Abstract

A triple-broadband infrared metamaterial absorber with polarization-independent and wide-angle absorption is proposed by a combination of three different configurations. The absorption of each band exceeds 80% in the three frequency ranges of 142–159 THz, 183–200 THz and 233–245 THz. The 3dB relative bandwidths are 14.5%, 13.1% and 9.9%, respectively. Based on the impedance matching theory, impedances of the absorber are calculated and match to those of the free space in the three absorption regions. To better understand the physical mechanism of the broadband absorption, electric field and surface current distributions of the combined structure are investigated. Multiband absorption mechanism is explained by using the wave-interference theory. Finally, absorption of the triple-broadband absorber at different geometric parameters and incident angles are also discussed for two polarizations. The proposed absorber can be a good candidate for the applications in thermal emission, sensing, photo-detection and solar energy harvesting.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-independent wide-angle triple-band metamaterial absorber

Xiaopeng Shen, Tie Jun Cui, Junming Zhao, Hui Feng Ma, Wei Xiang Jiang, and Hui Li
Opt. Express 19(10) 9401-9407 (2011)

Wide-angle perfect metamaterial absorbers based on cave-rings and the complementary patterns

Xiutao Huang, Conghui Lu, Cancan Rong, and Minghai Liu
Opt. Mater. Express 8(9) 2520-2531 (2018)

Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial

Yang Bai, Li Zhao, Dongquan Ju, Yongyuan Jiang, and Linhua Liu
Opt. Express 23(7) 8670-8680 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  2. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [Crossref]
  3. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  4. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  5. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
    [Crossref] [PubMed]
  6. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
    [Crossref] [PubMed]
  7. L. Zhao, H. Liu, Z. He, and S. Dong, “Design of multi-narrowband metamaterial perfect absorbers in near-infrared band based on resonators asymmetric method and modified resonators stacked method,” Opt. Commun. 420, 95–103 (2018).
    [Crossref]
  8. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
    [Crossref]
  9. J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
    [Crossref] [PubMed]
  10. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  11. Y. Xu, P. Zhou, H. Zhang, L. Chen, and L. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
    [Crossref]
  12. Y. Wang, B. Liu, R. Bian, W. Mao, C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
    [Crossref]
  13. D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
    [Crossref]
  14. J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
    [Crossref] [PubMed]
  15. Y. L. Liao and Y. Zhao, “Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber,” Opt. Express 25(25), 32080–32089 (2017).
    [Crossref] [PubMed]
  16. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [Crossref] [PubMed]
  17. M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
    [Crossref] [PubMed]
  18. H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” International Conference on Emerging Technologies, IEEE, 1–5 (2016).
    [Crossref]
  19. R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(102), A335–A343 (2014).
    [Crossref]
  20. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  21. L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
    [Crossref] [PubMed]
  22. A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118(13), 133102 (2015).
    [Crossref]
  23. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
    [Crossref]
  24. S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
    [Crossref]
  25. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
    [Crossref]
  26. R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
    [Crossref] [PubMed]
  27. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
    [Crossref] [PubMed]
  28. J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
    [Crossref] [PubMed]
  29. R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, J. Zhang, and W. Sun, “Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
    [Crossref]
  30. W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
    [Crossref] [PubMed]
  31. M. Ghaderi, E. K. Shahmarvandi, and R. F. Wolffenbuttel, “CMOS-compatible mid-IR metamaterial absorbers for out-of-band suppression in optical MEMS,” Opt. Mater. Express 8(7), 1696–1707 (2018).
    [Crossref]
  32. Y. Choi, U. Kim, and J. Choi, “Design of a dipole tag antenna enclosed by a short-stub for UHF RFID application,” Antennas and Propagation Society International Symposium, IEEE, 1–4 (2008).
  33. Z. Su, J. Yin, and X. Zhao, “Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption,” Sci. Rep. 5(1), 16698 (2015).
    [Crossref] [PubMed]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  35. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [Crossref] [PubMed]
  36. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express 19(15), 14260–14267 (2011).
    [Crossref] [PubMed]
  37. J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
    [Crossref]
  38. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
    [Crossref] [PubMed]
  39. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
    [Crossref] [PubMed]
  40. M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
    [Crossref]

