Abstract

Depending on the fabrication process and steps, dimensional and structural variation is generally expected during fabrication of plasmonic antenna arrays. It is important to know the critical design parameter and the effect of dimensional variation in device performance so as to predict experimental results. In this study we examine the effect of dimensional variation that could occur during fabrication of a metal-insulator-metal (MIM) patch antenna structure in its spectral response. The variation in width, edge roundness, stack slope, and slope of top metal layer are studied. We showed that the slope of the MIM stack (both dielectric and metal) plays an important role in determining the resonance peak while edge roundness of the stack layer severely affects the spectral width of periodically arranged differently sized patch antenna.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultranarrowband perfect terahertz absorber based on a metal- and insulator-stacked structure

Jing Nie and Hu-Quan Li
J. Opt. Soc. Am. B 33(12) 2602-2608 (2016)

Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity

Amir Ghobadi, Hodjat Hajian, Murat Gokbayrak, Sina Abedini Dereshgi, Ahmet Toprak, Bayram Butun, and Ekmel Ozbay
Opt. Express 25(22) 27624-27634 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys.Rev. Lett. 104, 207403 (2010).
  2. C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haïdar, “Total routing and absorption of photonsin dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
    [Crossref]
  3. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
    [Crossref] [PubMed]
  4. N. Wu, H. Tian, H. Liu, and Y. Ji, “Infrared perfect metamaterial absorber and its potential application as strain sensor,” Asia Communications and Photonics Conference 2013, page AW4J.8 (OSA, 2013).
    [Crossref]
  5. J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009).
    [Crossref]
  6. W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
    [Crossref] [PubMed]
  7. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
    [Crossref] [PubMed]
  8. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express 19(20), 19310–19322 (2011).
    [Crossref] [PubMed]
  9. J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).
  10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  11. S. A. Maier, Plasmonics: Fundamentals and Application (Springer, 2007).
  12. Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010).
    [Crossref] [PubMed]
  13. C. Feuillet-Palma, Y. Todorov, R. Steed, A. Vasanelli, G. Biasiol, L. Sorba, and C. Sirtori, “Extremely sub-wavelength THz metal-dielectric wire microcavities,” Opt. Express 20(27), 29121–29130 (2012).
    [Crossref] [PubMed]
  14. E. Palik, “Handbook of Optical Constants of Solids, volume 3 (Academic Press, 1998).
  15. T. V. Raziman and O. J. Martin, “Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures,” Opt. Express 21(18), 21500–21507 (2013).
    [Crossref] [PubMed]
  16. X. Ming and Q. Tan, “Design method of a broadband wide-angle plasmonic absorber in the visible range,” Plasmonics 12(1), 117–124 (2017).
    [Crossref]
  17. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
    [Crossref] [PubMed]

2017 (1)

X. Ming and Q. Tan, “Design method of a broadband wide-angle plasmonic absorber in the visible range,” Plasmonics 12(1), 117–124 (2017).
[Crossref]

2013 (3)

2012 (4)

2011 (2)

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haïdar, “Total routing and absorption of photonsin dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express 19(20), 19310–19322 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Albrektsen, O.

Andrews, A. M.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Biasiol, G.

Bouchon, P.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[Crossref] [PubMed]

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haïdar, “Total routing and absorption of photonsin dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Bozhevolnyi, S. I.

Colombelli, R.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Desieres, Y.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Espiau de Lamaestre, R.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009).
[Crossref]

Feuillet-Palma, C.

Gramotnev, D. K.

Haïdar, R.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[Crossref] [PubMed]

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haïdar, “Total routing and absorption of photonsin dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Jaeck, J.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haïdar, “Total routing and absorption of photonsin dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Klang, P.

Koechlin, C.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[Crossref] [PubMed]

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haïdar, “Total routing and absorption of photonsin dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Lafosse, X.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haïdar, “Total routing and absorption of photonsin dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Le Perchec, J.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009).
[Crossref]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys.Rev. Lett. 104, 207403 (2010).

Ma, W.

Martin, O. J.

Ming, X.

X. Ming and Q. Tan, “Design method of a broadband wide-angle plasmonic absorber in the visible range,” Plasmonics 12(1), 117–124 (2017).
[Crossref]

Nielsen, M. G.

Padilla, W. J.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys.Rev. Lett. 104, 207403 (2010).

Pardo, F.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[Crossref] [PubMed]

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haïdar, “Total routing and absorption of photonsin dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Pelouard, J. L.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haïdar, “Total routing and absorption of photonsin dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Pelouard, J.-L.

Pors, A.

Raziman, T. V.

Rochat, N.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).

Sagnes, I.

Sirtori, C.

Sorba, L.

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys.Rev. Lett. 104, 207403 (2010).

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys.Rev. Lett. 104, 207403 (2010).

Steed, R.

Strasser, G.

Tan, Q.

