. Xu, D. Zhong, B. Teng, and J. Liu, “Near-IR 1-μm high-repetition-rate pulsed radiation generated with an Yb:LuPO4 miniature crystal rod laser,” Opt. Commun. 420, 90–94 (2018).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32(3), 183–186 (2000).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (2)

Photon. Res. (2)

Other (2)

O. Svelto, Principles of Lasers (Springer, 2010).

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Transmittance (Tet) versus 2nL/λ, calculated for the sapphire etalon output coupler. The quantity q on the horizontal axis represents some integer.
Fig. 2
Fig. 2 (a) Lasing spectra measured for the MoS2 or WS2 passively Q-switched Yb:LuPO4 microchip laser. (b) π-polarized gain cross-section curve calculated for Yb:LuPO4 crystal, showing the predicted lasing wavelength region. The grey line represents the σ-polarized gain curve for β = 0.487.
Fig. 3
Fig. 3 Average output power versus Pabs, measured for the passively Q-switched Yb:LuPO4 microchip laser with few-layer WS2 or MoS2 acting as saturable absorber.
Fig. 4
Fig. 4 Pulse repetition rate (a) and pulse energy (b) versus Pabs, measured (calculated) for the passively Q-switched Yb:LuPO4 microchip laser.
Fig. 5
Fig. 5 Pulse duration (a) and peak power (b) versus Pabs, measured (calculated) for the passively Q-switched Yb:LuPO4 microchip laser.
Fig. 6
Fig. 6 Pulse train measured at Pabs = 11.5 W for WS2 passive Q-switching (a) and for MoS2 passive Q-switching (b). The inset in each figure shows the temporal profile of an individual pulse.

Tables (2)

Tables Icon

Table 1 Characteristic Parameters for the 2D TMD Saturable Absorbers and Gain-Related Parameters for the Yb:LuPO4 Microchip Laser

Tables Icon

Table 2 Comparison of Passive Q-switching Performance between the Current Yb:LuPO4/WS2 (MoS2) Laser and the Previously Reported Yb:LuPO4/GaAs or Yb:LuVO4/Cr4+:YAG Laser [17, 18]

Metrics