Abstract

Upconverting photoluminescence of lanthanides plays a critical role in a diversity of frontier applications. However, it remains challenging to achieve efficient upconversion of Nd3+ due to its specific electron configuration. Herein, we report a new mechanistic strategy for efficient upconversion of Nd3+ from core-shell nanocrystals by taking advantage of the Gd-mediated interfacial energy transfer (IET). Such upconversion was recorded in the core-shell structure with a set of shell layer matrix materials, and was further enhanced by the incorporation of Yb3+ in the Nd-doped layer as a result of an increased absorption of excitation energy by the Yb3+ sublattice. The details of upconversion and energy transportation were discussed. The results offer a simple but efficient approach for the upconverting emission of lanthanides with no physically existing intermediate states, and would greatly contribute to the broad frontier applications of lanthanide-based upconversion materials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photon upconversion in Yb/Tb co-sensitized core-shell nanocrystals by interfacial energy transfer

Lili Tao, Yu Zhao, and Jingbo Li
Opt. Mater. Express 7(3) 1022-1028 (2017)

Modification on populating paths of β-NaYF4:Nd/Yb/Ho@SiO2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission

Yi Qin, Zhiliang Dong, Dacheng Zhou, Yong Yang, Xuhui Xu, and Jianbei Qiu
Opt. Mater. Express 6(6) 1942-1955 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
    [Crossref] [PubMed]
  2. C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
    [Crossref] [PubMed]
  3. D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconvertingnanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
    [Crossref] [PubMed]
  4. Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
    [Crossref]
  5. X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437–10447 (2016).
    [Crossref] [PubMed]
  6. Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
    [Crossref] [PubMed]
  7. R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
    [Crossref] [PubMed]
  8. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Cells 90(15), 2329–2337 (2006).
    [Crossref]
  9. C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
    [Crossref] [PubMed]
  10. B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
    [Crossref]
  11. G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
    [Crossref] [PubMed]
  12. S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
    [Crossref] [PubMed]
  13. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  14. B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
    [Crossref] [PubMed]
  15. W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
    [Crossref] [PubMed]
  16. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
    [Crossref] [PubMed]
  17. B. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang, and Q. Y. Zhang, “Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer,” Adv Sci (Weinh) 5(3), 1700667 (2018).
    [Crossref] [PubMed]
  18. B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon upconversion through Tb3+ -mediated interfacial energy transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
    [Crossref] [PubMed]
  19. B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
    [Crossref] [PubMed]
  20. Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
    [Crossref] [PubMed]
  21. X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
    [Crossref] [PubMed]
  22. Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching-shield sandwich structure for 800nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
    [Crossref] [PubMed]
  23. Q. Zhu, T. Sun, M. N. Chung, X. Sun, Y. Xiao, X. Qiao, and F. Wang, “Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions through energy migration,” Dalton Trans. 47(26), 8581–8584 (2018).
    [Crossref] [PubMed]
  24. L. D. Merkle, M. Dubinskii, K. L. Schepler, and S. M. Hegde, “Concentration quenching in fine-grained ceramic Nd:YAG,” Opt. Express 14(9), 3893–3905 (2006).
    [Crossref] [PubMed]
  25. F. B. Costa, K. Yukimitu, L. A. O. Nunes, M. S. Figueiredo, L. H. C. Andrade, S. M. Lima, and J. C. S. Moraes, “Spectroscopic properties of Nd3+-doped tungsten–tellurite glasses,” J. Phys. Chem. Solids 88, 54–59 (2016).
    [Crossref]

2018 (3)

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

B. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang, and Q. Y. Zhang, “Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer,” Adv Sci (Weinh) 5(3), 1700667 (2018).
[Crossref] [PubMed]

Q. Zhu, T. Sun, M. N. Chung, X. Sun, Y. Xiao, X. Qiao, and F. Wang, “Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions through energy migration,” Dalton Trans. 47(26), 8581–8584 (2018).
[Crossref] [PubMed]

2017 (1)

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

2016 (3)

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

F. B. Costa, K. Yukimitu, L. A. O. Nunes, M. S. Figueiredo, L. H. C. Andrade, S. M. Lima, and J. C. S. Moraes, “Spectroscopic properties of Nd3+-doped tungsten–tellurite glasses,” J. Phys. Chem. Solids 88, 54–59 (2016).
[Crossref]

2015 (5)

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon upconversion through Tb3+ -mediated interfacial energy transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

2014 (3)

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconvertingnanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching-shield sandwich structure for 800nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

2013 (2)

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

2012 (1)

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

2011 (2)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

2010 (2)

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
[Crossref] [PubMed]

2006 (2)

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

L. D. Merkle, M. Dubinskii, K. L. Schepler, and S. M. Hegde, “Concentration quenching in fine-grained ceramic Nd:YAG,” Opt. Express 14(9), 3893–3905 (2006).
[Crossref] [PubMed]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Ågren, H.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

All, A. H.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Aloni, S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconvertingnanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Altoe, M. V. P.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconvertingnanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Andrade, L. H. C.