X. Ming and Q. Tan, “Design method of a broadband wide-angle plasmonic absorber in the visible range,” Plasmonics 12(1), 117–124 (2017).
[Crossref]

Teissier, J.

Todorov, Y.

Tosetto, L.

Vasanelli, A.

Wang, H.

Wang, L.

Wen, Y.

Yu, X.

Appl. Phys. Lett. (3)

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009).
[Crossref]

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haïdar, “Total routing and absorption of photonsin dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Phys.Rev. Lett. (1)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys.Rev. Lett. 104, 207403 (2010).

Plasmonics (1)

X. Ming and Q. Tan, “Design method of a broadband wide-angle plasmonic absorber in the visible range,” Plasmonics 12(1), 117–124 (2017).
[Crossref]

Other (3)

N. Wu, H. Tian, H. Liu, and Y. Ji, “Infrared perfect metamaterial absorber and its potential application as strain sensor,” Asia Communications and Photonics Conference 2013, page AW4J.8 (OSA, 2013).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Application (Springer, 2007).

E. Palik, “Handbook of Optical Constants of Solids, volume 3 (Academic Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Geometry of differently sized square patch antenna array made of tungsten (W) top patch and bottom ground plate, and amorphous silicon (a-Si) insulator core of thickness defined as h ins . (b) Top view of antenna array, where four different patch antenna with widths defined as W1, W2, W3 are arranged in square lattice. The centre-to centre distance between each patch is defined as Pl. SEM image of fabricated antenna array (c) perspective view, (d) cross section view of one of the antenna in the array
Fig. 2
Fig. 2 (a) SEM image of fabricated antenna arrays (a) perspective view, (b) cross section view of one of the antenna in the array, (c) simulated and measured absorption spectra (TE,TM) for antenna array 3CS
Fig. 3
Fig. 3 (a) Unit cell of periodic antenna array 3CS, (b) Conceptual diagram showing the patch size variation of individual patch antenna in periodic array 3CS, (c) Absorption as a function of Δ and wavelength for antenna array 3CS, (d) Absorption as function of wavelength for different Δ. The spectrum corresponds to the vertical cross cuts shown in (c).
Fig. 4
Fig. 4 (a) Individual structures which creates the rounded patch (b) Top view of rounded patch showing the center of cylindrical patch edge and its trajectory (c-e) top view of patch for different scaling factor r. (f) Absorption as a function of scaling factor r and wavelengths for 3CS, (g) absorption as a function of wavelength for various scaling factor (r= 0, 0.5, and 1)
Fig. 5
Fig. 5 (a) Schematic for bottom width target (b) absorption as a function of wavelength of periodic antenna width patch width W: 1400nm and period P: 2000nm (c) absorption as a function of wavelength of antenna array 3CS for different slope angles
Fig. 6
Fig. 6 (a) ( 1 2 h ins tan(θ) W bottom ) and (b) n eff ' n eff as a function of slope angle (θ) for various patch widths (W: 1400nm, 1500nm and 1600nm)
Fig. 7
Fig. 7 (a) Schematic for top width target (b) absorption as a function of wavelength of periodic antenna width patch width W: 1400nm and period P: 2000nm (c) absorption as a function of wavelength of antenna array 3CS for different slope angles.
Fig. 8
Fig. 8 (a) ( 1 2 h ins tan(θ) W top +2 h ins tan(θ) ) and (b) n eff ' n eff as a function of slope angle (θ) for various patch widths (W: 1200nm, 1300 nm, 1400nm)
Fig. 9
Fig. 9 Schematic for top width target with different slope angle for core material and top metal patch (b) absorption as a function of wavelength of antenna array 3CS for various metal slopes ( θ m :  40 o , 60 o , 80 o ) with fixed core slope ( θ h :  20 o ) (c) metal thickness at the edge of antenna patch normalized to designed metal thickness ( h umet ) for various metal slopes ( θ m :   20 o , 40 o , 60 o , 80 o )
Fig. 10
Fig. 10 Absorption as a function of wavelength of antenna array 3CS for various core slopes ( θ h :  10 o , 20 o , 40 o ) with fixed metal slope ( θ m :  70 o )
Fig. 11
Fig. 11 Simulated absorption spectra incorporating dimensional variation compared to experimental data and ideal stack for antenna array 3CS.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

λ r  =2W n g
R=r× W 2 .
  W top = W bottom 2Δ W t
  W tmetal = W bottom 2Δ W m
Δ W t = h ins tan(θ)
Δ W m =( h ins + h umet )tan(θ)
λ θ=0 =2 n eff W bottom
λ θ0 =2 n eff ' W top
λ θ0 λ θ=0 = n eff ' n eff ( 1 2 h ins tan(θ) W bottom )
   W bottom = W top +2Δ W b
  W tmetal = W top 2Δ W m
Δ W b = h ins tan(θ)
Δ W m =( h umet )tan(θ)
λ θ0 λ θ=0 = n eff ' n eff ( 1 2 h ins tan(θ) W top +2 h ins tan(θ) )

Metrics