2018 (2)

L. Zhao, H. Liu, Z. He, and S. Dong, “Design of multi-narrowband metamaterial perfect absorbers in near-infrared band based on resonators asymmetric method and modified resonators stacked method,” Opt. Commun. 420, 95–103 (2018).
[Crossref]

M. Ghaderi, E. K. Shahmarvandi, and R. F. Wolffenbuttel, “CMOS-compatible mid-IR metamaterial absorbers for out-of-band suppression in optical MEMS,” Opt. Mater. Express 8(7), 1696–1707 (2018).
[Crossref]

2017 (5)

2016 (1)

2015 (6)

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118(13), 133102 (2015).
[Crossref]

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Z. Su, J. Yin, and X. Zhao, “Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption,” Sci. Rep. 5(1), 16698 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

2012 (2)

2011 (4)

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
[Crossref] [PubMed]

K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express 19(15), 14260–14267 (2011).
[Crossref] [PubMed]

Y. Xu, P. Zhou, H. Zhang, L. Chen, and L. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

2010 (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

2009 (4)

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
[Crossref] [PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref] [PubMed]

2004 (1)

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
[Crossref] [PubMed]

1983 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abbas, M. N.

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Agrawal, M.

Alexander, R. W.

Alici, K. B.

An, Z.

Azad, A. K.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bian, R.

Y. Wang, B. Liu, R. Bian, W. Mao, C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Cai, G.

Cao, J.

Chang, Y. C.

Chen, G.

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Chen, L.

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Chen, X.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
[Crossref] [PubMed]

Cheng, C. W.

Cheng, Y.

Chiu, C. W.

Choi, J.

Y. Choi, U. Kim, and J. Choi, “Design of a dipole tag antenna enclosed by a short-stub for UHF RFID application,” Antennas and Propagation Society International Symposium, IEEE, 1–4 (2008).

Choi, Y.

Y. Choi, U. Kim, and J. Choi, “Design of a dipole tag antenna enclosed by a short-stub for UHF RFID application,” Antennas and Propagation Society International Symposium, IEEE, 1–4 (2008).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cumming, D. R. S.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
[Crossref] [PubMed]

Deng, L.

Y. Xu, P. Zhou, H. Zhang, L. Chen, and L. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Ding, P.

Ding, W.

Dong, S.

L. Zhao, H. Liu, Z. He, and S. Dong, “Design of multi-narrowband metamaterial perfect absorbers in near-infrared band based on resonators asymmetric method and modified resonators stacked method,” Opt. Commun. 420, 95–103 (2018).
[Crossref]

Escorcia-Carranza, I.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Fan, C.

Feng, R.

Fujisawa, D.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Ge, S.

Ghaderi, M.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gou, P.

Grant, J.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
[Crossref] [PubMed]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
[Crossref] [PubMed]

Gu, C.

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Gu, M.

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Guo, J.

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hata, H.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

He, J.

He, Z.

L. Zhao, H. Liu, Z. He, and S. Dong, “Design of multi-narrowband metamaterial perfect absorbers in near-infrared band based on resonators asymmetric method and modified resonators stacked method,” Opt. Commun. 420, 95–103 (2018).
[Crossref]

Hendrickson, J.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hossain, M.

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Hu, W.

Humphreys, M.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Iguchi, F.

A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118(13), 133102 (2015).
[Crossref]

Jia, B.

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Kenney, M.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Khalid, A.

Khan, A. D.

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” International Conference on Emerging Technologies, IEEE, 1–5 (2016).
[Crossref]

Kim, U.

Y. Choi, U. Kim, and J. Choi, “Design of a dipole tag antenna enclosed by a short-stub for UHF RFID application,” Antennas and Propagation Society International Symposium, IEEE, 1–4 (2008).