F. B. Costa, K. Yukimitu, L. A. O. Nunes, M. S. Figueiredo, L. H. C. Andrade, S. M. Lima, and J. C. S. Moraes, “Spectroscopic properties of Nd3+-doped tungsten–tellurite glasses,” J. Phys. Chem. Solids 88, 54–59 (2016).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Barnard, E. S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconvertingnanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Chai, Y.

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

Chan, E. M.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconvertingnanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Chang, J.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Chen, G.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Chen, M.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Chen, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Chen, S.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Chen, X.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Chen, Y.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Chung, M. N.

Q. Zhu, T. Sun, M. N. Chung, X. Sun, Y. Xiao, X. Qiao, and F. Wang, “Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions through energy migration,” Dalton Trans. 47(26), 8581–8584 (2018).
[Crossref] [PubMed]

Costa, F. B.

F. B. Costa, K. Yukimitu, L. A. O. Nunes, M. S. Figueiredo, L. H. C. Andrade, S. M. Lima, and J. C. S. Moraes, “Spectroscopic properties of Nd3+-doped tungsten–tellurite glasses,” J. Phys. Chem. Solids 88, 54–59 (2016).
[Crossref]

Dadvand, A.

C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
[Crossref] [PubMed]

Deng, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Dubinskii, M.

Fang, C.-J.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Feng, W.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Figueiredo, M. S.

F. B. Costa, K. Yukimitu, L. A. O. Nunes, M. S. Figueiredo, L. H. C. Andrade, S. M. Lima, and J. C. S. Moraes, “Spectroscopic properties of Nd3+-doped tungsten–tellurite glasses,” J. Phys. Chem. Solids 88, 54–59 (2016).
[Crossref]

Gao, N.

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Gargas, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconvertingnanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Goldys, E.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Gu, L.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching-shield sandwich structure for 800nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Gu, Z.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching-shield sandwich structure for 800nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Haase, M.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Han, S.

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon upconversion through Tb3+ -mediated interfacial energy transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

Han, Y.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Hashimotodani, Y.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

He, F.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

He, L.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Hegde, S. M.

Hong, M.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Hou, Z.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Huang, A. J. Y.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Huang, P.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Huang, S.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Huang, W.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Huo, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Iwasaki, H.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Jin, D.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Kano, M.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Lau, S. P.

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

Law, W.-C.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Leif, R. C.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Li, C.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Li, F.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Li, J.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Li, Z. X.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Liao, L.-Y.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Lima, S. M.

F. B. Costa, K. Yukimitu, L. A. O. Nunes, M. S. Figueiredo, L. H. C. Andrade, S. M. Lima, and J. C. S. Moraes, “Spectroscopic properties of Nd3+-doped tungsten–tellurite glasses,” J. Phys. Chem. Solids 88, 54–59 (2016).
[Crossref]

Lin, J.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Liu, B.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Liu, D.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Liu, G. Y.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Liu, S.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Liu, X.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon upconversion through Tb3+ -mediated interfacial energy transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Lu, J.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Lu, Y.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Ma, C.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Ma, E.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Ma, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching-shield sandwich structure for 800nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

McHugh, T. J.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Merkle, L. D.

Moraes, J. C. S.

F. B. Costa, K. Yukimitu, L. A. O. Nunes, M. S. Figueiredo, L. H. C. Andrade, S. M. Lima, and J. C. S. Moraes, “Spectroscopic properties of Nd3+-doped tungsten–tellurite glasses,” J. Phys. Chem. Solids 88, 54–59 (2016).
[Crossref]

Nunes, L. A. O.

F. B. Costa, K. Yukimitu, L. A. O. Nunes, M. S. Figueiredo, L. H. C. Andrade, S. M. Lima, and J. C. S. Moraes, “Spectroscopic properties of Nd3+-doped tungsten–tellurite glasses,” J. Phys. Chem. Solids 88, 54–59 (2016).
[Crossref]

Ohulchanskyy, T. Y.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Okabe, S.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Ostrowski, A. D.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconvertingnanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Parajuli, L. K.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Perepichka, D. F.