Kimata, M.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Kohiyama, A.

A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118(13), 133102 (2015).
[Crossref]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
[Crossref] [PubMed]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref] [PubMed]

Lai, K. T.

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Li, L.

Li, T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Liang, E.

Liao, Y. L.

Liu, B.

Y. Wang, B. Liu, R. Bian, W. Mao, C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Liu, C.

Y. Wang, B. Liu, R. Bian, W. Mao, C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Liu, H.

L. Zhao, H. Liu, Z. He, and S. Dong, “Design of multi-narrowband metamaterial perfect absorbers in near-infrared band based on resonators asymmetric method and modified resonators stacked method,” Opt. Commun. 420, 95–103 (2018).
[Crossref]

Liu, J.

Liu, L.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Lok, L. B.

Long, L. L.

Lu, Y.

Luo, M.

Ma, B.

Y. Wang, B. Liu, R. Bian, W. Mao, C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Ma, H.

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Ma, W.

Ma, Y.

Mao, W.

Y. Wang, B. Liu, R. Bian, W. Mao, C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Misaki, K.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nakajima, M.

Noman, M.

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” International Conference on Emerging Technologies, IEEE, 1–5 (2016).
[Crossref]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Ogawa, S.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Ordal, M. A.

Ozbay, E.

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Peumans, P.

Pincon, O.

Qian, J.

Qiu, J.

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Qu, S.

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Ra’di, Y.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Ren, Q.

Saha, S.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sergeant, N. P.

Shah, Y. D.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Shahmarvandi, E. K.

Shchegolkov, D. Y.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Shen, S.

Shi, T.

Shih, M. H.

Shimizu, M.

A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118(13), 133102 (2015).
[Crossref]

Simakov, E. I.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Simovski, C. R.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref] [PubMed]

Soukoulis, C. M.

K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express 19(15), 14260–14267 (2011).
[Crossref] [PubMed]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Su, Z.

Z. Su, J. Yin, and X. Zhao, “Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption,” Sci. Rep. 5(1), 16698 (2015).
[Crossref] [PubMed]

Sun, W.

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Tian, F.

Tian, H.

Tretyakov, S. A.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Turhan, A. B.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Uetsuki, M.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Ullah, A.

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” International Conference on Emerging Technologies, IEEE, 1–5 (2016).
[Crossref]

Ullah, H.

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” International Conference on Emerging Technologies, IEEE, 1–5 (2016).
[Crossref]

Ullah, I.

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” International Conference on Emerging Technologies, IEEE, 1–5 (2016).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref] [PubMed]

Wang, H.

Wang, J.

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Wang, L.

Wang, R.

Wang, Y.

Y. Wang, B. Liu, R. Bian, W. Mao, C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Ward, C. A.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, Y.

Wolffenbuttel, R. F.

Wu, B. I.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
[Crossref] [PubMed]

Wu, S.

Wu, X.

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Xu, J.

Xu, Y.

Y. Xu, P. Zhou, H. Zhang, L. Chen, and L. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Xu, Z.

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Xue, Q.

Yan, F.

Yang, L.

Yang, Y.

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Yin, J.

Z. Su, J. Yin, and X. Zhao, “Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption,” Sci. Rep. 5(1), 16698 (2015).
[Crossref] [PubMed]

Yu, H.

Yu, X.

Yugami, H.

A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118(13), 133102 (2015).
[Crossref]

Zhang, B.

Zhang, H.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Y. Xu, P. Zhou, H. Zhang, L. Chen, and L. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Zhang, J.

Zhang, Y.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Zhao, L.

L. Zhao, H. Liu, Z. He, and S. Dong, “Design of multi-narrowband metamaterial perfect absorbers in near-infrared band based on resonators asymmetric method and modified resonators stacked method,” Opt. Commun. 420, 95–103 (2018).
[Crossref]

Zhao, X.

Z. Su, J. Yin, and X. Zhao, “Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption,” Sci. Rep. 5(1), 16698 (2015).
[Crossref] [PubMed]

Zhao, Y.