C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
[Crossref] [PubMed]

Piper, J. A.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Prasad, P. N.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Qiao, X.

Q. Zhu, T. Sun, M. N. Chung, X. Sun, Y. Xiao, X. Qiao, and F. Wang, “Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions through energy migration,” Dalton Trans. 47(26), 8581–8584 (2018).
[Crossref] [PubMed]

Qin, F.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Richards, B. S.

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

Robinson, J. P.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Rosei, F.

C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
[Crossref] [PubMed]

Sanii, B.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconvertingnanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Schäfer, H.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Schepler, K. L.

Shen, J.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Shi, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Shi, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Song, N.

B. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang, and Q. Y. Zhang, “Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer,” Adv Sci (Weinh) 5(3), 1700667 (2018).
[Crossref] [PubMed]

Sun, L. D.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Sun, L.-D.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Sun, Q.

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon upconversion through Tb3+ -mediated interfacial energy transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Sun, T.

Q. Zhu, T. Sun, M. N. Chung, X. Sun, Y. Xiao, X. Qiao, and F. Wang, “Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions through energy migration,” Dalton Trans. 47(26), 8581–8584 (2018).
[Crossref] [PubMed]

Sun, W.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Sun, X.

Q. Zhu, T. Sun, M. N. Chung, X. Sun, Y. Xiao, X. Qiao, and F. Wang, “Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions through energy migration,” Dalton Trans. 47(26), 8581–8584 (2018).
[Crossref] [PubMed]

Sun, Y.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Sunna, A.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Swihart, M. T.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Tan, Y.-W.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Tanaka, K. F.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Tao, L.

B. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang, and Q. Y. Zhang, “Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer,” Adv Sci (Weinh) 5(3), 1700667 (2018).
[Crossref] [PubMed]

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

Tao, Y.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Teh, D. B. L.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Tian, G.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching-shield sandwich structure for 800nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Tsang, Y. H.

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

Tsutsui-Kimura, I.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Tu, D.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Vidal, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Wang, F.

Q. Zhu, T. Sun, M. N. Chung, X. Sun, Y. Xiao, X. Qiao, and F. Wang, “Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions through energy migration,” Dalton Trans. 47(26), 8581–8584 (2018).
[Crossref] [PubMed]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Wang, J.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Wang, Q.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Wang, T.

B. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang, and Q. Y. Zhang, “Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer,” Adv Sci (Weinh) 5(3), 1700667 (2018).
[Crossref] [PubMed]

Wang, X.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Wang, Y. F.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Weitemier, A. Z.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Wen, S.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Wu, F.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Wu, M.

B. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang, and Q. Y. Zhang, “Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer,” Adv Sci (Weinh) 5(3), 1700667 (2018).
[Crossref] [PubMed]

Xi, P.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Xiao, J. W.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Xiao, Y.

Q. Zhu, T. Sun, M. N. Chung, X. Sun, Y. Xiao, X. Qiao, and F. Wang, “Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions through energy migration,” Dalton Trans. 47(26), 8581–8584 (2018).
[Crossref] [PubMed]

Xie, X.

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Xu, C.-H.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Xu, Q.-H.

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Yan, C.

C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
[Crossref] [PubMed]

Yan, C. H.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Yan, C.-H.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Yan, L.

B. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang, and Q. Y. Zhang, “Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer,” Adv Sci (Weinh) 5(3), 1700667 (2018).
[Crossref] [PubMed]

Yang, W.

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon upconversion through Tb3+ -mediated interfacial energy transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

Yang, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Yang, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching-shield sandwich structure for 800nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Yao, J.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching-shield sandwich structure for 800nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Yukimitu, K.

F. B. Costa, K. Yukimitu, L. A. O. Nunes, M. S. Figueiredo, L. H. C. Andrade, S. M. Lima, and J. C. S. Moraes, “Spectroscopic properties of Nd3+-doped tungsten–tellurite glasses,” J. Phys. Chem. Solids 88, 54–59 (2016).
[Crossref]

Zeng, X.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Zhang, Q.

B. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang, and Q. Y. Zhang, “Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer,” Adv Sci (Weinh) 5(3), 1700667 (2018).
[Crossref] [PubMed]

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

Zhang, Q. Y.

B. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang, and Q. Y. Zhang, “Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer,” Adv Sci (Weinh) 5(3), 1700667 (2018).
[Crossref] [PubMed]

Zhang, R.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Zhang, Y.-W.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Zhao, J.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Zhao, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching-shield sandwich structure for 800nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Zheng, W.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Zheng, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Zhong, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching-shield sandwich structure for 800nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Zhou, B.

B. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang, and Q. Y. Zhang, “Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer,” Adv Sci (Weinh) 5(3), 1700667 (2018).
[Crossref] [PubMed]

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon upconversion through Tb3+ -mediated interfacial energy transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Zhou, H.-P.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Zhou, J.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Zhou, J. C.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Zhou, Z.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Zhu, H.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Zhu, Q.

Q. Zhu, T. Sun, M. N. Chung, X. Sun, Y. Xiao, X. Qiao, and F. Wang, “Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions through energy migration,” Dalton Trans. 47(26), 8581–8584 (2018).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

ACS Nano (2)

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Adv Sci (Weinh) (1)

B. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang, and Q. Y. Zhang, “Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer,” Adv Sci (Weinh) 5(3), 1700667 (2018).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Adv. Mater. (3)

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching-shield sandwich structure for 800nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon upconversion through Tb3+ -mediated interfacial energy transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Dalton Trans. (1)

Q. Zhu, T. Sun, M. N. Chung, X. Sun, Y. Xiao, X. Qiao, and F. Wang, “Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions through energy migration,” Dalton Trans. 47(26), 8581–8584 (2018).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
[Crossref] [PubMed]

J. Phys. Chem. Solids (1)

F. B. Costa, K. Yukimitu, L. A. O. Nunes, M. S. Figueiredo, L. H. C. Andrade, S. M. Lima, and J. C. S. Moraes, “Spectroscopic properties of Nd3+-doped tungsten–tellurite glasses,” J. Phys. Chem. Solids 88, 54–59 (2016).
[Crossref]

Nat. Commun. (1)

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconvertingnanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Nature (1)

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Opt. Express (1)

Science (1)

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref] [PubMed]

Sol. Cells (1)

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Mechanistic illustration of the proposed Gd-mediated interfacial energy transfer (IET) for the NIR upconversion of Nd3+ in the NaYbF4:Tm/Gd@NaYF4:Nd core-shell nanostructure. The right panel shows the detail of the energy transportation processes under 980 nm excitation through IET. MPR stands for multi-phonon relaxation.
Fig. 2
Fig. 2 (a) X-ray diffraction data and (b,c) TEM images of NaYbF4:Tm/Gd(1/50 mol%) core and NaYbF4:Tm/Gd(1/50 mol%)@NaYF4:Nd(10 mol%) core-shell nanoparticles. (d) HRTEM image and (e) the corresponding Fourier transform diffraction pattern of the core-shell sample in (a). (f-k) Element mappings of Gd, Yb, F, Nd and Y for the core-shell sample in (a).
Fig. 3
Fig. 3 (a,b) Near-infrared emission spectra from NaYbF4:Tm/Gd(1/50 mol%)@NaYF4:Nd(x mol%) core-shell nanoparticles. (c) Cross relaxation process [4F3/2; 4I9/2]→[4I15/2; 4I15/2] for quenching the Nd3+ emission. (d) Comparative upconversion emission spectra from core-shell nanoparticles with and without Gd3+ in the core. (e) Intensity dependence of Nd3+ emission at 861 nm on pump power. (f) Visible upconversion emission spectra obtained from (a) samples. Note that all the emission spectra were measured under 980 nm excitation.
Fig. 4
Fig. 4 (a) Ultraviolet upconversion emission spectra of Gd3+ from the NaYbF4:Tm/Gd(1/50 mol%)@NaYF4:Nd(0-20 mol%) core-shell nanoparticles. (b) Upconversion emission spectra from NaYbF4:Tm/Gd(1/50 mol%)@NaYF4:Nd(10 mol%) nanoparticles with and without the ligand exchange. (c) Infrared emission spectra from the NaYbF4:Tm/Gd(1/50 mol%)@NaXF4:Nd(10 mol%; X = Lu,Gd,Y,La) core-shell nanoparticles. All the spectra were measured under 980 nm excitation.
Fig. 5
Fig. 5 (a) Schematic of proposed core-shell-shell structure for enhancing upconversion of Nd3+ by introducing Yb3+ into the innerlayer through energy accumulation. (b) Comparison of the NIR upconversion of Nd3+ from the NaYbF4:Tm/Gd(1/50 mol%)@NaYF4:Nd(20 mol%)@NaYF4, NaYbF4:Nd(20 mol%)@NaYF4, NaYbF4:Tb(30 mol%)@NaYF4:Nd(20 mol%) control samples under 980 nm excitation. (c) Emission spectra from NaYF4:Nd@NaYF4:Yb core-shell nanoparticle under 808 nm excitation.

Metrics