Zhao, Z.

Zhou, L.

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhou, P.

Y. Xu, P. Zhou, H. Zhang, L. Chen, and L. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Zhou, Y.

Zou, Y.

ACS Photonics (1)

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Adv. Opt. Mater. (1)

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

J. Appl. Phys. (3)

A. Kohiyama, M. Shimizu, F. Iguchi, and H. Yugami, “Narrowband thermal radiation from closed-end microcavities,” J. Appl. Phys. 118(13), 133102 (2015).
[Crossref]

Y. Xu, P. Zhou, H. Zhang, L. Chen, and L. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Y. Wang, B. Liu, R. Bian, W. Mao, C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

J. Magn. Magn. Mater. (1)

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Zhao, H. Liu, Z. He, and S. Dong, “Design of multi-narrowband metamaterial perfect absorbers in near-infrared band based on resonators asymmetric method and modified resonators stacked method,” Opt. Commun. 420, 95–103 (2018).
[Crossref]

Opt. Express (13)

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

Y. L. Liao and Y. Zhao, “Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber,” Opt. Express 25(25), 32080–32089 (2017).
[Crossref] [PubMed]

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref] [PubMed]

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
[Crossref] [PubMed]

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
[Crossref] [PubMed]

R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(102), A335–A343 (2014).
[Crossref]

K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express 19(15), 14260–14267 (2011).
[Crossref] [PubMed]

J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
[Crossref] [PubMed]

R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, J. Zhang, and W. Sun, “Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
[Crossref]

W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Appl. (1)

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Phys. Rev. B (4)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. E (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. E. (1)

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Sci. Rep. (2)

Z. Su, J. Yin, and X. Zhao, “Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption,” Sci. Rep. 5(1), 16698 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Other (2)

Y. Choi, U. Kim, and J. Choi, “Design of a dipole tag antenna enclosed by a short-stub for UHF RFID application,” Antennas and Propagation Society International Symposium, IEEE, 1–4 (2008).

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” International Conference on Emerging Technologies, IEEE, 1–5 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) 5 × 5 unit cell and (b) Unit cell of the metamaterial absorber. Parameters of the absorbers are P = 4 μm, L1 = 1 μm, L2 = 0.4 μm, L3 = 0.4 μm, L4 = 0.2 μm, L5 = 0.3 μm, t2 = 1.85 μm, and t3 = 0.1 μm.
Fig. 2
Fig. 2 (a) Absorption and (b) Real and imaginary parts of the relative impedance z for the proposed triple-band absorber.
Fig. 3
Fig. 3 Absorption spectra of four types of configurations in unit cell. (a) only large hollow square patch, (b) only small hollow square patch, (c) only square patch, and (d) combined structure.
Fig. 4
Fig. 4 Electric field distribution of the absorber at the center frequency of (a) 151 THz, (b) 191 THz, and (c) 240 THz. Surface current density of the absorber at the center frequency of (d) 151 THz (e) 191 THz, and (f) 240 THz.
Fig. 5
Fig. 5 Absorption spectra of the absorber (a) without square patches on the top for t2 = 1.85 μm, (b) without square patches on the top for t2 = 1 μm, 1.85 μm and 3 μm, and (c) with combined square patches on the top for t2 = 1 μm, 1.85 μm, and 3 μm.
Fig. 6
Fig. 6 Influence of the (a) gold thickness on the top layer t1, sizes of the patches (b) L1, (c) L2, and (d) L5 on the absorptions of the triple band absorbers through the color maps.
Fig. 7
Fig. 7 (a) Color map of the absorption spectra for the combined absorber with incident angle varying from 0 to 45°. The left and the right sides refer to the TM and TE polarization, respectively. Influence of incident angle on the center frequency and 3dB bandwidth in (b) the first absorption band, (c) the second absorption band, and (d) the third absorption band.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε g =1 ω p 2 ω 2 +i ω c ω
B 3dB = f 2 f 1 f c

Metrics